Update README.md
Browse files
README.md
CHANGED
@@ -17,24 +17,23 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# xlm-roberta-ner-ja
|
19 |
|
20 |
-
|
21 |
-
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.0173
|
23 |
-
- F1: 0.9864
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
More information needed
|
28 |
|
29 |
## Intended uses & limitations
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
|
|
36 |
|
37 |
-
|
|
|
|
|
38 |
|
39 |
### Training hyperparameters
|
40 |
|
|
|
17 |
|
18 |
# xlm-roberta-ner-ja
|
19 |
|
20 |
+
(Japanese caption : 日本語の固有表現抽出のモデル)
|
|
|
|
|
|
|
21 |
|
22 |
+
This model is a fine-tuned NER (named entity recognition) token classification model of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) (pre-trained cross-lingual ```RobertaModel```) on Wikipedia Japanese NER dataset by Stockmark Inc.<br>
|
23 |
+
See [here](https://github.com/stockmarkteam/ner-wikipedia-dataset) for the license of this dataset.
|
|
|
24 |
|
25 |
## Intended uses & limitations
|
26 |
|
27 |
+
```python
|
28 |
+
from transformers import AutoModelForTokenClassification
|
29 |
+
from transformers import pipeline
|
30 |
|
31 |
+
model_name = "tsmatz/xlm-roberta-ner-ja"
|
32 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
33 |
|
34 |
+
classifier = pipeline("token-classification", model=model_name)
|
35 |
+
classifier("鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った")
|
36 |
+
```
|
37 |
|
38 |
### Training hyperparameters
|
39 |
|