Upload 3 files
Browse files- config.pbtxt +12 -19
- model.py +198 -73
- requirements.txt +2 -0
config.pbtxt
CHANGED
@@ -1,25 +1,18 @@
|
|
1 |
backend: "python"
|
2 |
-
max_batch_size: 0
|
3 |
|
4 |
input [
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
]
|
11 |
|
12 |
output [
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
]
|
19 |
-
|
20 |
-
# Optional: Specify instance_group if running on GPU
|
21 |
-
# instance_group [
|
22 |
-
# {
|
23 |
-
# kind: KIND_GPU
|
24 |
-
# }
|
25 |
-
# ]
|
|
|
1 |
backend: "python"
|
2 |
+
max_batch_size: 0
|
3 |
|
4 |
input [
|
5 |
+
{
|
6 |
+
name: "input_jp2_bytes"
|
7 |
+
data_type: TYPE_STRING
|
8 |
+
dims: [ 3 ]
|
9 |
+
}
|
10 |
]
|
11 |
|
12 |
output [
|
13 |
+
{
|
14 |
+
name: "output_mask"
|
15 |
+
data_type: TYPE_UINT8
|
16 |
+
dims: [-1, -1]
|
17 |
+
}
|
18 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
CHANGED
@@ -4,98 +4,223 @@ from omnicloudmask import predict_from_array
|
|
4 |
import rasterio
|
5 |
from rasterio.io import MemoryFile
|
6 |
from rasterio.enums import Resampling
|
|
|
|
|
|
|
7 |
|
8 |
class TritonPythonModel:
|
9 |
def initialize(self, args):
|
10 |
"""
|
11 |
Initialize the model. This function is called once when the model is loaded.
|
12 |
"""
|
13 |
-
|
14 |
-
# Ensure rasterio is installed in the Python backend environment.
|
15 |
-
print('Initialized Cloud Detection model with JP2 input')
|
16 |
|
17 |
-
def
|
18 |
"""
|
19 |
-
|
20 |
"""
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
33 |
-
responses.append(response)
|
34 |
-
continue # Skip to the next request
|
35 |
-
|
36 |
-
# Assume order: Red, Green, NIR based on client logic
|
37 |
-
red_bytes = jp2_bytes_list[0]
|
38 |
-
green_bytes = jp2_bytes_list[1]
|
39 |
-
nir_bytes = jp2_bytes_list[2]
|
40 |
-
|
41 |
try:
|
42 |
-
#
|
43 |
-
with
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
else:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
except Exception as e:
|
87 |
-
#
|
88 |
-
|
|
|
|
|
89 |
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
|
|
90 |
|
91 |
-
responses.append(response)
|
92 |
-
|
93 |
-
# Return a list of responses
|
94 |
return responses
|
95 |
|
96 |
def finalize(self):
|
97 |
"""
|
98 |
-
|
99 |
"""
|
100 |
-
print('
|
101 |
-
|
|
|
4 |
import rasterio
|
5 |
from rasterio.io import MemoryFile
|
6 |
from rasterio.enums import Resampling
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
from io import BytesIO
|
10 |
|
11 |
class TritonPythonModel:
|
12 |
def initialize(self, args):
|
13 |
"""
|
14 |
Initialize the model. This function is called once when the model is loaded.
|
15 |
"""
|
16 |
+
print('Initialized Cloud Detection model with JP2 input and robust GDAL handling')
|
|
|
|
|
17 |
|
18 |
+
def safe_read_jp2_bytes(self, jp2_bytes):
|
19 |
"""
|
20 |
+
Safely read JP2 bytes with multiple fallback methods
|
21 |
"""
|
22 |
+
try:
|
23 |
+
# Method 1: Try direct MemoryFile approach (works if GDAL drivers are properly configured)
|
24 |
+
with MemoryFile(jp2_bytes) as memfile:
|
25 |
+
with memfile.open() as src:
|
26 |
+
data = src.read(1).astype(np.float32)
|
27 |
+
height, width = src.height, src.width
|
28 |
+
profile = src.profile
|
29 |
+
return data, height, width, profile
|
30 |
+
|
31 |
+
except Exception as e1:
|
32 |
+
print(f"Method 1 (MemoryFile) failed: {e1}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
try:
|
34 |
+
# Method 2: Write to temporary file and read from disk
|
35 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.jp2') as tmp_file:
|
36 |
+
tmp_file.write(jp2_bytes)
|
37 |
+
tmp_file.flush()
|
38 |
+
|
39 |
+
with rasterio.open(tmp_file.name) as src:
|
40 |
+
data = src.read(1).astype(np.float32)
|
41 |
+
height, width = src.height, src.width
|
42 |
+
profile = src.profile
|
43 |
+
|
44 |
+
# Clean up temporary file
|
45 |
+
os.unlink(tmp_file.name)
|
46 |
+
return data, height, width, profile
|
47 |
+
|
48 |
+
except Exception as e2:
|
49 |
+
print(f"Method 2 (temporary file) failed: {e2}")
|
50 |
+
try:
|
51 |
+
# Method 3: Try with different suffix and basic profile
|
52 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.tiff') as tmp_file:
|
53 |
+
tmp_file.write(jp2_bytes)
|
54 |
+
tmp_file.flush()
|
55 |
+
|
56 |
+
with rasterio.open(tmp_file.name) as src:
|
57 |
+
data = src.read(1).astype(np.float32)
|
58 |
+
height, width = src.height, src.width
|
59 |
+
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
60 |
+
|
61 |
+
os.unlink(tmp_file.name)
|
62 |
+
return data, height, width, profile
|
63 |
+
|
64 |
+
except Exception as e3:
|
65 |
+
print(f"Method 3 (tiff fallback) failed: {e3}")
|
66 |
+
# Method 4: Final fallback - try to interpret as raw numpy array
|
67 |
+
try:
|
68 |
+
# This assumes the client is sending raw numpy bytes as fallback
|
69 |
+
data_array = np.frombuffer(jp2_bytes, dtype=np.float32)
|
70 |
+
|
71 |
+
# Try to guess square dimensions
|
72 |
+
side_length = int(np.sqrt(len(data_array)))
|
73 |
+
if side_length * side_length == len(data_array):
|
74 |
+
data = data_array.reshape(side_length, side_length)
|
75 |
+
height, width = side_length, side_length
|
76 |
+
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
77 |
+
return data, height, width, profile
|
78 |
else:
|
79 |
+
# Try common satellite image dimensions
|
80 |
+
common_dims = [(10980, 10980), (5490, 5490), (1024, 1024), (512, 512)]
|
81 |
+
for h, w in common_dims:
|
82 |
+
if h * w == len(data_array):
|
83 |
+
data = data_array.reshape(h, w)
|
84 |
+
height, width = h, w
|
85 |
+
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
86 |
+
return data, height, width, profile
|
87 |
+
|
88 |
+
raise ValueError(f"Cannot interpret data array of length {len(data_array)} as image")
|
89 |
+
|
90 |
+
except Exception as e4:
|
91 |
+
raise Exception(f"All fallback methods failed: MemoryFile({e1}), TempFile({e2}), TiffFallback({e3}), RawBytes({e4})")
|
92 |
+
|
93 |
+
def safe_resample_data(self, data, current_height, current_width, target_height, target_width, profile):
|
94 |
+
"""
|
95 |
+
Safely resample data to target dimensions with fallback methods
|
96 |
+
"""
|
97 |
+
if current_height == target_height and current_width == target_width:
|
98 |
+
return data
|
99 |
+
|
100 |
+
try:
|
101 |
+
# Method 1: Use rasterio resampling
|
102 |
+
temp_profile = profile.copy()
|
103 |
+
temp_profile.update({
|
104 |
+
'height': current_height,
|
105 |
+
'width': current_width,
|
106 |
+
'count': 1,
|
107 |
+
'dtype': 'float32'
|
108 |
+
})
|
109 |
+
|
110 |
+
with MemoryFile() as memfile:
|
111 |
+
with memfile.open(**temp_profile) as temp_dataset:
|
112 |
+
temp_dataset.write(data, 1)
|
113 |
+
|
114 |
+
resampled = temp_dataset.read(
|
115 |
+
out_shape=(1, target_height, target_width),
|
116 |
+
resampling=Resampling.bilinear
|
117 |
+
)[0].astype(np.float32)
|
118 |
+
|
119 |
+
return resampled
|
120 |
+
|
121 |
+
except Exception as e1:
|
122 |
+
print(f"Rasterio resampling failed: {e1}")
|
123 |
+
try:
|
124 |
+
# Method 2: Use scipy if available
|
125 |
+
from scipy import ndimage
|
126 |
+
zoom_factors = (target_height / current_height, target_width / current_width)
|
127 |
+
resampled = ndimage.zoom(data, zoom_factors, order=1)
|
128 |
+
return resampled.astype(np.float32)
|
129 |
+
|
130 |
+
except ImportError:
|
131 |
+
print("Scipy not available for resampling")
|
132 |
+
# Method 3: Simple nearest-neighbor resampling
|
133 |
+
h_indices = np.round(np.linspace(0, current_height - 1, target_height)).astype(int)
|
134 |
+
w_indices = np.round(np.linspace(0, current_width - 1, target_width)).astype(int)
|
135 |
+
|
136 |
+
resampled = data[np.ix_(h_indices, w_indices)]
|
137 |
+
return resampled.astype(np.float32)
|
138 |
+
|
139 |
+
except Exception as e2:
|
140 |
+
print(f"Scipy resampling failed: {e2}")
|
141 |
+
# Method 3: Simple nearest-neighbor resampling
|
142 |
+
h_indices = np.round(np.linspace(0, current_height - 1, target_height)).astype(int)
|
143 |
+
w_indices = np.round(np.linspace(0, current_width - 1, target_width)).astype(int)
|
144 |
+
|
145 |
+
resampled = data[np.ix_(h_indices, w_indices)]
|
146 |
+
return resampled.astype(np.float32)
|
147 |
|
148 |
+
def execute(self, requests):
|
149 |
+
"""
|
150 |
+
Process inference requests with robust error handling.
|
151 |
+
"""
|
152 |
+
responses = []
|
153 |
|
154 |
+
for request in requests:
|
155 |
+
try:
|
156 |
+
input_tensor = pb_utils.get_input_tensor_by_name(request, "input_jp2_bytes")
|
157 |
+
jp2_bytes_list = input_tensor.as_numpy()
|
158 |
+
|
159 |
+
if len(jp2_bytes_list) != 3:
|
160 |
+
error_msg = f"Expected 3 JP2 byte strings, received {len(jp2_bytes_list)}"
|
161 |
+
error = pb_utils.TritonError(error_msg)
|
162 |
+
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
163 |
+
responses.append(response)
|
164 |
+
continue
|
165 |
+
|
166 |
+
red_bytes = jp2_bytes_list[0]
|
167 |
+
green_bytes = jp2_bytes_list[1]
|
168 |
+
nir_bytes = jp2_bytes_list[2]
|
169 |
+
|
170 |
+
print(f"Processing JP2 data - sizes: Red={len(red_bytes)}, Green={len(green_bytes)}, NIR={len(nir_bytes)}")
|
171 |
+
|
172 |
+
# Read red band data (use as reference for dimensions)
|
173 |
+
red_data, target_height, target_width, red_profile = self.safe_read_jp2_bytes(red_bytes)
|
174 |
+
print(f"Red band: {red_data.shape}, target dimensions: {target_height}x{target_width}")
|
175 |
+
|
176 |
+
# Read and resample green band
|
177 |
+
green_data, green_height, green_width, green_profile = self.safe_read_jp2_bytes(green_bytes)
|
178 |
+
green_data = self.safe_resample_data(green_data, green_height, green_width, target_height, target_width, green_profile)
|
179 |
+
print(f"Green band after resampling: {green_data.shape}")
|
180 |
+
|
181 |
+
# Read and resample NIR band
|
182 |
+
nir_data, nir_height, nir_width, nir_profile = self.safe_read_jp2_bytes(nir_bytes)
|
183 |
+
nir_data = self.safe_resample_data(nir_data, nir_height, nir_width, target_height, target_width, nir_profile)
|
184 |
+
print(f"NIR band after resampling: {nir_data.shape}")
|
185 |
+
|
186 |
+
# Verify all bands have the same shape
|
187 |
+
if not (red_data.shape == green_data.shape == nir_data.shape):
|
188 |
+
shapes = [red_data.shape, green_data.shape, nir_data.shape]
|
189 |
+
error_msg = f"Band shape mismatch after resampling: {shapes}"
|
190 |
+
error = pb_utils.TritonError(error_msg)
|
191 |
+
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
192 |
+
responses.append(response)
|
193 |
+
continue
|
194 |
+
|
195 |
+
# Stack bands in CHW format for prediction (channels, height, width)
|
196 |
+
prediction_array = np.stack([red_data, green_data, nir_data], axis=0)
|
197 |
+
print(f"Final prediction array shape: {prediction_array.shape}")
|
198 |
+
|
199 |
+
# Run cloud detection prediction
|
200 |
+
cloud_mask = predict_from_array(prediction_array)
|
201 |
+
print(f"Cloud mask shape: {cloud_mask.shape}")
|
202 |
+
|
203 |
+
# Flatten the mask for output
|
204 |
+
if cloud_mask.ndim > 1:
|
205 |
+
cloud_mask = cloud_mask.flatten()
|
206 |
+
|
207 |
+
# Create output tensor (config expects TYPE_UINT8)
|
208 |
+
output_tensor = pb_utils.Tensor("output_mask", cloud_mask.astype(np.uint8))
|
209 |
+
response = pb_utils.InferenceResponse(output_tensors=[output_tensor])
|
210 |
+
responses.append(response)
|
211 |
|
212 |
except Exception as e:
|
213 |
+
# Enhanced error reporting
|
214 |
+
error_msg = f"Error processing JP2 data: {str(e)}"
|
215 |
+
print(f"Model execution error: {error_msg}")
|
216 |
+
error = pb_utils.TritonError(error_msg)
|
217 |
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
218 |
+
responses.append(response)
|
219 |
|
|
|
|
|
|
|
220 |
return responses
|
221 |
|
222 |
def finalize(self):
|
223 |
"""
|
224 |
+
Clean up when the model is unloaded.
|
225 |
"""
|
226 |
+
print('Cloud Detection model finalized')
|
|
requirements.txt
CHANGED
@@ -5,3 +5,5 @@ timm>=0.9
|
|
5 |
tqdm>=4.0
|
6 |
gdown>=5.1.0
|
7 |
torch>=2.2
|
|
|
|
|
|
5 |
tqdm>=4.0
|
6 |
gdown>=5.1.0
|
7 |
torch>=2.2
|
8 |
+
scipy>=1.9.0
|
9 |
+
numpy>=1.21.0
|