Upload folder using huggingface_hub
Browse files- configuration_act_estimator.py +0 -2
- modeling_act_estimator.py +0 -19
configuration_act_estimator.py
CHANGED
@@ -25,5 +25,3 @@ class ActEstimatorConfig(PretrainedConfig):
|
|
25 |
self.dropout = dropout
|
26 |
self.feature_map_size = feature_map_size
|
27 |
super().__init__(**kwargs)
|
28 |
-
|
29 |
-
|
|
|
25 |
self.dropout = dropout
|
26 |
self.feature_map_size = feature_map_size
|
27 |
super().__init__(**kwargs)
|
|
|
|
modeling_act_estimator.py
CHANGED
@@ -15,22 +15,3 @@ class ActEstimator(PreTrainedModel):
|
|
15 |
|
16 |
def forward(self, frames: Tensor, timestamps: Tensor = None) -> dict[str, Tensor]:
|
17 |
return self.model(frames, timestamps)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# actestimator_config = ActEstimatorConfig.from_pretrained(".")
|
22 |
-
# print(actestimator_config.to_dict())
|
23 |
-
|
24 |
-
# actestimator_model = ActEstimator(actestimator_config)
|
25 |
-
|
26 |
-
# state_dict = torch.load("ckpt.pth", weights_only=True)
|
27 |
-
# actestimator_model.model.load_state_dict(state_dict)
|
28 |
-
|
29 |
-
# print(actestimator_model)
|
30 |
-
# actestimator_model.save_pretrained(".")
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# model = ActEstimator.from_pretrained(".")
|
35 |
-
# print(model(torch.randn(1, 3, 44, 224, 224), torch.randn(1, 44)))
|
36 |
-
|
|
|
15 |
|
16 |
def forward(self, frames: Tensor, timestamps: Tensor = None) -> dict[str, Tensor]:
|
17 |
return self.model(frames, timestamps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|