Update README.md
Browse files
README.md
CHANGED
@@ -1,50 +1,112 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
-
-
|
|
|
|
|
|
|
|
|
4 |
model-index:
|
5 |
- name: wav2vec2-live-japanese
|
6 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
-
|
9 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
-
should probably proofread and complete it, then remove this comment. -->
|
11 |
-
|
12 |
# wav2vec2-live-japanese
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
##
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: ja
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
- xlsr-fine-tuning-week
|
12 |
+
license: apache-2.0
|
13 |
model-index:
|
14 |
- name: wav2vec2-live-japanese
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice Japanese
|
21 |
+
type: common_voice
|
22 |
+
args: ja
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 22.08%
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 10.08%
|
30 |
---
|
|
|
|
|
|
|
|
|
31 |
# wav2vec2-live-japanese
|
32 |
+
https://github.com/ttop32/wav2vec2-live-japanese-translator
|
33 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese hiragana using the
|
34 |
+
- [common_voice](https://huggingface.co/datasets/common_voice)
|
35 |
+
- [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut)
|
36 |
+
- [CSS10](https://github.com/Kyubyong/css10)
|
37 |
+
- [TEDxJP-10K](https://github.com/laboroai/TEDxJP-10K)
|
38 |
+
- [JVS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus)
|
39 |
+
## Inference
|
40 |
+
```python
|
41 |
+
#usage
|
42 |
+
import torch
|
43 |
+
import torchaudio
|
44 |
+
from datasets import load_dataset
|
45 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
46 |
+
model = Wav2Vec2ForCTC.from_pretrained("ttop324/wav2vec2-live-japanese")
|
47 |
+
processor = Wav2Vec2Processor.from_pretrained("ttop324/wav2vec2-live-japanese")
|
48 |
+
test_dataset = load_dataset("common_voice", "ja", split="test")
|
49 |
+
# Preprocessing the datasets.
|
50 |
+
# We need to read the aduio files as arrays
|
51 |
+
def speech_file_to_array_fn(batch):
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy()
|
54 |
+
return batch
|
55 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
56 |
+
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
57 |
+
with torch.no_grad():
|
58 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
59 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
60 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
61 |
+
print("Reference:", test_dataset[:2]["sentence"])
|
62 |
+
```
|
63 |
+
## Evaluation
|
64 |
+
```python
|
65 |
+
import torch
|
66 |
+
import torchaudio
|
67 |
+
from datasets import load_dataset, load_metric
|
68 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
69 |
+
import re
|
70 |
+
import pykakasi
|
71 |
+
import MeCab
|
72 |
+
wer = load_metric("wer")
|
73 |
+
cer = load_metric("cer")
|
74 |
+
model = Wav2Vec2ForCTC.from_pretrained("ttop324/wav2vec2-live-japanese").to("cuda")
|
75 |
+
processor = Wav2Vec2Processor.from_pretrained("ttop324/wav2vec2-live-japanese")
|
76 |
+
test_dataset = load_dataset("common_voice", "ja", split="test")
|
77 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\�‘、。.!,・―─~「」『』\\\\※\[\]\{\}「」〇?…]'
|
78 |
+
wakati = MeCab.Tagger("-Owakati")
|
79 |
+
kakasi = pykakasi.kakasi()
|
80 |
+
kakasi.setMode("J","H") # kanji to hiragana
|
81 |
+
kakasi.setMode("K","H") # katakana to hiragana
|
82 |
+
conv = kakasi.getConverter()
|
83 |
+
FULLWIDTH_TO_HALFWIDTH = str.maketrans(
|
84 |
+
' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!゛#$%&()*+、ー。/:;〈=〉?@[]^_‘{|}~',
|
85 |
+
' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&()*+,-./:;<=>?@[]^_`{|}~',
|
86 |
+
)
|
87 |
+
def fullwidth_to_halfwidth(s):
|
88 |
+
return s.translate(FULLWIDTH_TO_HALFWIDTH)
|
89 |
+
def preprocessData(batch):
|
90 |
+
batch["sentence"] = fullwidth_to_halfwidth(batch["sentence"])
|
91 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex,' ', batch["sentence"]).lower() #remove special char
|
92 |
+
batch["sentence"] = wakati.parse(batch["sentence"]) #add space
|
93 |
+
batch["sentence"] = conv.do(batch["sentence"]) #covert to hiragana
|
94 |
+
batch["sentence"] = " ".join(batch["sentence"].split())+" " #remove multiple space
|
95 |
+
|
96 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
97 |
+
batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy()
|
98 |
+
return batch
|
99 |
+
test_dataset = test_dataset.map(preprocessData)
|
100 |
+
# Preprocessing the datasets.
|
101 |
+
# We need to read the aduio files as arrays
|
102 |
+
def evaluate(batch):
|
103 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
+
with torch.no_grad():
|
105 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
106 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
107 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
108 |
+
return batch
|
109 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
110 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
111 |
+
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
112 |
+
```
|