tt1225 commited on
Commit
db963d5
·
verified ·
1 Parent(s): e913b01

Upload 8 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: lmsys/vicuna-7b-v1.5
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "lmsys/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "gate_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d7ad74719e233d0a1a35a51b4598cce0010f44bdbfbd584a5fe97199b64f3db
3
+ size 639692320
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_multiview_ensembler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_video_tower": "LanguageBind/LanguageBind_Video_merge",
25
+ "mm_vision_select_feature": "patch",
26
+ "mm_vision_select_layer": -2,
27
+ "mm_vision_tower": null,
28
+ "model_type": "llava_llama",
29
+ "multiview_ensembler_lr": 2e-05,
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 32,
32
+ "num_key_value_heads": 32,
33
+ "pad_token_id": 0,
34
+ "pretraining_tp": 1,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "tokenizer_model_max_length": 2048,
40
+ "tokenizer_padding_side": "right",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.37.2",
43
+ "tune_mm_mlp_adapter": false,
44
+ "tune_multiview_ensembler": true,
45
+ "use_cache": true,
46
+ "use_mm_proj": true,
47
+ "vocab_size": 32000
48
+ }
mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a9bee8a421325ed758a59ffa3062f06b1244249a365238a36908fb96cbcdd11
3
+ size 41961085
multiview_ensembler.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd7bc35ff36ca38a73ca1fe6b0a467801e3bca468ff771d1a6c6f53fdc13b1a
3
+ size 268638294
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87bd37822580c42665a9859dc629125e90e187e48d3a6c4adb290966c20fb1e6
3
+ size 268638294
trainer_state.json ADDED
@@ -0,0 +1,654 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9964071856287425,
5
+ "eval_steps": 500,
6
+ "global_step": 104,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 0.0,
14
+ "loss": 3.02,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 0.0,
20
+ "loss": 2.8946,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 5e-05,
26
+ "loss": 2.9989,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.04,
31
+ "learning_rate": 0.0001,
32
+ "loss": 3.0185,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.05,
37
+ "learning_rate": 0.00015000000000000001,
38
+ "loss": 1.9948,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.06,
43
+ "learning_rate": 0.0002,
44
+ "loss": 2.1701,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.07,
49
+ "learning_rate": 0.00019995065603657316,
50
+ "loss": 2.1174,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.08,
55
+ "learning_rate": 0.00019980267284282717,
56
+ "loss": 2.067,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.09,
61
+ "learning_rate": 0.00019955619646030802,
62
+ "loss": 1.9723,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.1,
67
+ "learning_rate": 0.0001992114701314478,
68
+ "loss": 1.9417,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.11,
73
+ "learning_rate": 0.00019876883405951377,
74
+ "loss": 1.9781,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.11,
79
+ "learning_rate": 0.0001982287250728689,
80
+ "loss": 1.8071,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.12,
85
+ "learning_rate": 0.00019759167619387476,
86
+ "loss": 1.8272,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.13,
91
+ "learning_rate": 0.0001968583161128631,
92
+ "loss": 1.6803,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.14,
97
+ "learning_rate": 0.0001960293685676943,
98
+ "loss": 1.726,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.15,
103
+ "learning_rate": 0.00019510565162951537,
104
+ "loss": 1.7271,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.16,
109
+ "learning_rate": 0.00019408807689542257,
110
+ "loss": 1.7266,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.17,
115
+ "learning_rate": 0.00019297764858882514,
116
+ "loss": 1.7272,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.18,
121
+ "learning_rate": 0.00019177546256839812,
122
+ "loss": 1.6868,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.19,
127
+ "learning_rate": 0.00019048270524660196,
128
+ "loss": 1.5478,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.2,
133
+ "learning_rate": 0.0001891006524188368,
134
+ "loss": 1.5898,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.21,
139
+ "learning_rate": 0.00018763066800438636,
140
+ "loss": 1.6766,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.22,
145
+ "learning_rate": 0.0001860742027003944,
146
+ "loss": 1.5721,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.23,
151
+ "learning_rate": 0.00018443279255020152,
152
+ "loss": 1.5771,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.24,
157
+ "learning_rate": 0.00018270805742745617,
158
+ "loss": 1.5692,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.25,
163
+ "learning_rate": 0.00018090169943749476,
164
+ "loss": 1.5286,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.26,
169
+ "learning_rate": 0.00017901550123756906,
170
+ "loss": 1.4898,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.27,
175
+ "learning_rate": 0.00017705132427757895,
176
+ "loss": 1.5101,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.28,
181
+ "learning_rate": 0.00017501110696304596,
182
+ "loss": 1.5265,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.29,
187
+ "learning_rate": 0.00017289686274214118,
188
+ "loss": 1.4373,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.3,
193
+ "learning_rate": 0.00017071067811865476,
194
+ "loss": 1.3691,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.31,
199
+ "learning_rate": 0.00016845471059286887,
200
+ "loss": 1.5147,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.32,
205
+ "learning_rate": 0.00016613118653236518,
206
+ "loss": 1.4216,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.33,
211
+ "learning_rate": 0.000163742398974869,
212
+ "loss": 1.3968,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.34,
217
+ "learning_rate": 0.00016129070536529766,
218
+ "loss": 1.4057,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.34,
223
+ "learning_rate": 0.00015877852522924732,
224
+ "loss": 1.4042,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.35,
229
+ "learning_rate": 0.00015620833778521307,
230
+ "loss": 1.3287,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.36,
235
+ "learning_rate": 0.00015358267949789966,
236
+ "loss": 1.2654,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.37,
241
+ "learning_rate": 0.00015090414157503714,
242
+ "loss": 1.3084,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.38,
247
+ "learning_rate": 0.00014817536741017152,
248
+ "loss": 1.2634,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.39,
253
+ "learning_rate": 0.00014539904997395468,
254
+ "loss": 1.2646,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.4,
259
+ "learning_rate": 0.00014257792915650728,
260
+ "loss": 1.29,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.41,
265
+ "learning_rate": 0.00013971478906347806,
266
+ "loss": 1.3563,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.42,
271
+ "learning_rate": 0.00013681245526846783,
272
+ "loss": 1.272,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.43,
277
+ "learning_rate": 0.00013387379202452917,
278
+ "loss": 1.299,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.44,
283
+ "learning_rate": 0.00013090169943749476,
284
+ "loss": 1.3304,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.45,
289
+ "learning_rate": 0.00012789911060392294,
290
+ "loss": 1.2768,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.46,
295
+ "learning_rate": 0.0001248689887164855,
296
+ "loss": 1.301,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.47,
301
+ "learning_rate": 0.00012181432413965428,
302
+ "loss": 1.1637,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.48,
307
+ "learning_rate": 0.00011873813145857249,
308
+ "loss": 1.2437,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.49,
313
+ "learning_rate": 0.0001156434465040231,
314
+ "loss": 1.2699,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.5,
319
+ "learning_rate": 0.00011253332335643043,
320
+ "loss": 1.2035,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.51,
325
+ "learning_rate": 0.00010941083133185146,
326
+ "loss": 1.2354,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.52,
331
+ "learning_rate": 0.00010627905195293135,
332
+ "loss": 1.3551,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.53,
337
+ "learning_rate": 0.00010314107590781284,
338
+ "loss": 1.1651,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.54,
343
+ "learning_rate": 0.0001,
344
+ "loss": 1.1803,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.55,
349
+ "learning_rate": 9.685892409218717e-05,
350
+ "loss": 1.1379,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.56,
355
+ "learning_rate": 9.372094804706867e-05,
356
+ "loss": 1.1446,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.57,
361
+ "learning_rate": 9.058916866814858e-05,
362
+ "loss": 1.2089,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.57,
367
+ "learning_rate": 8.746667664356956e-05,
368
+ "loss": 1.1623,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.58,
373
+ "learning_rate": 8.435655349597689e-05,
374
+ "loss": 1.0943,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.59,
379
+ "learning_rate": 8.126186854142752e-05,
380
+ "loss": 1.2074,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.6,
385
+ "learning_rate": 7.818567586034577e-05,
386
+ "loss": 1.1739,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.61,
391
+ "learning_rate": 7.513101128351454e-05,
392
+ "loss": 1.2538,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.62,
397
+ "learning_rate": 7.210088939607708e-05,
398
+ "loss": 1.288,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.63,
403
+ "learning_rate": 6.909830056250527e-05,
404
+ "loss": 1.1144,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.64,
409
+ "learning_rate": 6.612620797547087e-05,
410
+ "loss": 1.2695,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.65,
415
+ "learning_rate": 6.318754473153221e-05,
416
+ "loss": 1.205,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.66,
421
+ "learning_rate": 6.0285210936521955e-05,
422
+ "loss": 1.1551,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.67,
427
+ "learning_rate": 5.7422070843492734e-05,
428
+ "loss": 1.1511,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.68,
433
+ "learning_rate": 5.4600950026045326e-05,
434
+ "loss": 1.1414,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.69,
439
+ "learning_rate": 5.182463258982846e-05,
440
+ "loss": 1.1637,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.7,
445
+ "learning_rate": 4.909585842496287e-05,
446
+ "loss": 1.1339,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.71,
451
+ "learning_rate": 4.6417320502100316e-05,
452
+ "loss": 1.1118,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.72,
457
+ "learning_rate": 4.379166221478697e-05,
458
+ "loss": 1.1822,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.73,
463
+ "learning_rate": 4.12214747707527e-05,
464
+ "loss": 1.2311,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.74,
469
+ "learning_rate": 3.8709294634702376e-05,
470
+ "loss": 1.1172,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.75,
475
+ "learning_rate": 3.6257601025131026e-05,
476
+ "loss": 1.0924,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.76,
481
+ "learning_rate": 3.386881346763483e-05,
482
+ "loss": 1.1534,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.77,
487
+ "learning_rate": 3.154528940713113e-05,
488
+ "loss": 1.2601,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.78,
493
+ "learning_rate": 2.9289321881345254e-05,
494
+ "loss": 1.0743,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.79,
499
+ "learning_rate": 2.7103137257858868e-05,
500
+ "loss": 1.1419,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.8,
505
+ "learning_rate": 2.4988893036954043e-05,
506
+ "loss": 1.0558,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.8,
511
+ "learning_rate": 2.2948675722421086e-05,
512
+ "loss": 1.1382,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.81,
517
+ "learning_rate": 2.098449876243096e-05,
518
+ "loss": 1.1775,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.82,
523
+ "learning_rate": 1.9098300562505266e-05,
524
+ "loss": 1.1861,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.83,
529
+ "learning_rate": 1.7291942572543807e-05,
530
+ "loss": 1.1331,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.84,
535
+ "learning_rate": 1.5567207449798515e-05,
536
+ "loss": 1.142,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.85,
541
+ "learning_rate": 1.3925797299605647e-05,
542
+ "loss": 1.1482,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.86,
547
+ "learning_rate": 1.2369331995613665e-05,
548
+ "loss": 1.0885,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.87,
553
+ "learning_rate": 1.0899347581163221e-05,
554
+ "loss": 1.2005,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.88,
559
+ "learning_rate": 9.517294753398064e-06,
560
+ "loss": 1.0784,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.89,
565
+ "learning_rate": 8.224537431601886e-06,
566
+ "loss": 1.133,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.9,
571
+ "learning_rate": 7.022351411174866e-06,
572
+ "loss": 1.1096,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.91,
577
+ "learning_rate": 5.911923104577455e-06,
578
+ "loss": 1.108,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.92,
583
+ "learning_rate": 4.8943483704846475e-06,
584
+ "loss": 0.9645,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.93,
589
+ "learning_rate": 3.970631432305694e-06,
590
+ "loss": 1.1942,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.94,
595
+ "learning_rate": 3.1416838871368924e-06,
596
+ "loss": 1.181,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.95,
601
+ "learning_rate": 2.4083238061252567e-06,
602
+ "loss": 1.0978,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.96,
607
+ "learning_rate": 1.771274927131139e-06,
608
+ "loss": 0.9967,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.97,
613
+ "learning_rate": 1.231165940486234e-06,
614
+ "loss": 1.2266,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.98,
619
+ "learning_rate": 7.885298685522235e-07,
620
+ "loss": 1.216,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.99,
625
+ "learning_rate": 4.438035396920004e-07,
626
+ "loss": 1.2119,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 1.0,
631
+ "learning_rate": 1.973271571728441e-07,
632
+ "loss": 1.1436,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 1.0,
637
+ "step": 104,
638
+ "total_flos": 1.0478460476588032e+16,
639
+ "train_loss": 1.4066595842058842,
640
+ "train_runtime": 3219.9547,
641
+ "train_samples_per_second": 0.259,
642
+ "train_steps_per_second": 0.032
643
+ }
644
+ ],
645
+ "logging_steps": 1.0,
646
+ "max_steps": 104,
647
+ "num_input_tokens_seen": 0,
648
+ "num_train_epochs": 1,
649
+ "save_steps": 104,
650
+ "total_flos": 1.0478460476588032e+16,
651
+ "train_batch_size": 1,
652
+ "trial_name": null,
653
+ "trial_params": null
654
+ }