Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 198.19 +/- 17.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff27472b710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff27472b7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff27472b830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff27472b8c0>", "_build": "<function ActorCriticPolicy._build at 0x7ff27472b950>", "forward": "<function ActorCriticPolicy.forward at 0x7ff27472b9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff27472ba70>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff27472bb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff27472bb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff27472bc20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff27472bcb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff274aeb210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668327948059499002, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD2en75eRWE/cp3gubC/g77RsaS97t6tPQAAAAAAAAAAYOBdPohq67zZHkM9SrvFu/vYUb5qY5a8AACAPwAAgD8NFIY9uNb2uUizybt/dve1q7zhO+YsYzUAAIA/AACAPxv57b7EOqs9uZkHvkZjRL6NdBW9ds8svgAAAAAAAAAAgFQivfZINroupFq4KdttNlrQ8roqDnQ3AACAPwAAgD+mlrw99mQ1uhYxFDwV8MA2TfzIumGSuTUAAIA/AACAP5r95z323Cy635kLuXA69LRDl4k5+t9UOAAAgD8AAIA/Jr2ZPSl4XLpxNoy6ohQstupu5DmKYKI5AACAPwAAgD9ap869SHOeuoJkMztm6SI4H3OEuis8z7kAAIA/AACAP8Y7Xj4O+7W8kSUVu+T0eznnox6+Ay4+OgAAgD8AAIA/TexMPq7J+LwTUUA9E+P0uxfCVr7c5Li8AACAPwAAgD/w4r8+KSUYO3SbSDtLgZk4p5IaPRtbaroAAIA/AACAP4AFzD1SgNi58mIAuzoFmbZg1qW5RoMNNgAAgD8AAIA/iLUSv21vFb7GygW8jSqJusP8Mz5icj86AACAPwAAgD9ATQS+2+qavNKISrylwiM86VsKPv7MBr0AAIA/AACAP3/2A7+8SDO+8ihTu1lKq7hM8l09Q41UOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICRoziXoGWUCUhpRSlIwBbJRN6AOMAXSUR0B5py0rsjVydX2UKGgGaAloD0MINC+H3Xc7YECUhpRSlGgVTegDaBZHQHmshIOH3111fZQoaAZoCWgPQwge+YOB534dQJSGlFKUaBVLx2gWR0B5vo8B+4LDdX2UKGgGaAloD0MIIVor2hwXQsCUhpRSlGgVTSMBaBZHQHnGdIsiB5J1fZQoaAZoCWgPQwibVgqBXBBHwJSGlFKUaBVNBgFoFkdAecaK+zt1IXV9lChoBmgJaA9DCI9Rnnk5l1hAlIaUUpRoFU3oA2gWR0B5yQ593KSxdX2UKGgGaAloD0MIFm2Oc5uAGUCUhpRSlGgVS+NoFkdAec/t7a7EpHV9lChoBmgJaA9DCDFdiNUfwSZAlIaUUpRoFUvraBZHQHnlE9pyp711fZQoaAZoCWgPQwg4TDRIweNIQJSGlFKUaBVLxmgWR0B591hb4agmdX2UKGgGaAloD0MIgjekUYEsX0CUhpRSlGgVTegDaBZHQHn7rR0EHMV1fZQoaAZoCWgPQwhIcCNli21aQJSGlFKUaBVN6ANoFkdAegfqGUOd5XV9lChoBmgJaA9DCIXpew3BdFZAlIaUUpRoFU3oA2gWR0B6CO55JK8MdX2UKGgGaAloD0MIpKXydoSnXECUhpRSlGgVTegDaBZHQHoVnO4XoDB1fZQoaAZoCWgPQwgqqKj6lbNgQJSGlFKUaBVN6ANoFkdAeh58AJb+tXV9lChoBmgJaA9DCExsPq4N41VAlIaUUpRoFU3oA2gWR0B6ILyTY/VzdX2UKGgGaAloD0MIh086kWBAVUCUhpRSlGgVTegDaBZHQHosoJzDGcZ1fZQoaAZoCWgPQwgdkIR9OwJfQJSGlFKUaBVN6ANoFkdAelRSSNfgJnV9lChoBmgJaA9DCF/Rrdf0bk3AlIaUUpRoFUvvaBZHQHpZyk9ECvJ1fZQoaAZoCWgPQwikbmdfeVgpwJSGlFKUaBVL6WgWR0B6WpWIXTEzdX2UKGgGaAloD0MIDveRWxOTaECUhpRSlGgVTfUBaBZHQHpi1D8cdYJ1fZQoaAZoCWgPQwgKZ7eWyXRCwJSGlFKUaBVNRAFoFkdAemXX2dupCXV9lChoBmgJaA9DCO6VeauuwzvAlIaUUpRoFUvjaBZHQHrq0tmL9/B1fZQoaAZoCWgPQwiSdTi6SjdQQJSGlFKUaBVN6ANoFkdAeu51WbPQfXV9lChoBmgJaA9DCJlLqrab9ltAlIaUUpRoFU3oA2gWR0B67xAQg9vCdX2UKGgGaAloD0MIiLt6FRldDUCUhpRSlGgVTSgBaBZHQHr0jRtxdY51fZQoaAZoCWgPQwjdDDfg8xM5wJSGlFKUaBVNJgFoFkdAewCn13+uNnV9lChoBmgJaA9DCNE+VvDbk19AlIaUUpRoFU3oA2gWR0B7ChsabWmQdX2UKGgGaAloD0MIe/Xx0Pc5YECUhpRSlGgVTegDaBZHQHsSa/M4cWF1fZQoaAZoCWgPQwhK06BoHjdgQJSGlFKUaBVN6ANoFkdAexVK7ZnL73V9lChoBmgJaA9DCLA73XniQU9AlIaUUpRoFU3oA2gWR0B7G+2OQyRCdX2UKGgGaAloD0MIs3xdhv8sOUCUhpRSlGgVTegDaBZHQHs/yxmkFfR1fZQoaAZoCWgPQwh/FHXmHllaQJSGlFKUaBVN6ANoFkdAe0Op1A7gbnV9lChoBmgJaA9DCJIHIos0t0JAlIaUUpRoFU0PAWgWR0B7SYLa24NJdX2UKGgGaAloD0MIiGcJMgIYXUCUhpRSlGgVTegDaBZHQHtOn3lCCz11fZQoaAZoCWgPQwgJMgIqnJFhQJSGlFKUaBVN6ANoFkdAe0+I55qubXV9lChoBmgJaA9DCIHoSZnUNVpAlIaUUpRoFU3oA2gWR0B7boKw6hg3dX2UKGgGaAloD0MICd6QRgVGI0CUhpRSlGgVTQgBaBZHQHuB3aN+9al1fZQoaAZoCWgPQwhEqFKzBzVdQJSGlFKUaBVN6ANoFkdAe5ITOxB3R3V9lChoBmgJaA9DCN7jTBO2RlpAlIaUUpRoFU3oA2gWR0B7l9Pdl/YrdX2UKGgGaAloD0MIURa+vtZ2YECUhpRSlGgVTegDaBZHQHwm48hcJMR1fZQoaAZoCWgPQwjoobYNo9xdQJSGlFKUaBVN6ANoFkdAfCpW+GoJiXV9lChoBmgJaA9DCO+pnPaUI2BAlIaUUpRoFU3oA2gWR0B8KuONo8ISdX2UKGgGaAloD0MIbojxmtf9ZECUhpRSlGgVTegDaBZHQHwvzaXa8Hx1fZQoaAZoCWgPQwiZ1xGHbF9bQJSGlFKUaBVN6ANoFkdAfDrTtLL6lHV9lChoBmgJaA9DCIdSexFt8VVAlIaUUpRoFU3oA2gWR0B8UQNWluWKdX2UKGgGaAloD0MIpvELryT6UUCUhpRSlGgVTegDaBZHQHxUkzKs+3Z1fZQoaAZoCWgPQwi2v7M9emNZQJSGlFKUaBVN6ANoFkdAfF5dmQKa5XV9lChoBmgJaA9DCATmIVO+TmNAlIaUUpRoFU0+A2gWR0B8blr30wrUdX2UKGgGaAloD0MIa32R0JZz8D+UhpRSlGgVTQgBaBZHQHx5JfYzzmR1fZQoaAZoCWgPQwh9I7pnXaM7wJSGlFKUaBVNHgFoFkdAfHsM2WIGhXV9lChoBmgJaA9DCBCWsaGbHR7AlIaUUpRoFU0mAWgWR0B8fzwVj7Q+dX2UKGgGaAloD0MIr3srEhO0KUCUhpRSlGgVTRYBaBZHQHyAdL+PzWh1fZQoaAZoCWgPQwhRvMrapkAkwJSGlFKUaBVNBQFoFkdAfIXzQNTcZnV9lChoBmgJaA9DCKuy74rglFpAlIaUUpRoFU3oA2gWR0B8hpUCJXQudX2UKGgGaAloD0MICHWRQllJW0CUhpRSlGgVTegDaBZHQHyJezD4xlB1fZQoaAZoCWgPQwhDPBIvT6dYQJSGlFKUaBVN6ANoFkdAfJH7XQMQVnV9lChoBmgJaA9DCIOKql/pvFDAlIaUUpRoFU0vAWgWR0B8l9cv/R3NdX2UKGgGaAloD0MIO1W+ZySQQMCUhpRSlGgVTYQBaBZHQHyolZ9uxbB1fZQoaAZoCWgPQwiSPxh47gNdQJSGlFKUaBVN6ANoFkdAfKvLLZBcA3V9lChoBmgJaA9DCFGDaRg+QFdAlIaUUpRoFU3oA2gWR0B8vp6NVBD5dX2UKGgGaAloD0MIA7NCke4PO8CUhpRSlGgVTUgBaBZHQHzDO/5+H8F1fZQoaAZoCWgPQwgK9fQReOdgQJSGlFKUaBVN6ANoFkdAfM7itq59VnV9lChoBmgJaA9DCERPyqSG4FxAlIaUUpRoFU3oA2gWR0B81Kr8zhxYdX2UKGgGaAloD0MIAtU/iGTYF0CUhpRSlGgVTVcBaBZHQHz4/6wdKdx1fZQoaAZoCWgPQwip3EQtzWJqQJSGlFKUaBVNSANoFkdAfXxb7CSA6XV9lChoBmgJaA9DCHQNMzSesCzAlIaUUpRoFU1TAWgWR0B9faRB/qgRdX2UKGgGaAloD0MIpgnbT8aOU0CUhpRSlGgVTegDaBZHQH2ghrnDBM11fZQoaAZoCWgPQwjJBPwaSZpcQJSGlFKUaBVN6ANoFkdAfb8FbFCLM3V9lChoBmgJaA9DCOBpMuNtglVAlIaUUpRoFU3oA2gWR0B9wbHGS6lMdX2UKGgGaAloD0MIc0nVdhPkV0CUhpRSlGgVTegDaBZHQH3Ht/FzdUN1fZQoaAZoCWgPQwiHTzqRYNBZQJSGlFKUaBVN6ANoFkdAfclsFMZgonV9lChoBmgJaA9DCHqLh/cc0mBAlIaUUpRoFU3oA2gWR0B90YRtgrpadX2UKGgGaAloD0MIgxjo2hcvU0CUhpRSlGgVTegDaBZHQH3VVMZgogF1fZQoaAZoCWgPQwgz/KcbKKNWQJSGlFKUaBVN6ANoFkdAfeBpw0fozXV9lChoBmgJaA9DCE62gTtQqUxAlIaUUpRoFU3oA2gWR0B96HktEofCdX2UKGgGaAloD0MIF2NgHccFWUCUhpRSlGgVTegDaBZHQH4CwrpaA4J1fZQoaAZoCWgPQwhv2SH+YfsSQJSGlFKUaBVNJwFoFkdAfhcpPykKu3V9lChoBmgJaA9DCO244XfTdFRAlIaUUpRoFU3oA2gWR0B+Gc9r433pdX2UKGgGaAloD0MI+mAZG7plUkCUhpRSlGgVTegDaBZHQH4eyq2jO9p1fZQoaAZoCWgPQwiw5gDBnE1iQJSGlFKUaBVN6ANoFkdAfipUVzp5eXV9lChoBmgJaA9DCHNH/8u11WDAlIaUUpRoFU1ZA2gWR0B+MFX8wYcedX2UKGgGaAloD0MINQcI5mg/aECUhpRSlGgVTZ4CaBZHQH4w2ZE2Hcl1fZQoaAZoCWgPQwjMQdDRqvI8wJSGlFKUaBVNGwFoFkdAfkYdoWYWtXV9lChoBmgJaA9DCPuVzodn6RJAlIaUUpRoFUvhaBZHQH5kgfMfRu11fZQoaAZoCWgPQwit3uF2aE5YQJSGlFKUaBVN6ANoFkdAfs2f/FR51XV9lChoBmgJaA9DCPERMSUSFWFAlIaUUpRoFU3oA2gWR0B+682ycCo1dX2UKGgGaAloD0MIHM78ag63WkCUhpRSlGgVTegDaBZHQH8GMG1QZXN1fZQoaAZoCWgPQwhGC9C2mstZQJSGlFKUaBVN6ANoFkdAfwh1LrX18XV9lChoBmgJaA9DCEta8Q0Fp2NAlIaUUpRoFU3oA2gWR0B/Dd5HEuQIdX2UKGgGaAloD0MI/WZiuhAdW0CUhpRSlGgVTegDaBZHQH8Pc3ZPEbZ1fZQoaAZoCWgPQwgjv36IDXthQJSGlFKUaBVN6ANoFkdAfxuwQ176YXV9lChoBmgJaA9DCEzHnGfswVZAlIaUUpRoFU3oA2gWR0B/K2hxo7FLdX2UKGgGaAloD0MIRtEDH4OqXkCUhpRSlGgVTegDaBZHQH84zl5nlGR1fZQoaAZoCWgPQwhyMnGrIFxdQJSGlFKUaBVN6ANoFkdAf3jNxEORT3V9lChoBmgJaA9DCC9RvTUwmGBAlIaUUpRoFU3oA2gWR0B/e7/JeVs2dX2UKGgGaAloD0MIcm2oGOemXkCUhpRSlGgVTegDaBZHQH+BZEc81XN1fZQoaAZoCWgPQwh+chQgCltYQJSGlFKUaBVN6ANoFkdAf5AZwGW2PXV9lChoBmgJaA9DCBE2PL1SnVpAlIaUUpRoFU3oA2gWR0B/mAzGgi/xdX2UKGgGaAloD0MIqgt4mWFQWkCUhpRSlGgVTegDaBZHQH+xEd7v5QB1fZQoaAZoCWgPQwiz0Tk/xapcQJSGlFKUaBVN6ANoFkdAf9OdGy5ZsHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfbeaaef46f076d7880c6a0682033b8ac280baf0b9c3d3815fc6f221bbcaf757
|
3 |
+
size 147146
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff27472b710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff27472b7a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff27472b830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff27472b8c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff27472b950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff27472b9e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff27472ba70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff27472bb00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff27472bb90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff27472bc20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff27472bcb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff274aeb210>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1668327948059499002,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD2en75eRWE/cp3gubC/g77RsaS97t6tPQAAAAAAAAAAYOBdPohq67zZHkM9SrvFu/vYUb5qY5a8AACAPwAAgD8NFIY9uNb2uUizybt/dve1q7zhO+YsYzUAAIA/AACAPxv57b7EOqs9uZkHvkZjRL6NdBW9ds8svgAAAAAAAAAAgFQivfZINroupFq4KdttNlrQ8roqDnQ3AACAPwAAgD+mlrw99mQ1uhYxFDwV8MA2TfzIumGSuTUAAIA/AACAP5r95z323Cy635kLuXA69LRDl4k5+t9UOAAAgD8AAIA/Jr2ZPSl4XLpxNoy6ohQstupu5DmKYKI5AACAPwAAgD9ap869SHOeuoJkMztm6SI4H3OEuis8z7kAAIA/AACAP8Y7Xj4O+7W8kSUVu+T0eznnox6+Ay4+OgAAgD8AAIA/TexMPq7J+LwTUUA9E+P0uxfCVr7c5Li8AACAPwAAgD/w4r8+KSUYO3SbSDtLgZk4p5IaPRtbaroAAIA/AACAP4AFzD1SgNi58mIAuzoFmbZg1qW5RoMNNgAAgD8AAIA/iLUSv21vFb7GygW8jSqJusP8Mz5icj86AACAPwAAgD9ATQS+2+qavNKISrylwiM86VsKPv7MBr0AAIA/AACAP3/2A7+8SDO+8ihTu1lKq7hM8l09Q41UOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICRoziXoGWUCUhpRSlIwBbJRN6AOMAXSUR0B5py0rsjVydX2UKGgGaAloD0MINC+H3Xc7YECUhpRSlGgVTegDaBZHQHmshIOH3111fZQoaAZoCWgPQwge+YOB534dQJSGlFKUaBVLx2gWR0B5vo8B+4LDdX2UKGgGaAloD0MIIVor2hwXQsCUhpRSlGgVTSMBaBZHQHnGdIsiB5J1fZQoaAZoCWgPQwibVgqBXBBHwJSGlFKUaBVNBgFoFkdAecaK+zt1IXV9lChoBmgJaA9DCI9Rnnk5l1hAlIaUUpRoFU3oA2gWR0B5yQ593KSxdX2UKGgGaAloD0MIFm2Oc5uAGUCUhpRSlGgVS+NoFkdAec/t7a7EpHV9lChoBmgJaA9DCDFdiNUfwSZAlIaUUpRoFUvraBZHQHnlE9pyp711fZQoaAZoCWgPQwg4TDRIweNIQJSGlFKUaBVLxmgWR0B591hb4agmdX2UKGgGaAloD0MIgjekUYEsX0CUhpRSlGgVTegDaBZHQHn7rR0EHMV1fZQoaAZoCWgPQwhIcCNli21aQJSGlFKUaBVN6ANoFkdAegfqGUOd5XV9lChoBmgJaA9DCIXpew3BdFZAlIaUUpRoFU3oA2gWR0B6CO55JK8MdX2UKGgGaAloD0MIpKXydoSnXECUhpRSlGgVTegDaBZHQHoVnO4XoDB1fZQoaAZoCWgPQwgqqKj6lbNgQJSGlFKUaBVN6ANoFkdAeh58AJb+tXV9lChoBmgJaA9DCExsPq4N41VAlIaUUpRoFU3oA2gWR0B6ILyTY/VzdX2UKGgGaAloD0MIh086kWBAVUCUhpRSlGgVTegDaBZHQHosoJzDGcZ1fZQoaAZoCWgPQwgdkIR9OwJfQJSGlFKUaBVN6ANoFkdAelRSSNfgJnV9lChoBmgJaA9DCF/Rrdf0bk3AlIaUUpRoFUvvaBZHQHpZyk9ECvJ1fZQoaAZoCWgPQwikbmdfeVgpwJSGlFKUaBVL6WgWR0B6WpWIXTEzdX2UKGgGaAloD0MIDveRWxOTaECUhpRSlGgVTfUBaBZHQHpi1D8cdYJ1fZQoaAZoCWgPQwgKZ7eWyXRCwJSGlFKUaBVNRAFoFkdAemXX2dupCXV9lChoBmgJaA9DCO6VeauuwzvAlIaUUpRoFUvjaBZHQHrq0tmL9/B1fZQoaAZoCWgPQwiSdTi6SjdQQJSGlFKUaBVN6ANoFkdAeu51WbPQfXV9lChoBmgJaA9DCJlLqrab9ltAlIaUUpRoFU3oA2gWR0B67xAQg9vCdX2UKGgGaAloD0MIiLt6FRldDUCUhpRSlGgVTSgBaBZHQHr0jRtxdY51fZQoaAZoCWgPQwjdDDfg8xM5wJSGlFKUaBVNJgFoFkdAewCn13+uNnV9lChoBmgJaA9DCNE+VvDbk19AlIaUUpRoFU3oA2gWR0B7ChsabWmQdX2UKGgGaAloD0MIe/Xx0Pc5YECUhpRSlGgVTegDaBZHQHsSa/M4cWF1fZQoaAZoCWgPQwhK06BoHjdgQJSGlFKUaBVN6ANoFkdAexVK7ZnL73V9lChoBmgJaA9DCLA73XniQU9AlIaUUpRoFU3oA2gWR0B7G+2OQyRCdX2UKGgGaAloD0MIs3xdhv8sOUCUhpRSlGgVTegDaBZHQHs/yxmkFfR1fZQoaAZoCWgPQwh/FHXmHllaQJSGlFKUaBVN6ANoFkdAe0Op1A7gbnV9lChoBmgJaA9DCJIHIos0t0JAlIaUUpRoFU0PAWgWR0B7SYLa24NJdX2UKGgGaAloD0MIiGcJMgIYXUCUhpRSlGgVTegDaBZHQHtOn3lCCz11fZQoaAZoCWgPQwgJMgIqnJFhQJSGlFKUaBVN6ANoFkdAe0+I55qubXV9lChoBmgJaA9DCIHoSZnUNVpAlIaUUpRoFU3oA2gWR0B7boKw6hg3dX2UKGgGaAloD0MICd6QRgVGI0CUhpRSlGgVTQgBaBZHQHuB3aN+9al1fZQoaAZoCWgPQwhEqFKzBzVdQJSGlFKUaBVN6ANoFkdAe5ITOxB3R3V9lChoBmgJaA9DCN7jTBO2RlpAlIaUUpRoFU3oA2gWR0B7l9Pdl/YrdX2UKGgGaAloD0MIURa+vtZ2YECUhpRSlGgVTegDaBZHQHwm48hcJMR1fZQoaAZoCWgPQwjoobYNo9xdQJSGlFKUaBVN6ANoFkdAfCpW+GoJiXV9lChoBmgJaA9DCO+pnPaUI2BAlIaUUpRoFU3oA2gWR0B8KuONo8ISdX2UKGgGaAloD0MIbojxmtf9ZECUhpRSlGgVTegDaBZHQHwvzaXa8Hx1fZQoaAZoCWgPQwiZ1xGHbF9bQJSGlFKUaBVN6ANoFkdAfDrTtLL6lHV9lChoBmgJaA9DCIdSexFt8VVAlIaUUpRoFU3oA2gWR0B8UQNWluWKdX2UKGgGaAloD0MIpvELryT6UUCUhpRSlGgVTegDaBZHQHxUkzKs+3Z1fZQoaAZoCWgPQwi2v7M9emNZQJSGlFKUaBVN6ANoFkdAfF5dmQKa5XV9lChoBmgJaA9DCATmIVO+TmNAlIaUUpRoFU0+A2gWR0B8blr30wrUdX2UKGgGaAloD0MIa32R0JZz8D+UhpRSlGgVTQgBaBZHQHx5JfYzzmR1fZQoaAZoCWgPQwh9I7pnXaM7wJSGlFKUaBVNHgFoFkdAfHsM2WIGhXV9lChoBmgJaA9DCBCWsaGbHR7AlIaUUpRoFU0mAWgWR0B8fzwVj7Q+dX2UKGgGaAloD0MIr3srEhO0KUCUhpRSlGgVTRYBaBZHQHyAdL+PzWh1fZQoaAZoCWgPQwhRvMrapkAkwJSGlFKUaBVNBQFoFkdAfIXzQNTcZnV9lChoBmgJaA9DCKuy74rglFpAlIaUUpRoFU3oA2gWR0B8hpUCJXQudX2UKGgGaAloD0MICHWRQllJW0CUhpRSlGgVTegDaBZHQHyJezD4xlB1fZQoaAZoCWgPQwhDPBIvT6dYQJSGlFKUaBVN6ANoFkdAfJH7XQMQVnV9lChoBmgJaA9DCIOKql/pvFDAlIaUUpRoFU0vAWgWR0B8l9cv/R3NdX2UKGgGaAloD0MIO1W+ZySQQMCUhpRSlGgVTYQBaBZHQHyolZ9uxbB1fZQoaAZoCWgPQwiSPxh47gNdQJSGlFKUaBVN6ANoFkdAfKvLLZBcA3V9lChoBmgJaA9DCFGDaRg+QFdAlIaUUpRoFU3oA2gWR0B8vp6NVBD5dX2UKGgGaAloD0MIA7NCke4PO8CUhpRSlGgVTUgBaBZHQHzDO/5+H8F1fZQoaAZoCWgPQwgK9fQReOdgQJSGlFKUaBVN6ANoFkdAfM7itq59VnV9lChoBmgJaA9DCERPyqSG4FxAlIaUUpRoFU3oA2gWR0B81Kr8zhxYdX2UKGgGaAloD0MIAtU/iGTYF0CUhpRSlGgVTVcBaBZHQHz4/6wdKdx1fZQoaAZoCWgPQwip3EQtzWJqQJSGlFKUaBVNSANoFkdAfXxb7CSA6XV9lChoBmgJaA9DCHQNMzSesCzAlIaUUpRoFU1TAWgWR0B9faRB/qgRdX2UKGgGaAloD0MIpgnbT8aOU0CUhpRSlGgVTegDaBZHQH2ghrnDBM11fZQoaAZoCWgPQwjJBPwaSZpcQJSGlFKUaBVN6ANoFkdAfb8FbFCLM3V9lChoBmgJaA9DCOBpMuNtglVAlIaUUpRoFU3oA2gWR0B9wbHGS6lMdX2UKGgGaAloD0MIc0nVdhPkV0CUhpRSlGgVTegDaBZHQH3Ht/FzdUN1fZQoaAZoCWgPQwiHTzqRYNBZQJSGlFKUaBVN6ANoFkdAfclsFMZgonV9lChoBmgJaA9DCHqLh/cc0mBAlIaUUpRoFU3oA2gWR0B90YRtgrpadX2UKGgGaAloD0MIgxjo2hcvU0CUhpRSlGgVTegDaBZHQH3VVMZgogF1fZQoaAZoCWgPQwgz/KcbKKNWQJSGlFKUaBVN6ANoFkdAfeBpw0fozXV9lChoBmgJaA9DCE62gTtQqUxAlIaUUpRoFU3oA2gWR0B96HktEofCdX2UKGgGaAloD0MIF2NgHccFWUCUhpRSlGgVTegDaBZHQH4CwrpaA4J1fZQoaAZoCWgPQwhv2SH+YfsSQJSGlFKUaBVNJwFoFkdAfhcpPykKu3V9lChoBmgJaA9DCO244XfTdFRAlIaUUpRoFU3oA2gWR0B+Gc9r433pdX2UKGgGaAloD0MI+mAZG7plUkCUhpRSlGgVTegDaBZHQH4eyq2jO9p1fZQoaAZoCWgPQwiw5gDBnE1iQJSGlFKUaBVN6ANoFkdAfipUVzp5eXV9lChoBmgJaA9DCHNH/8u11WDAlIaUUpRoFU1ZA2gWR0B+MFX8wYcedX2UKGgGaAloD0MINQcI5mg/aECUhpRSlGgVTZ4CaBZHQH4w2ZE2Hcl1fZQoaAZoCWgPQwjMQdDRqvI8wJSGlFKUaBVNGwFoFkdAfkYdoWYWtXV9lChoBmgJaA9DCPuVzodn6RJAlIaUUpRoFUvhaBZHQH5kgfMfRu11fZQoaAZoCWgPQwit3uF2aE5YQJSGlFKUaBVN6ANoFkdAfs2f/FR51XV9lChoBmgJaA9DCPERMSUSFWFAlIaUUpRoFU3oA2gWR0B+682ycCo1dX2UKGgGaAloD0MIHM78ag63WkCUhpRSlGgVTegDaBZHQH8GMG1QZXN1fZQoaAZoCWgPQwhGC9C2mstZQJSGlFKUaBVN6ANoFkdAfwh1LrX18XV9lChoBmgJaA9DCEta8Q0Fp2NAlIaUUpRoFU3oA2gWR0B/Dd5HEuQIdX2UKGgGaAloD0MI/WZiuhAdW0CUhpRSlGgVTegDaBZHQH8Pc3ZPEbZ1fZQoaAZoCWgPQwgjv36IDXthQJSGlFKUaBVN6ANoFkdAfxuwQ176YXV9lChoBmgJaA9DCEzHnGfswVZAlIaUUpRoFU3oA2gWR0B/K2hxo7FLdX2UKGgGaAloD0MIRtEDH4OqXkCUhpRSlGgVTegDaBZHQH84zl5nlGR1fZQoaAZoCWgPQwhyMnGrIFxdQJSGlFKUaBVN6ANoFkdAf3jNxEORT3V9lChoBmgJaA9DCC9RvTUwmGBAlIaUUpRoFU3oA2gWR0B/e7/JeVs2dX2UKGgGaAloD0MIcm2oGOemXkCUhpRSlGgVTegDaBZHQH+BZEc81XN1fZQoaAZoCWgPQwh+chQgCltYQJSGlFKUaBVN6ANoFkdAf5AZwGW2PXV9lChoBmgJaA9DCBE2PL1SnVpAlIaUUpRoFU3oA2gWR0B/mAzGgi/xdX2UKGgGaAloD0MIqgt4mWFQWkCUhpRSlGgVTegDaBZHQH+xEd7v5QB1fZQoaAZoCWgPQwiz0Tk/xapcQJSGlFKUaBVN6ANoFkdAf9OdGy5ZsHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2af77b4252be295c73e68944477ec48c1728afb1d0967e04b4b37842ed5b146a
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba619949749ce78fcf2d120f2e225684167fe7402dd2437dda62dd92d55c5d27
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (253 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 198.1873687848197, "std_reward": 17.934997147488815, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-13T08:36:14.109401"}
|