turboderp commited on
Commit
c403ce8
·
1 Parent(s): 8ab022c

Upload 9 files

Browse files
Files changed (3) hide show
  1. README.md +2 -32
  2. gitattributes +0 -1
  3. output.safetensors +2 -2
README.md CHANGED
@@ -21,35 +21,5 @@ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion to
21
 
22
  We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
23
 
24
- #### This Model
25
- This is an intermediate checkpoint with 240K steps and 503B tokens. **We suggest you not use this directly for inference.** The [chat model](https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.1) is always preferred **
26
-
27
-
28
- #### How to use
29
- You will need the transformers>=4.31
30
- Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
31
- ```
32
- from transformers import AutoTokenizer
33
- import transformers
34
- import torch
35
- model = "PY007/TinyLlama-1.1B-intermediate-step-240k-503b"
36
- tokenizer = AutoTokenizer.from_pretrained(model)
37
- pipeline = transformers.pipeline(
38
- "text-generation",
39
- model=model,
40
- torch_dtype=torch.float16,
41
- device_map="auto",
42
- )
43
-
44
- sequences = pipeline(
45
- 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.',
46
- do_sample=True,
47
- top_k=10,
48
- num_return_sequences=1,
49
- repetition_penalty=1.5,
50
- eos_token_id=tokenizer.eos_token_id,
51
- max_length=500,
52
- )
53
- for seq in sequences:
54
- print(f"Result: {seq['generated_text']}")
55
- ```
 
21
 
22
  We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
23
 
24
+ #### This Collection
25
+ This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
gitattributes CHANGED
@@ -33,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- TinyLlama_logo.png filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
output.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9a233d5fd71ff84d1697c6cb4f521eb42e61ae6817f08d77abcddef67d27262e
3
- size 669665464
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:812894c86a7f93c9f60d229dbd346a8111c0424fdd143ebba299d2c3d73c2de9
3
+ size 669711964