Deberta_Human_Value_Detector / modeling_deberta_arg_classifier.py
danschr's picture
Upload DebertaArgClassifier
a3b24ec
raw
history blame
1.21 kB
from transformers import PreTrainedModel, AutoModel
import torch.nn as nn
import torch
from deberta_arg_classifier.configuration_deberta_arg_classifier import DebertaConfig
class DebertaArgClassifier(PreTrainedModel):
config_class = DebertaConfig
def __init__(self, config):
super().__init__(config)
self.bert = AutoModel.from_pretrained("microsoft/deberta-large")
self.classifier = nn.Linear(self.bert.config.hidden_size, config.number_labels)
self.criterion = nn.BCEWithLogitsLoss()
def forward(self, input_ids, attention_mask, labels=None):
output = self.bert(input_ids, attention_mask=attention_mask)
output = self._cls_embeddings(output)
output_cls = self.classifier(output)
output = torch.sigmoid(output_cls)
if labels is not None:
loss = self.cirterion(output_cls, labels)
return {"loss": loss, "logits": output}
return {"logits": output}
def _cls_embeddings(self, output):
'''Returns the embeddings corresponding to the <CLS> token of each text. '''
last_hidden_state = output[0]
cls_embeddings = last_hidden_state[:, 0]
return cls_embeddings