Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander.zip +3 -0
- ppo-LunarLander/_stable_baselines3_version +1 -0
- ppo-LunarLander/data +99 -0
- ppo-LunarLander/policy.optimizer.pth +3 -0
- ppo-LunarLander/policy.pth +3 -0
- ppo-LunarLander/pytorch_variables.pth +3 -0
- ppo-LunarLander/system_info.txt +8 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 36.45 +/- 67.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb901c73420>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb901c734c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb901c73560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb901c73600>", "_build": "<function ActorCriticPolicy._build at 0x7fb901c736a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb901c73740>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb901c737e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb901c73880>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb901c73920>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb901c739c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb901c73a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb901c73b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb901c5f900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1003520, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688673988410996239, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAJpzA70pYEq6plCCO944MLaorjE6FsyXugAAgD8AAIA/89/fvY9WYrqsxSi8/IijNipRkju3EhS2AACAPwAAgD/ar+U99qBxumaLWjuEdY82m3cOOwa9e7oAAAAAAACAPxNtFD7D9Sq6lmHJO/V/szgBd3o7308NOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQBDc3uNPxhGMAWyUS8SMAXSUR0CRQeGViWmhdX2UKGgGR0AYOYa5wwTNaAdNGAFoCEdAkUbDBAOav3V9lChoBkdAYWWC9ytFKGgHTegDaAhHQJFLUC3gDRt1fZQoaAZHQFlMZxrBTGZoB03oA2gIR0CRWQkKNQ0odX2UKGgGR0Bhwg4Ia99MaAdN6ANoCEdAkVm0Ttb9qHV9lChoBkdAYFNiZOSGJ2gHTegDaAhHQJFfJCojv/l1fZQoaAZHQGBPDaGpMpRoB03oA2gIR0CRYj5sCT2WdX2UKGgGR0BhZfd69kBkaAdN6ANoCEdAkW33XmNipnV9lChoBkdAX9MuSOinHmgHTegDaAhHQJFud/3Fkx11fZQoaAZHQGGKJdSl3yJoB03oA2gIR0CRdNt5le4TdX2UKGgGR0BdnuPeYUnHaAdN6ANoCEdAkXgk6HTJAHV9lChoBkdANAYjnmq5smgHTQUBaAhHQJF9cxQBPsR1fZQoaAZHQGGQIAXEZR9oB03oA2gIR0CRhO9dNWU9dX2UKGgGR0BfyVqi48U3aAdN6ANoCEdAkYWc7p3X7XV9lChoBkdAKAktuk1uSGgHTQMBaAhHQJGKcTM7lq91fZQoaAZHQGDUfaQFLWZoB03oA2gIR0CRiw4wyqMndX2UKGgGR0BabHhXKbKBaAdN6ANoCEdAkZQ7rkbPyHV9lChoBkdAVNZQGfPHDWgHTegDaAhHQJGbKV3Ux211fZQoaAZHQFyhsjFAE+xoB03oA2gIR0CRoL9gF5fMdX2UKGgGR8AD5jriVB2PaAdL9mgIR0CRoOuuzQeFdX2UKGgGR0BibPI+4b0faAdN6ANoCEdAkaE2bwz+FXV9lChoBkc/+wTrVvuPWGgHTRIBaAhHQJGmPdyksSV1fZQoaAZHQFxRLSeAd4poB03oA2gIR0CRqpZvUBn0dX2UKGgGR0Bh476ab4JvaAdN6ANoCEdAkbXZO8Cgb3V9lChoBkdAXfFFH8TBZmgHTegDaAhHQJG2ELYwqRV1fZQoaAZHQCcmirT6SDBoB0vVaAhHQJG6LdEb5uZ1fZQoaAZHwEkNamGdqcpoB00JAWgIR0CRuwEMb3oLdX2UKGgGR0Bc4cSwnpjdaAdN6ANoCEdAkbu5AY51eXV9lChoBkdAYq+aRZEDyWgHTegDaAhHQJG+qH58BuJ1fZQoaAZHwDxERJ2+wkhoB0v5aAhHQJHAPfqHGjt1fZQoaAZHQDVsy6+WWyFoB00TAWgIR0CRxHpZOi35dX2UKGgGR0BgScLQXyiFaAdN6ANoCEdAkc9zFuNxVHV9lChoBkdAYL43NLUTc2gHTegDaAhHQJHQQYvWYnh1fZQoaAZHQGunf0EovzxoB02iAmgIR0CR01irT6SDdX2UKGgGR0BhVSTbFjusaAdN6ANoCEdAkdaBqCYkV3V9lChoBkdAYAktq59Vm2gHTegDaAhHQJHl1Du0CzV1fZQoaAZHQGLdPu5SWJJoB03oA2gIR0CR5q4ecQRPdX2UKGgGR0Bjune3x4IKaAdN6ANoCEdAkem2vOhTO3V9lChoBkdAVuZw84gieWgHTegDaAhHQJHs/leWv8t1fZQoaAZHQGJAM3AEdNpoB03oA2gIR0CR/bxptaZAdX2UKGgGR0BZrIc7yQPqaAdN6ANoCEdAkf6CNKh+OXV9lChoBkdAVwZzBAOav2gHTegDaAhHQJIA0EyLyc11fZQoaAZHwDqCzcAR02doB0vnaAhHQJIB0Ao5PuZ1fZQoaAZHQFvSigkC3gFoB03oA2gIR0CSAq5FPSDzdX2UKGgGR0BlLXiFTNt7aAdNpwFoCEdAkgQFHBk7OnV9lChoBkdAOawJTl1bJWgHS8FoCEdAkgVFx82Ji3V9lChoBkdAYE/WIXTEzmgHTegDaAhHQJIV5y5qdpZ1fZQoaAZHQFF9rGipNsZoB03oA2gIR0CSF24C6pYLdX2UKGgGR0BaQsUZeiSJaAdN6ANoCEdAkhpY9X9zfnV9lChoBkdAXX24oZydWmgHTegDaAhHQJIb2Zc9nsd1fZQoaAZHQDcwokRjBmBoB00FAWgIR0CSG/xNIsiCdX2UKGgGR8A0sayrxRVIaAdNDgFoCEdAkiDuiJwbVHV9lChoBkdAYI7Q2MsH0WgHTegDaAhHQJIqhqN6w+t1fZQoaAZHQFl5BeokzGhoB03oA2gIR0CSL0nuRcNZdX2UKGgGR0A3xWDYh+vyaAdNMAFoCEdAkjDaTB68hHV9lChoBkdAYYdwjMV1wGgHTegDaAhHQJIxLcGkep51fZQoaAZHQF+tVtXPqs5oB03oA2gIR0CSNmH6uW8idX2UKGgGR0Bj0QjjaPCEaAdN6ANoCEdAkkbBfShJy3V9lChoBkdAVtikFfReC2gHTegDaAhHQJJJAm6XjVB1fZQoaAZHQFpuiO/+Kj1oB03oA2gIR0CSSX9tdiUgdX2UKGgGR0Bd5+CsfaHsaAdN6ANoCEdAkk6Epy6tknV9lChoBkdAOYKXnhbW3GgHTQ0BaAhHQJJT37di2Dx1fZQoaAZHQF+2M1CPZIxoB03oA2gIR0CSW7wXZXdTdX2UKGgGR8A1RQ0GeMAFaAdNYQFoCEdAklvP0Zm7KHV9lChoBkdAYaVbRnezlmgHTegDaAhHQJJdXQjUuth1fZQoaAZHQFkmakhzNlloB03oA2gIR0CSXcIz3yqddX2UKGgGR0BO08FY+0PZaAdNXgFoCEdAkmPzFMqSYHV9lChoBkdAYxh5a/yoXWgHTegDaAhHQJJxEY77sOZ1fZQoaAZHQGAM8c+7lJZoB03oA2gIR0CScSm4RVZLdX2UKGgGR0BhzDzqbBoFaAdN6ANoCEdAknLOEAYHgXV9lChoBkdAJT0CaJAMUmgHS+FoCEdAknU/tIClrXV9lChoBke//jIFNcnmaGgHTSABaAhHQJJ3qiM5wOx1fZQoaAZHQGElADaGpMpoB03oA2gIR0CSePbRF7UodX2UKGgGR0BhRP0AcT8HaAdN6ANoCEdAkoPtRJmNBHV9lChoBkdAXll+I/JNkGgHTegDaAhHQJKIgyO7xut1fZQoaAZHQGI53nyNGVloB03oA2gIR0CSi2g3Lmp3dX2UKGgGR0BfnlJcxCY1aAdN6ANoCEdAko3Q6ltTDXV9lChoBkfAK1UlzEJjUmgHTVABaAhHQJKTJrAP/aR1fZQoaAZHQEEKQL/jsD5oB00vAWgIR0CSlB6dDpkgdX2UKGgGR0Bhw59Tgl4UaAdN6ANoCEdAkpnO9FnZkHV9lChoBkdAXFclhPTG52gHTegDaAhHQJKfB6C17Y11fZQoaAZHQFm1lwcYIjZoB03oA2gIR0CSqg7EHdGidX2UKGgGR0BgFdOARTS9aAdN6ANoCEdAkqsDXBguy3V9lChoBkdAX0W10DEFXGgHTegDaAhHQJKvtHAh0Qt1fZQoaAZHQDKAVsUIsy1oB00NAWgIR0CSsBSR8twrdX2UKGgGR0Bg7FEmY0EYaAdN6ANoCEdAkrQJLuhK2HV9lChoBkdAX1tJtix3V2gHTegDaAhHQJLA5JHy3Ct1fZQoaAZHQGBYCQ9zOopoB03oA2gIR0CSyIc1wYLtdX2UKGgGR0BgjvivPkaNaAdN6ANoCEdAksjiCSRr8HV9lChoBkdAM1DTKDCgsmgHTU8BaAhHQJLJGVqveP91fZQoaAZHQGUyuT7l7t1oB03oA2gIR0CSyz6+WWyDdX2UKGgGR8AeUz1schkiaAdNEgFoCEdAksvarR0EHXV9lChoBkdAYkOODrZ8KGgHTegDaAhHQJLfZTrE9+x1fZQoaAZHQFgAe/Yao/BoB03oA2gIR0CS39VLi++NdX2UKGgGR0BeuibUgB91aAdN6ANoCEdAkuPUEPlMiHV9lChoBkdAZABAhStNjGgHTegDaAhHQJLk0QvpQk51fZQoaAZHQF+Fr6+FlCloB03oA2gIR0CS9vIeHSF5dX2UKGgGR0BiHz5TIeYEaAdN6ANoCEdAkvdgF1SwW3V9lChoBkdAWCEUHpr1umgHTegDaAhHQJL7dsTFl051fZQoaAZHQF9ZQLeANG5oB03oA2gIR0CS/HzQ/oq1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVngEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 1024, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvaG9tZS90dW5nZG9wMi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL2hvbWUvdHVuZ2RvcDIvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvaG9tZS90dW5nZG9wMi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL2hvbWUvdHVuZ2RvcDIvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.11.4", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f41b9d9615b66d25ddbf913777c5f7a4f869734aa3d0c9b85bd3b4ccdefa2a6
|
3 |
+
size 146681
|
ppo-LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb901c73420>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb901c734c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb901c73560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb901c73600>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb901c736a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb901c73740>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb901c737e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb901c73880>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb901c73920>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb901c739c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb901c73a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb901c73b00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb901c5f900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1003520,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688673988410996239,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAJpzA70pYEq6plCCO944MLaorjE6FsyXugAAgD8AAIA/89/fvY9WYrqsxSi8/IijNipRkju3EhS2AACAPwAAgD/ar+U99qBxumaLWjuEdY82m3cOOwa9e7oAAAAAAACAPxNtFD7D9Sq6lmHJO/V/szgBd3o7308NOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQBDc3uNPxhGMAWyUS8SMAXSUR0CRQeGViWmhdX2UKGgGR0AYOYa5wwTNaAdNGAFoCEdAkUbDBAOav3V9lChoBkdAYWWC9ytFKGgHTegDaAhHQJFLUC3gDRt1fZQoaAZHQFlMZxrBTGZoB03oA2gIR0CRWQkKNQ0odX2UKGgGR0Bhwg4Ia99MaAdN6ANoCEdAkVm0Ttb9qHV9lChoBkdAYFNiZOSGJ2gHTegDaAhHQJFfJCojv/l1fZQoaAZHQGBPDaGpMpRoB03oA2gIR0CRYj5sCT2WdX2UKGgGR0BhZfd69kBkaAdN6ANoCEdAkW33XmNipnV9lChoBkdAX9MuSOinHmgHTegDaAhHQJFud/3Fkx11fZQoaAZHQGGKJdSl3yJoB03oA2gIR0CRdNt5le4TdX2UKGgGR0BdnuPeYUnHaAdN6ANoCEdAkXgk6HTJAHV9lChoBkdANAYjnmq5smgHTQUBaAhHQJF9cxQBPsR1fZQoaAZHQGGQIAXEZR9oB03oA2gIR0CRhO9dNWU9dX2UKGgGR0BfyVqi48U3aAdN6ANoCEdAkYWc7p3X7XV9lChoBkdAKAktuk1uSGgHTQMBaAhHQJGKcTM7lq91fZQoaAZHQGDUfaQFLWZoB03oA2gIR0CRiw4wyqMndX2UKGgGR0BabHhXKbKBaAdN6ANoCEdAkZQ7rkbPyHV9lChoBkdAVNZQGfPHDWgHTegDaAhHQJGbKV3Ux211fZQoaAZHQFyhsjFAE+xoB03oA2gIR0CRoL9gF5fMdX2UKGgGR8AD5jriVB2PaAdL9mgIR0CRoOuuzQeFdX2UKGgGR0BibPI+4b0faAdN6ANoCEdAkaE2bwz+FXV9lChoBkc/+wTrVvuPWGgHTRIBaAhHQJGmPdyksSV1fZQoaAZHQFxRLSeAd4poB03oA2gIR0CRqpZvUBn0dX2UKGgGR0Bh476ab4JvaAdN6ANoCEdAkbXZO8Cgb3V9lChoBkdAXfFFH8TBZmgHTegDaAhHQJG2ELYwqRV1fZQoaAZHQCcmirT6SDBoB0vVaAhHQJG6LdEb5uZ1fZQoaAZHwEkNamGdqcpoB00JAWgIR0CRuwEMb3oLdX2UKGgGR0Bc4cSwnpjdaAdN6ANoCEdAkbu5AY51eXV9lChoBkdAYq+aRZEDyWgHTegDaAhHQJG+qH58BuJ1fZQoaAZHwDxERJ2+wkhoB0v5aAhHQJHAPfqHGjt1fZQoaAZHQDVsy6+WWyFoB00TAWgIR0CRxHpZOi35dX2UKGgGR0BgScLQXyiFaAdN6ANoCEdAkc9zFuNxVHV9lChoBkdAYL43NLUTc2gHTegDaAhHQJHQQYvWYnh1fZQoaAZHQGunf0EovzxoB02iAmgIR0CR01irT6SDdX2UKGgGR0BhVSTbFjusaAdN6ANoCEdAkdaBqCYkV3V9lChoBkdAYAktq59Vm2gHTegDaAhHQJHl1Du0CzV1fZQoaAZHQGLdPu5SWJJoB03oA2gIR0CR5q4ecQRPdX2UKGgGR0Bjune3x4IKaAdN6ANoCEdAkem2vOhTO3V9lChoBkdAVuZw84gieWgHTegDaAhHQJHs/leWv8t1fZQoaAZHQGJAM3AEdNpoB03oA2gIR0CR/bxptaZAdX2UKGgGR0BZrIc7yQPqaAdN6ANoCEdAkf6CNKh+OXV9lChoBkdAVwZzBAOav2gHTegDaAhHQJIA0EyLyc11fZQoaAZHwDqCzcAR02doB0vnaAhHQJIB0Ao5PuZ1fZQoaAZHQFvSigkC3gFoB03oA2gIR0CSAq5FPSDzdX2UKGgGR0BlLXiFTNt7aAdNpwFoCEdAkgQFHBk7OnV9lChoBkdAOawJTl1bJWgHS8FoCEdAkgVFx82Ji3V9lChoBkdAYE/WIXTEzmgHTegDaAhHQJIV5y5qdpZ1fZQoaAZHQFF9rGipNsZoB03oA2gIR0CSF24C6pYLdX2UKGgGR0BaQsUZeiSJaAdN6ANoCEdAkhpY9X9zfnV9lChoBkdAXX24oZydWmgHTegDaAhHQJIb2Zc9nsd1fZQoaAZHQDcwokRjBmBoB00FAWgIR0CSG/xNIsiCdX2UKGgGR8A0sayrxRVIaAdNDgFoCEdAkiDuiJwbVHV9lChoBkdAYI7Q2MsH0WgHTegDaAhHQJIqhqN6w+t1fZQoaAZHQFl5BeokzGhoB03oA2gIR0CSL0nuRcNZdX2UKGgGR0A3xWDYh+vyaAdNMAFoCEdAkjDaTB68hHV9lChoBkdAYYdwjMV1wGgHTegDaAhHQJIxLcGkep51fZQoaAZHQF+tVtXPqs5oB03oA2gIR0CSNmH6uW8idX2UKGgGR0Bj0QjjaPCEaAdN6ANoCEdAkkbBfShJy3V9lChoBkdAVtikFfReC2gHTegDaAhHQJJJAm6XjVB1fZQoaAZHQFpuiO/+Kj1oB03oA2gIR0CSSX9tdiUgdX2UKGgGR0Bd5+CsfaHsaAdN6ANoCEdAkk6Epy6tknV9lChoBkdAOYKXnhbW3GgHTQ0BaAhHQJJT37di2Dx1fZQoaAZHQF+2M1CPZIxoB03oA2gIR0CSW7wXZXdTdX2UKGgGR8A1RQ0GeMAFaAdNYQFoCEdAklvP0Zm7KHV9lChoBkdAYaVbRnezlmgHTegDaAhHQJJdXQjUuth1fZQoaAZHQFkmakhzNlloB03oA2gIR0CSXcIz3yqddX2UKGgGR0BO08FY+0PZaAdNXgFoCEdAkmPzFMqSYHV9lChoBkdAYxh5a/yoXWgHTegDaAhHQJJxEY77sOZ1fZQoaAZHQGAM8c+7lJZoB03oA2gIR0CScSm4RVZLdX2UKGgGR0BhzDzqbBoFaAdN6ANoCEdAknLOEAYHgXV9lChoBkdAJT0CaJAMUmgHS+FoCEdAknU/tIClrXV9lChoBke//jIFNcnmaGgHTSABaAhHQJJ3qiM5wOx1fZQoaAZHQGElADaGpMpoB03oA2gIR0CSePbRF7UodX2UKGgGR0BhRP0AcT8HaAdN6ANoCEdAkoPtRJmNBHV9lChoBkdAXll+I/JNkGgHTegDaAhHQJKIgyO7xut1fZQoaAZHQGI53nyNGVloB03oA2gIR0CSi2g3Lmp3dX2UKGgGR0BfnlJcxCY1aAdN6ANoCEdAko3Q6ltTDXV9lChoBkfAK1UlzEJjUmgHTVABaAhHQJKTJrAP/aR1fZQoaAZHQEEKQL/jsD5oB00vAWgIR0CSlB6dDpkgdX2UKGgGR0Bhw59Tgl4UaAdN6ANoCEdAkpnO9FnZkHV9lChoBkdAXFclhPTG52gHTegDaAhHQJKfB6C17Y11fZQoaAZHQFm1lwcYIjZoB03oA2gIR0CSqg7EHdGidX2UKGgGR0BgFdOARTS9aAdN6ANoCEdAkqsDXBguy3V9lChoBkdAX0W10DEFXGgHTegDaAhHQJKvtHAh0Qt1fZQoaAZHQDKAVsUIsy1oB00NAWgIR0CSsBSR8twrdX2UKGgGR0Bg7FEmY0EYaAdN6ANoCEdAkrQJLuhK2HV9lChoBkdAX1tJtix3V2gHTegDaAhHQJLA5JHy3Ct1fZQoaAZHQGBYCQ9zOopoB03oA2gIR0CSyIc1wYLtdX2UKGgGR0BgjvivPkaNaAdN6ANoCEdAksjiCSRr8HV9lChoBkdAM1DTKDCgsmgHTU8BaAhHQJLJGVqveP91fZQoaAZHQGUyuT7l7t1oB03oA2gIR0CSyz6+WWyDdX2UKGgGR8AeUz1schkiaAdNEgFoCEdAksvarR0EHXV9lChoBkdAYkOODrZ8KGgHTegDaAhHQJLfZTrE9+x1fZQoaAZHQFgAe/Yao/BoB03oA2gIR0CS39VLi++NdX2UKGgGR0BeuibUgB91aAdN6ANoCEdAkuPUEPlMiHV9lChoBkdAZABAhStNjGgHTegDaAhHQJLk0QvpQk51fZQoaAZHQF+Fr6+FlCloB03oA2gIR0CS9vIeHSF5dX2UKGgGR0BiHz5TIeYEaAdN6ANoCEdAkvdgF1SwW3V9lChoBkdAWCEUHpr1umgHTegDaAhHQJL7dsTFl051fZQoaAZHQF9ZQLeANG5oB03oA2gIR0CS/HzQ/oq1dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 980,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVngEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 4,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 1024,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVAgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvaG9tZS90dW5nZG9wMi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL2hvbWUvdHVuZ2RvcDIvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVAgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvaG9tZS90dW5nZG9wMi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL2hvbWUvdHVuZ2RvcDIvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5957d56e42da1b0e7704cd8624e3fed3c1937c07d370a913867adf9737c60feb
|
3 |
+
size 87929
|
ppo-LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb434d90cf9cbb3698066e865ceca24fa0276b6448092e3becf86cd9b87cfab4
|
3 |
+
size 43329
|
ppo-LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.11.4
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.0
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
replay.mp4
ADDED
Binary file (195 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 36.44524527012033, "std_reward": 67.33518704464835, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-07T03:27:24.465520"}
|