Commit From AutoNLP
Browse files- README.md +44 -0
- config.json +36 -0
- pytorch_model.bin +3 -0
- sample_input.pkl +0 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags: autonlp
|
3 |
+
language: ja
|
4 |
+
widget:
|
5 |
+
- text: "I love AutoNLP 🤗"
|
6 |
+
datasets:
|
7 |
+
- trtd56/autonlp-data-wrime_joy_only
|
8 |
+
---
|
9 |
+
|
10 |
+
# Model Trained Using AutoNLP
|
11 |
+
|
12 |
+
- Problem type: Binary Classification
|
13 |
+
- Model ID: 117396
|
14 |
+
|
15 |
+
## Validation Metrics
|
16 |
+
|
17 |
+
- Loss: 0.4094310998916626
|
18 |
+
- Accuracy: 0.8201678240740741
|
19 |
+
- Precision: 0.6750303520841765
|
20 |
+
- Recall: 0.7912713472485768
|
21 |
+
- AUC: 0.8927167943538512
|
22 |
+
- F1: 0.728543350076436
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
|
26 |
+
You can use cURL to access this model:
|
27 |
+
|
28 |
+
```
|
29 |
+
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/trtd56/autonlp-wrime_joy_only-117396
|
30 |
+
```
|
31 |
+
|
32 |
+
Or Python API:
|
33 |
+
|
34 |
+
```
|
35 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
36 |
+
|
37 |
+
model = AutoModelForSequenceClassification.from_pretrained("trtd56/autonlp-wrime_joy_only-117396", use_auth_token=True)
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("trtd56/autonlp-wrime_joy_only-117396", use_auth_token=True)
|
40 |
+
|
41 |
+
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
|
42 |
+
|
43 |
+
outputs = model(**inputs)
|
44 |
+
```
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "AutoNLP",
|
3 |
+
"_num_labels": 2,
|
4 |
+
"architectures": [
|
5 |
+
"BertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "0",
|
14 |
+
"1": "1"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"label2id": {
|
19 |
+
"0": 0,
|
20 |
+
"1": 1
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_length": 64,
|
24 |
+
"max_position_embeddings": 512,
|
25 |
+
"model_type": "bert",
|
26 |
+
"num_attention_heads": 12,
|
27 |
+
"num_hidden_layers": 12,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"padding": "max_length",
|
30 |
+
"position_embedding_type": "absolute",
|
31 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
32 |
+
"transformers_version": "4.5.1",
|
33 |
+
"type_vocab_size": 2,
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 32000
|
36 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:161174fca2220bcbc0faba25dd05cd3cfb708692fedbdbe0d602b1a0677b9ca4
|
3 |
+
size 442564873
|
sample_input.pkl
ADDED
Binary file (2.85 kB). View file
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "do_lower_case": false, "do_word_tokenize": true, "do_subword_tokenize": true, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", "never_split": null, "mecab_kwargs": null, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "AutoNLP"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|