tulayturanmaku
commited on
Commit
•
0db6bea
1
Parent(s):
957db88
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- rouge
|
6 |
+
model-index:
|
7 |
+
- name: bert2bert_law_summarization_tr
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# bert2bert_law_summarization_tr
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [mrm8488/bert2bert_shared-turkish-summarization](https://huggingface.co/mrm8488/bert2bert_shared-turkish-summarization) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.9682
|
19 |
+
- Rouge1: 0.6221
|
20 |
+
- Rouge2: 0.5799
|
21 |
+
- Rougel: 0.6007
|
22 |
+
- Rougelsum: 0.6009
|
23 |
+
- Gen Len: 63.3077
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 2
|
44 |
+
- eval_batch_size: 2
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 4
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
55 |
+
| 1.6025 | 1.0 | 520 | 1.1210 | 0.611 | 0.5687 | 0.5885 | 0.5883 | 62.6154 |
|
56 |
+
| 1.0845 | 2.0 | 1040 | 1.0161 | 0.62 | 0.5789 | 0.601 | 0.6005 | 63.4038 |
|
57 |
+
| 0.9252 | 3.0 | 1560 | 0.9784 | 0.6249 | 0.583 | 0.6043 | 0.6045 | 63.2654 |
|
58 |
+
| 0.858 | 4.0 | 2080 | 0.9682 | 0.6221 | 0.5799 | 0.6007 | 0.6009 | 63.3077 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.28.0
|
64 |
+
- Pytorch 2.0.1+cu118
|
65 |
+
- Datasets 2.13.0
|
66 |
+
- Tokenizers 0.13.3
|