abhishek HF staff commited on
Commit
ed7aa15
1 Parent(s): f76f719

Commit From AutoNLP

Browse files
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags: autonlp
3
+ language: ja
4
+ widget:
5
+ - text: "I love AutoNLP 🤗"
6
+ datasets:
7
+ - trtd56/autonlp-data-wrime_joy_only
8
+ ---
9
+
10
+ # Model Trained Using AutoNLP
11
+
12
+ - Problem type: Binary Classification
13
+ - Model ID: 117396
14
+
15
+ ## Validation Metrics
16
+
17
+ - Loss: 0.4094310998916626
18
+ - Accuracy: 0.8201678240740741
19
+ - Precision: 0.6750303520841765
20
+ - Recall: 0.7912713472485768
21
+ - AUC: 0.8927167943538512
22
+ - F1: 0.728543350076436
23
+
24
+ ## Usage
25
+
26
+ You can use cURL to access this model:
27
+
28
+ ```
29
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/trtd56/autonlp-wrime_joy_only-117396
30
+ ```
31
+
32
+ Or Python API:
33
+
34
+ ```
35
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
36
+
37
+ model = AutoModelForSequenceClassification.from_pretrained("trtd56/autonlp-wrime_joy_only-117396", use_auth_token=True)
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("trtd56/autonlp-wrime_joy_only-117396", use_auth_token=True)
40
+
41
+ inputs = tokenizer("I love AutoNLP", return_tensors="pt")
42
+
43
+ outputs = model(**inputs)
44
+ ```
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoNLP",
3
+ "_num_labels": 2,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "0",
14
+ "1": "1"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "0": 0,
20
+ "1": 1
21
+ },
22
+ "layer_norm_eps": 1e-12,
23
+ "max_length": 64,
24
+ "max_position_embeddings": 512,
25
+ "model_type": "bert",
26
+ "num_attention_heads": 12,
27
+ "num_hidden_layers": 12,
28
+ "pad_token_id": 0,
29
+ "padding": "max_length",
30
+ "position_embedding_type": "absolute",
31
+ "tokenizer_class": "BertJapaneseTokenizer",
32
+ "transformers_version": "4.5.1",
33
+ "type_vocab_size": 2,
34
+ "use_cache": true,
35
+ "vocab_size": 32000
36
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:161174fca2220bcbc0faba25dd05cd3cfb708692fedbdbe0d602b1a0677b9ca4
3
+ size 442564873
sample_input.pkl ADDED
Binary file (2.85 kB). View file
 
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "do_lower_case": false, "do_word_tokenize": true, "do_subword_tokenize": true, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", "never_split": null, "mecab_kwargs": null, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "AutoNLP"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff