Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +514 -0
- config.json +27 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:4068
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: distilbert/distilroberta-base
|
12 |
+
datasets: []
|
13 |
+
metrics:
|
14 |
+
- pearson_cosine
|
15 |
+
- spearman_cosine
|
16 |
+
- pearson_manhattan
|
17 |
+
- spearman_manhattan
|
18 |
+
- pearson_euclidean
|
19 |
+
- spearman_euclidean
|
20 |
+
- pearson_dot
|
21 |
+
- spearman_dot
|
22 |
+
- pearson_max
|
23 |
+
- spearman_max
|
24 |
+
widget:
|
25 |
+
- source_sentence: Proficiency in C# scripting is essential for creating custom scripts
|
26 |
+
and extensions to enhance ABBYY FlexiCapture and ABBYY Vantage functionality.
|
27 |
+
sentences:
|
28 |
+
- Successfully presented financial reports to executives
|
29 |
+
- Worked on improving user interfaces using HTML and CSS
|
30 |
+
- Created extensions to optimize data capture processes
|
31 |
+
- source_sentence: Knowledgeable in supporting Cyber Security Operations and investigation
|
32 |
+
requests.
|
33 |
+
sentences:
|
34 |
+
- Assisted in incident response for security breaches
|
35 |
+
- Coordinated communication strategies for corporate events
|
36 |
+
- Developed mobile applications for e-commerce
|
37 |
+
- source_sentence: Bachelor’s degree in Human Resources, Business Administration,
|
38 |
+
Finance or related field
|
39 |
+
sentences:
|
40 |
+
- prepared monthly production reports for management meetings
|
41 |
+
- Bachelor of Science in Human Resources Management
|
42 |
+
- Completed a course in Marketing Strategy
|
43 |
+
- source_sentence: A strong interest in photography or videography is necessary for
|
44 |
+
this role.
|
45 |
+
sentences:
|
46 |
+
- produced short promotional videos for social media platforms
|
47 |
+
- Conducted training sessions for new software implementations
|
48 |
+
- conducted market research on competitor strategies
|
49 |
+
- source_sentence: Ability to work both independently and as part of a collaborative
|
50 |
+
team.
|
51 |
+
sentences:
|
52 |
+
- Worked in isolation and avoided team interactions
|
53 |
+
- Participated in team meetings and contributed to group problem-solving
|
54 |
+
- Authored clear documentation for complex data processes
|
55 |
+
pipeline_tag: sentence-similarity
|
56 |
+
model-index:
|
57 |
+
- name: SentenceTransformer based on distilbert/distilroberta-base
|
58 |
+
results:
|
59 |
+
- task:
|
60 |
+
type: semantic-similarity
|
61 |
+
name: Semantic Similarity
|
62 |
+
dataset:
|
63 |
+
name: sts dev
|
64 |
+
type: sts-dev
|
65 |
+
metrics:
|
66 |
+
- type: pearson_cosine
|
67 |
+
value: 0.7992382726015851
|
68 |
+
name: Pearson Cosine
|
69 |
+
- type: spearman_cosine
|
70 |
+
value: 0.8047353015653143
|
71 |
+
name: Spearman Cosine
|
72 |
+
- type: pearson_manhattan
|
73 |
+
value: 0.7959439027738936
|
74 |
+
name: Pearson Manhattan
|
75 |
+
- type: spearman_manhattan
|
76 |
+
value: 0.7940263609217374
|
77 |
+
name: Spearman Manhattan
|
78 |
+
- type: pearson_euclidean
|
79 |
+
value: 0.7957522013263527
|
80 |
+
name: Pearson Euclidean
|
81 |
+
- type: spearman_euclidean
|
82 |
+
value: 0.7941887779903888
|
83 |
+
name: Spearman Euclidean
|
84 |
+
- type: pearson_dot
|
85 |
+
value: 0.5317541949973523
|
86 |
+
name: Pearson Dot
|
87 |
+
- type: spearman_dot
|
88 |
+
value: 0.5390259111701268
|
89 |
+
name: Spearman Dot
|
90 |
+
- type: pearson_max
|
91 |
+
value: 0.7992382726015851
|
92 |
+
name: Pearson Max
|
93 |
+
- type: spearman_max
|
94 |
+
value: 0.8047353015653143
|
95 |
+
name: Spearman Max
|
96 |
+
- task:
|
97 |
+
type: semantic-similarity
|
98 |
+
name: Semantic Similarity
|
99 |
+
dataset:
|
100 |
+
name: sts test
|
101 |
+
type: sts-test
|
102 |
+
metrics:
|
103 |
+
- type: pearson_cosine
|
104 |
+
value: 0.7508747335014652
|
105 |
+
name: Pearson Cosine
|
106 |
+
- type: spearman_cosine
|
107 |
+
value: 0.7343818974365368
|
108 |
+
name: Spearman Cosine
|
109 |
+
- type: pearson_manhattan
|
110 |
+
value: 0.7429083946804279
|
111 |
+
name: Pearson Manhattan
|
112 |
+
- type: spearman_manhattan
|
113 |
+
value: 0.7262987823076023
|
114 |
+
name: Spearman Manhattan
|
115 |
+
- type: pearson_euclidean
|
116 |
+
value: 0.7419896002102524
|
117 |
+
name: Pearson Euclidean
|
118 |
+
- type: spearman_euclidean
|
119 |
+
value: 0.7250585009844766
|
120 |
+
name: Spearman Euclidean
|
121 |
+
- type: pearson_dot
|
122 |
+
value: 0.4701047985009806
|
123 |
+
name: Pearson Dot
|
124 |
+
- type: spearman_dot
|
125 |
+
value: 0.47577938055391156
|
126 |
+
name: Spearman Dot
|
127 |
+
- type: pearson_max
|
128 |
+
value: 0.7508747335014652
|
129 |
+
name: Pearson Max
|
130 |
+
- type: spearman_max
|
131 |
+
value: 0.7343818974365368
|
132 |
+
name: Spearman Max
|
133 |
+
---
|
134 |
+
|
135 |
+
# SentenceTransformer based on distilbert/distilroberta-base
|
136 |
+
|
137 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
138 |
+
|
139 |
+
## Model Details
|
140 |
+
|
141 |
+
### Model Description
|
142 |
+
- **Model Type:** Sentence Transformer
|
143 |
+
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
|
144 |
+
- **Maximum Sequence Length:** 512 tokens
|
145 |
+
- **Output Dimensionality:** 768 tokens
|
146 |
+
- **Similarity Function:** Cosine Similarity
|
147 |
+
<!-- - **Training Dataset:** Unknown -->
|
148 |
+
<!-- - **Language:** Unknown -->
|
149 |
+
<!-- - **License:** Unknown -->
|
150 |
+
|
151 |
+
### Model Sources
|
152 |
+
|
153 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
154 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
155 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
156 |
+
|
157 |
+
### Full Model Architecture
|
158 |
+
|
159 |
+
```
|
160 |
+
SentenceTransformer(
|
161 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
162 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
163 |
+
)
|
164 |
+
```
|
165 |
+
|
166 |
+
## Usage
|
167 |
+
|
168 |
+
### Direct Usage (Sentence Transformers)
|
169 |
+
|
170 |
+
First install the Sentence Transformers library:
|
171 |
+
|
172 |
+
```bash
|
173 |
+
pip install -U sentence-transformers
|
174 |
+
```
|
175 |
+
|
176 |
+
Then you can load this model and run inference.
|
177 |
+
```python
|
178 |
+
from sentence_transformers import SentenceTransformer
|
179 |
+
|
180 |
+
# Download from the 🤗 Hub
|
181 |
+
model = SentenceTransformer("trbeers/distilroberta-base-nli-v0.1")
|
182 |
+
# Run inference
|
183 |
+
sentences = [
|
184 |
+
'Ability to work both independently and as part of a collaborative team.',
|
185 |
+
'Participated in team meetings and contributed to group problem-solving',
|
186 |
+
'Worked in isolation and avoided team interactions',
|
187 |
+
]
|
188 |
+
embeddings = model.encode(sentences)
|
189 |
+
print(embeddings.shape)
|
190 |
+
# [3, 768]
|
191 |
+
|
192 |
+
# Get the similarity scores for the embeddings
|
193 |
+
similarities = model.similarity(embeddings, embeddings)
|
194 |
+
print(similarities.shape)
|
195 |
+
# [3, 3]
|
196 |
+
```
|
197 |
+
|
198 |
+
<!--
|
199 |
+
### Direct Usage (Transformers)
|
200 |
+
|
201 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
202 |
+
|
203 |
+
</details>
|
204 |
+
-->
|
205 |
+
|
206 |
+
<!--
|
207 |
+
### Downstream Usage (Sentence Transformers)
|
208 |
+
|
209 |
+
You can finetune this model on your own dataset.
|
210 |
+
|
211 |
+
<details><summary>Click to expand</summary>
|
212 |
+
|
213 |
+
</details>
|
214 |
+
-->
|
215 |
+
|
216 |
+
<!--
|
217 |
+
### Out-of-Scope Use
|
218 |
+
|
219 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
220 |
+
-->
|
221 |
+
|
222 |
+
## Evaluation
|
223 |
+
|
224 |
+
### Metrics
|
225 |
+
|
226 |
+
#### Semantic Similarity
|
227 |
+
* Dataset: `sts-dev`
|
228 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
229 |
+
|
230 |
+
| Metric | Value |
|
231 |
+
|:--------------------|:-----------|
|
232 |
+
| pearson_cosine | 0.7992 |
|
233 |
+
| **spearman_cosine** | **0.8047** |
|
234 |
+
| pearson_manhattan | 0.7959 |
|
235 |
+
| spearman_manhattan | 0.794 |
|
236 |
+
| pearson_euclidean | 0.7958 |
|
237 |
+
| spearman_euclidean | 0.7942 |
|
238 |
+
| pearson_dot | 0.5318 |
|
239 |
+
| spearman_dot | 0.539 |
|
240 |
+
| pearson_max | 0.7992 |
|
241 |
+
| spearman_max | 0.8047 |
|
242 |
+
|
243 |
+
#### Semantic Similarity
|
244 |
+
* Dataset: `sts-test`
|
245 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
246 |
+
|
247 |
+
| Metric | Value |
|
248 |
+
|:--------------------|:-----------|
|
249 |
+
| pearson_cosine | 0.7509 |
|
250 |
+
| **spearman_cosine** | **0.7344** |
|
251 |
+
| pearson_manhattan | 0.7429 |
|
252 |
+
| spearman_manhattan | 0.7263 |
|
253 |
+
| pearson_euclidean | 0.742 |
|
254 |
+
| spearman_euclidean | 0.7251 |
|
255 |
+
| pearson_dot | 0.4701 |
|
256 |
+
| spearman_dot | 0.4758 |
|
257 |
+
| pearson_max | 0.7509 |
|
258 |
+
| spearman_max | 0.7344 |
|
259 |
+
|
260 |
+
<!--
|
261 |
+
## Bias, Risks and Limitations
|
262 |
+
|
263 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
264 |
+
-->
|
265 |
+
|
266 |
+
<!--
|
267 |
+
### Recommendations
|
268 |
+
|
269 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
270 |
+
-->
|
271 |
+
|
272 |
+
## Training Details
|
273 |
+
|
274 |
+
### Training Dataset
|
275 |
+
|
276 |
+
#### Unnamed Dataset
|
277 |
+
|
278 |
+
|
279 |
+
* Size: 4,068 training samples
|
280 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
281 |
+
* Approximate statistics based on the first 1000 samples:
|
282 |
+
| | anchor | positive | negative |
|
283 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
284 |
+
| type | string | string | string |
|
285 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 16.67 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 11.82 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.13 tokens</li><li>max: 15 tokens</li></ul> |
|
286 |
+
* Samples:
|
287 |
+
| anchor | positive | negative |
|
288 |
+
|:--------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------|:------------------------------------------------------------|
|
289 |
+
| <code>Experience in managing meetings with program participants and tracking action items effectively.</code> | <code>Coordinated project meetings and followed up on team tasks</code> | <code>Assisted in developing marketing strategies</code> |
|
290 |
+
| <code>Ability to replace faulty electrical components with precision.</code> | <code>Conducted detailed inspections of wiring and circuits</code> | <code>Handled plumbing repairs and maintenance tasks</code> |
|
291 |
+
| <code>Knowledge of loss prevention, security, and safety protocols.</code> | <code>Implemented safety measures in warehouse operations</code> | <code>Worked as a sales associate</code> |
|
292 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
293 |
+
```json
|
294 |
+
{
|
295 |
+
"scale": 20.0,
|
296 |
+
"similarity_fct": "cos_sim"
|
297 |
+
}
|
298 |
+
```
|
299 |
+
|
300 |
+
### Evaluation Dataset
|
301 |
+
|
302 |
+
#### Unnamed Dataset
|
303 |
+
|
304 |
+
|
305 |
+
* Size: 1,018 evaluation samples
|
306 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
307 |
+
* Approximate statistics based on the first 1000 samples:
|
308 |
+
| | anchor | positive | negative |
|
309 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
|
310 |
+
| type | string | string | string |
|
311 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 16.56 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.77 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.0 tokens</li><li>max: 17 tokens</li></ul> |
|
312 |
+
* Samples:
|
313 |
+
| anchor | positive | negative |
|
314 |
+
|:-------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
315 |
+
| <code>The ability to complete a background investigation and drug screen is necessary for employment.</code> | <code>Conducted thorough background investigations for security personnel</code> | <code>Managed scheduling for office staff</code> |
|
316 |
+
| <code>Ability to create compelling business cases to drive organizational change.</code> | <code>Developed comprehensive business cases that successfully led to strategic organizational changes</code> | <code>Managed project timelines and budgets for software development projects</code> |
|
317 |
+
| <code>Proven understanding of ERP concepts and their applications in business.</code> | <code>Conducted workshops on business process improvement</code> | <code>Managed social media accounts</code> |
|
318 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
319 |
+
```json
|
320 |
+
{
|
321 |
+
"scale": 20.0,
|
322 |
+
"similarity_fct": "cos_sim"
|
323 |
+
}
|
324 |
+
```
|
325 |
+
|
326 |
+
### Training Hyperparameters
|
327 |
+
#### Non-Default Hyperparameters
|
328 |
+
|
329 |
+
- `eval_strategy`: steps
|
330 |
+
- `per_device_train_batch_size`: 128
|
331 |
+
- `per_device_eval_batch_size`: 128
|
332 |
+
- `num_train_epochs`: 1
|
333 |
+
- `warmup_ratio`: 0.1
|
334 |
+
- `batch_sampler`: no_duplicates
|
335 |
+
|
336 |
+
#### All Hyperparameters
|
337 |
+
<details><summary>Click to expand</summary>
|
338 |
+
|
339 |
+
- `overwrite_output_dir`: False
|
340 |
+
- `do_predict`: False
|
341 |
+
- `eval_strategy`: steps
|
342 |
+
- `prediction_loss_only`: True
|
343 |
+
- `per_device_train_batch_size`: 128
|
344 |
+
- `per_device_eval_batch_size`: 128
|
345 |
+
- `per_gpu_train_batch_size`: None
|
346 |
+
- `per_gpu_eval_batch_size`: None
|
347 |
+
- `gradient_accumulation_steps`: 1
|
348 |
+
- `eval_accumulation_steps`: None
|
349 |
+
- `learning_rate`: 5e-05
|
350 |
+
- `weight_decay`: 0.0
|
351 |
+
- `adam_beta1`: 0.9
|
352 |
+
- `adam_beta2`: 0.999
|
353 |
+
- `adam_epsilon`: 1e-08
|
354 |
+
- `max_grad_norm`: 1.0
|
355 |
+
- `num_train_epochs`: 1
|
356 |
+
- `max_steps`: -1
|
357 |
+
- `lr_scheduler_type`: linear
|
358 |
+
- `lr_scheduler_kwargs`: {}
|
359 |
+
- `warmup_ratio`: 0.1
|
360 |
+
- `warmup_steps`: 0
|
361 |
+
- `log_level`: passive
|
362 |
+
- `log_level_replica`: warning
|
363 |
+
- `log_on_each_node`: True
|
364 |
+
- `logging_nan_inf_filter`: True
|
365 |
+
- `save_safetensors`: True
|
366 |
+
- `save_on_each_node`: False
|
367 |
+
- `save_only_model`: False
|
368 |
+
- `restore_callback_states_from_checkpoint`: False
|
369 |
+
- `no_cuda`: False
|
370 |
+
- `use_cpu`: False
|
371 |
+
- `use_mps_device`: False
|
372 |
+
- `seed`: 42
|
373 |
+
- `data_seed`: None
|
374 |
+
- `jit_mode_eval`: False
|
375 |
+
- `use_ipex`: False
|
376 |
+
- `bf16`: False
|
377 |
+
- `fp16`: False
|
378 |
+
- `fp16_opt_level`: O1
|
379 |
+
- `half_precision_backend`: auto
|
380 |
+
- `bf16_full_eval`: False
|
381 |
+
- `fp16_full_eval`: False
|
382 |
+
- `tf32`: None
|
383 |
+
- `local_rank`: 0
|
384 |
+
- `ddp_backend`: None
|
385 |
+
- `tpu_num_cores`: None
|
386 |
+
- `tpu_metrics_debug`: False
|
387 |
+
- `debug`: []
|
388 |
+
- `dataloader_drop_last`: False
|
389 |
+
- `dataloader_num_workers`: 0
|
390 |
+
- `dataloader_prefetch_factor`: None
|
391 |
+
- `past_index`: -1
|
392 |
+
- `disable_tqdm`: False
|
393 |
+
- `remove_unused_columns`: True
|
394 |
+
- `label_names`: None
|
395 |
+
- `load_best_model_at_end`: False
|
396 |
+
- `ignore_data_skip`: False
|
397 |
+
- `fsdp`: []
|
398 |
+
- `fsdp_min_num_params`: 0
|
399 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
400 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
401 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
402 |
+
- `deepspeed`: None
|
403 |
+
- `label_smoothing_factor`: 0.0
|
404 |
+
- `optim`: adamw_torch
|
405 |
+
- `optim_args`: None
|
406 |
+
- `adafactor`: False
|
407 |
+
- `group_by_length`: False
|
408 |
+
- `length_column_name`: length
|
409 |
+
- `ddp_find_unused_parameters`: None
|
410 |
+
- `ddp_bucket_cap_mb`: None
|
411 |
+
- `ddp_broadcast_buffers`: False
|
412 |
+
- `dataloader_pin_memory`: True
|
413 |
+
- `dataloader_persistent_workers`: False
|
414 |
+
- `skip_memory_metrics`: True
|
415 |
+
- `use_legacy_prediction_loop`: False
|
416 |
+
- `push_to_hub`: False
|
417 |
+
- `resume_from_checkpoint`: None
|
418 |
+
- `hub_model_id`: None
|
419 |
+
- `hub_strategy`: every_save
|
420 |
+
- `hub_private_repo`: False
|
421 |
+
- `hub_always_push`: False
|
422 |
+
- `gradient_checkpointing`: False
|
423 |
+
- `gradient_checkpointing_kwargs`: None
|
424 |
+
- `include_inputs_for_metrics`: False
|
425 |
+
- `eval_do_concat_batches`: True
|
426 |
+
- `fp16_backend`: auto
|
427 |
+
- `push_to_hub_model_id`: None
|
428 |
+
- `push_to_hub_organization`: None
|
429 |
+
- `mp_parameters`:
|
430 |
+
- `auto_find_batch_size`: False
|
431 |
+
- `full_determinism`: False
|
432 |
+
- `torchdynamo`: None
|
433 |
+
- `ray_scope`: last
|
434 |
+
- `ddp_timeout`: 1800
|
435 |
+
- `torch_compile`: False
|
436 |
+
- `torch_compile_backend`: None
|
437 |
+
- `torch_compile_mode`: None
|
438 |
+
- `dispatch_batches`: None
|
439 |
+
- `split_batches`: None
|
440 |
+
- `include_tokens_per_second`: False
|
441 |
+
- `include_num_input_tokens_seen`: False
|
442 |
+
- `neftune_noise_alpha`: None
|
443 |
+
- `optim_target_modules`: None
|
444 |
+
- `batch_eval_metrics`: False
|
445 |
+
- `batch_sampler`: no_duplicates
|
446 |
+
- `multi_dataset_batch_sampler`: proportional
|
447 |
+
|
448 |
+
</details>
|
449 |
+
|
450 |
+
### Training Logs
|
451 |
+
| Epoch | Step | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
452 |
+
|:------:|:----:|:------:|:-----------------------:|:------------------------:|
|
453 |
+
| 0 | 0 | - | 0.6375 | - |
|
454 |
+
| 0.3125 | 10 | 2.0385 | 0.7770 | - |
|
455 |
+
| 0.625 | 20 | 1.5189 | 0.7980 | - |
|
456 |
+
| 0.9375 | 30 | 1.3685 | 0.8047 | - |
|
457 |
+
| 1.0 | 32 | - | - | 0.7344 |
|
458 |
+
|
459 |
+
|
460 |
+
### Framework Versions
|
461 |
+
- Python: 3.10.11
|
462 |
+
- Sentence Transformers: 3.0.1
|
463 |
+
- Transformers: 4.41.2
|
464 |
+
- PyTorch: 2.3.1
|
465 |
+
- Accelerate: 0.31.0
|
466 |
+
- Datasets: 2.19.1
|
467 |
+
- Tokenizers: 0.19.1
|
468 |
+
|
469 |
+
## Citation
|
470 |
+
|
471 |
+
### BibTeX
|
472 |
+
|
473 |
+
#### Sentence Transformers
|
474 |
+
```bibtex
|
475 |
+
@inproceedings{reimers-2019-sentence-bert,
|
476 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
477 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
478 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
479 |
+
month = "11",
|
480 |
+
year = "2019",
|
481 |
+
publisher = "Association for Computational Linguistics",
|
482 |
+
url = "https://arxiv.org/abs/1908.10084",
|
483 |
+
}
|
484 |
+
```
|
485 |
+
|
486 |
+
#### MultipleNegativesRankingLoss
|
487 |
+
```bibtex
|
488 |
+
@misc{henderson2017efficient,
|
489 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
490 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
491 |
+
year={2017},
|
492 |
+
eprint={1705.00652},
|
493 |
+
archivePrefix={arXiv},
|
494 |
+
primaryClass={cs.CL}
|
495 |
+
}
|
496 |
+
```
|
497 |
+
|
498 |
+
<!--
|
499 |
+
## Glossary
|
500 |
+
|
501 |
+
*Clearly define terms in order to be accessible across audiences.*
|
502 |
+
-->
|
503 |
+
|
504 |
+
<!--
|
505 |
+
## Model Card Authors
|
506 |
+
|
507 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
508 |
+
-->
|
509 |
+
|
510 |
+
<!--
|
511 |
+
## Model Card Contact
|
512 |
+
|
513 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
514 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilroberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.41.2",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d7cd8a309698b66378df025a0717e1941c16a3c43f79b85a494b2e8357935ab
|
3 |
+
size 328485128
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "RobertaTokenizer",
|
55 |
+
"trim_offsets": true,
|
56 |
+
"unk_token": "<unk>"
|
57 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|