|
import os |
|
import logging |
|
import torch |
|
import torch.distributed as dist |
|
import numpy as np |
|
from easydict import EasyDict |
|
from bisect import bisect_right |
|
import math |
|
import core.fp16 as fp16 |
|
|
|
class _LRScheduler(object): |
|
def __init__(self, optimizer, last_iter=-1): |
|
if not isinstance(optimizer, torch.optim.Optimizer) and not isinstance(optimizer, fp16.FP16_Optimizer): |
|
raise TypeError('{} is not an Optimizer'.format( |
|
type(optimizer).__name__)) |
|
self.optimizer = optimizer |
|
if last_iter == -1: |
|
for group in optimizer.param_groups: |
|
group.setdefault('initial_lr', group['lr']) |
|
self.has_base_lrs = True |
|
self._get_base_lrs_later() |
|
else: |
|
self.has_base_lrs = False |
|
|
|
self.last_iter = last_iter |
|
|
|
def _get_base_lrs_later(self): |
|
self.base_lrs = list(map(lambda group: group['initial_lr'], self.optimizer.param_groups)) |
|
|
|
def _get_new_lr(self): |
|
raise NotImplementedError |
|
|
|
def get_lr(self): |
|
return list(map(lambda group: group['lr'], self.optimizer.param_groups)) |
|
|
|
def step(self, this_iter=None): |
|
if not self.has_base_lrs: |
|
self._get_base_lrs_later() |
|
|
|
if this_iter is None: |
|
this_iter = self.last_iter + 1 |
|
self.last_iter = this_iter |
|
for param_group, lr in zip(self.optimizer.param_groups, self._get_new_lr()): |
|
param_group['lr'] = lr |
|
|
|
class _WarmUpLRScheduler(_LRScheduler): |
|
|
|
def __init__(self, optimizer, base_lr, warmup_lr, warmup_steps, last_iter=-1): |
|
self.base_lr = base_lr |
|
self.warmup_steps = warmup_steps |
|
if warmup_steps == 0: |
|
self.warmup_lr = base_lr |
|
else: |
|
self.warmup_lr = warmup_lr |
|
super(_WarmUpLRScheduler, self).__init__(optimizer, last_iter) |
|
|
|
def _get_warmup_lr(self): |
|
if self.warmup_steps > 0 and self.last_iter < self.warmup_steps: |
|
|
|
scale = ((self.last_iter/self.warmup_steps)*(self.warmup_lr - self.base_lr) + self.base_lr)/self.base_lr |
|
|
|
return [scale * base_lr for base_lr in self.base_lrs] |
|
else: |
|
return None |
|
|
|
class StepLRScheduler(_WarmUpLRScheduler): |
|
def __init__(self, optimizer, lr_steps, lr_mults, base_lr, warmup_lr, warmup_steps, last_iter=-1, max_iter=None): |
|
super(StepLRScheduler, self).__init__(optimizer, base_lr, warmup_lr, warmup_steps, last_iter) |
|
|
|
assert len(lr_steps) == len(lr_mults), "{} vs {}".format(milestone, lr_mults) |
|
for x in lr_steps: |
|
assert isinstance(x, int) |
|
if not list(lr_steps) == sorted(lr_steps): |
|
raise ValueError('Milestones should be a list of' |
|
' increasing integers. Got {}', lr_steps) |
|
self.lr_steps = lr_steps |
|
self.lr_mults = [1.0] |
|
for x in lr_mults: |
|
self.lr_mults.append(self.lr_mults[-1]*x) |
|
|
|
def _get_new_lr(self): |
|
warmup_lr = self._get_warmup_lr() |
|
if warmup_lr is not None: |
|
return warmup_lr |
|
|
|
pos = bisect_right(self.lr_steps, self.last_iter) |
|
scale = self.warmup_lr*self.lr_mults[pos] / self.base_lr |
|
return [base_lr*scale for base_lr in self.base_lrs] |
|
|
|
class CosineLRScheduler(_WarmUpLRScheduler): |
|
def __init__(self, optimizer, max_iter, eta_min, base_lr, warmup_lr, warmup_steps, last_iter=-1): |
|
super(CosineLRScheduler, self).__init__(optimizer, base_lr, warmup_lr, warmup_steps, last_iter) |
|
self.max_iter = max_iter |
|
self.eta_min = eta_min |
|
|
|
def _get_new_lr(self): |
|
warmup_lr = self._get_warmup_lr() |
|
if warmup_lr is not None: |
|
return warmup_lr |
|
|
|
step_ratio = (self.last_iter-self.warmup_steps) / (self.max_iter-self.warmup_steps) |
|
target_lr = self.eta_min + (self.warmup_lr - self.eta_min)*(1 + math.cos(math.pi * step_ratio)) / 2 |
|
scale = target_lr / self.base_lr |
|
return [scale*base_lr for base_lr in self.base_lrs] |
|
|
|
class WarmupCosineLRScheduler(_WarmUpLRScheduler): |
|
def __init__(self, optimizer, max_iter, warmup_iters, |
|
warmup_factor=1e-2, warmup_method="linear", last_iter=-1, base_lr=0.8, **kwargs): |
|
super(WarmupCosineLRScheduler, self).__init__(optimizer, warmup_factor*base_lr, base_lr, warmup_iters, last_iter) |
|
if warmup_method not in ("constant", "linear"): |
|
raise ValueError(f"Only 'constant' or 'linear' warmup_method accepted. Got {warmup_method}") |
|
|
|
self.max_iter = max_iter |
|
self.warmup_factor = warmup_factor |
|
self.warmup_iters = warmup_iters |
|
self.warmup_method = warmup_method |
|
|
|
|
|
def _get_new_lr(self): |
|
warmup_factor = 1 |
|
if self.last_iter < self.warmup_iters: |
|
if self.warmup_method == "constant": |
|
warmup_factor = self.warmup_factor |
|
elif self.warmup_method == "linear": |
|
alpha = float(self.last_iter) / self.warmup_iters |
|
warmup_factor = self.warmup_factor * (1 - alpha) + alpha |
|
return [ |
|
warmup_factor * base_lr * (1 + math.cos(math.pi * self.last_iter / self.max_iter)) / 2 |
|
for base_lr in self.base_lrs |
|
] |
|
|
|
|
|
class WarmupPolyLRScheduler(_WarmUpLRScheduler): |
|
def __init__(self, optimizer, max_iter, warmup_iters, |
|
warmup_factor=1e-2, warmup_method="linear", last_iter=-1, base_lr=0.8, power=0.9): |
|
super(WarmupPolyLRScheduler, self).__init__(optimizer, warmup_factor*base_lr, base_lr, warmup_iters, last_iter) |
|
if warmup_method not in ("constant", "linear"): |
|
raise ValueError(f"Only 'constant' or 'linear' warmup_method accepted. Got {warmup_method}") |
|
|
|
self.max_iter = max_iter |
|
self.warmup_factor = warmup_factor |
|
self.warmup_iters = warmup_iters |
|
self.warmup_method = warmup_method |
|
|
|
self.power = power |
|
|
|
def _get_new_lr(self): |
|
warmup_factor = 1 |
|
if self.last_iter < self.warmup_iters: |
|
if self.warmup_method == "constant": |
|
warmup_factor = self.warmup_factor |
|
elif self.warmup_method == "linear": |
|
alpha = float(self.last_iter) / self.warmup_iters |
|
warmup_factor = self.warmup_factor * (1 - alpha) + alpha |
|
return [ |
|
warmup_factor * base_lr * math.pow((1.0 - self.last_iter / self.max_iter), self.power) |
|
for base_lr in self.base_lrs |
|
] |
|
|