AWildHippo commited on
Commit
f9e4730
·
verified ·
1 Parent(s): d11b9f4

Upload starcaster_eval_pipeline.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. starcaster_eval_pipeline.py +223 -0
starcaster_eval_pipeline.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ import logging
3
+ import json
4
+ import sys
5
+
6
+ sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/Time-LLM/")
7
+ sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/")
8
+ sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/Time-LLM/models")
9
+ sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/models")
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ import pandas as pd
15
+
16
+ from TimeLLM import Model as TimeLLMModel
17
+ from unitime import UniTime as UniTimeModel
18
+
19
+ IMPLEMENTED_BASELINES = [TimeLLMModel, UniTimeModel]
20
+
21
+ from typing import Optional, Union, Dict, Callable, Iterable
22
+
23
+ def truncate_mse_loss(future_time, future_pred):
24
+ # Assumes future_time.shape == (B, T1) and future_pred.shape == (B, T2)
25
+ min_length = min(future_time.shape[-1], future_pred.shape[-1])
26
+ return F.mse_loss(future_time[...,:min_length], future_pred[...,:min_length])
27
+
28
+ def truncate_mae_loss(future_time, future_pred):
29
+ # Assumes future_time.shape == (B, T1) and future_pred.shape == (B, T2)
30
+ min_length = min(future_time.shape[-1], future_pred.shape[-1])
31
+ return F.l1_loss(future_time[...,:min_length], future_pred[...,:min_length])
32
+
33
+ class DotDict(dict):
34
+ """dot.notation access to dictionary attributes"""
35
+ __getattr__ = dict.get
36
+ __setattr__ = dict.__setitem__
37
+ __delattr__ = dict.__delitem__
38
+
39
+ def find_pred_len_from_path(path: str) -> int:
40
+ if "pl_96" or "pl96" in path: pred_len = 96
41
+ elif "pl_192" or "pl192" in path: pred_len = 192
42
+ elif "pl_336" or "pl336" in path: pred_len = 336
43
+ elif "pl720" or "pl720" in path: pred_lent = 720
44
+ else:
45
+ raise ValueError(f"Could not determine prediction length of model from path {path}. Expected path to contain a substring of the form 'pl_{{pred_len}}' or 'pl{{pred_len}}'.")
46
+
47
+ return pred_len
48
+
49
+ def find_model_name_from_path(path: str) -> str:
50
+ path = path.lower()
51
+ if "time-llm" in path or "timellm" in path: model_name = "time-llm"
52
+ elif "unitime" in path: model_name = "unitime"
53
+ else:
54
+ raise ValueError(f"Could not determine model name from path {path}. Expected path to contain either 'time-llm', 'timellm', or 'unitime'.")
55
+
56
+ return model_name
57
+
58
+ TIME_LLM_CONFIGS = DotDict({
59
+ "task_name" : "long_term_forecast", "seq_len" : 512, "enc_in" : 7, "d_model" : 32, "d_ff" : 128, "llm_layers" : 32, "llm_dim" : 4096,
60
+ "patch_len" : 16, "stride" : 8, "llm_model" : "LLAMA", "llm_layers" : 32, "prompt_domain" : 1, "content" : None, "dropout" : 0.1,
61
+ "d_model" : 32, "n_heads" : 8, "enc_in" : 7
62
+ })
63
+
64
+ logger = logging.getLogger(__name__)
65
+ logger.setLevel(logging.INFO)
66
+ UNITIME_CONFIGS = DotDict({
67
+ "max_token_num" : 17, "mask_rate" : 0.5, "patch_len" : 16, "max_backcast_len" : 96, "max_forecast_len" : 720, "logger" : logger,
68
+ "model_path" : "gpt2", "lm_layer_num" : 6, "lm_ft_type" : "freeze", "ts_embed_dropout" : 0.3, "dec_trans_layer_num" : 2, "dec_head_dropout" : 0.1,
69
+ })
70
+
71
+ class TimeLLMStarCasterWrapper(nn.Module):
72
+
73
+ def __init__(self, time_llm_model):
74
+ super().__init__()
75
+
76
+ assert isinstance(time_llm_model, TimeLLMModel), f"TimeLLMStarCasterWrapper can only wrap a model of class TimeLLM.Model but got {type(time_llm_model)}"
77
+ self.base_model = time_llm_model
78
+
79
+ def forward(self, past_time, context):
80
+ self.base_model.description = context
81
+ return self.base_model(x_enc=past_time.unsqueeze(-1), x_mark_enc=None, x_dec=None, x_mark_dec=None).squeeze(-1)
82
+
83
+ class UniTimeStarCasterWrapper(nn.Module):
84
+
85
+ def __init__(self, unitime_model):
86
+ super().__init__()
87
+
88
+ assert isinstance(unitime_model, UniTimeModel), f"UniTimeStarCasterWrapper can only wrap a model of class TimeLLM.Model but got {type(unitime_model)}"
89
+ self.base_model = unitime_model
90
+
91
+ def forward(self, past_time, context):
92
+ past_time = past_time.unsqueeze(-1)
93
+ mask = torch.ones_like(past_time)
94
+ data_id = -1
95
+ seq_len = 96
96
+ stride = 16
97
+
98
+ info = (data_id, seq_len, stride, context[:17])
99
+ return self.base_model(info=info, x_inp=past_time, mask=mask).squeeze(-1)
100
+
101
+ class StarCasterBaseline(nn.Module):
102
+
103
+ def __init__(self, model):
104
+ super().__init__()
105
+
106
+ # TODO: Make this more extendable
107
+ if type(model) not in IMPLEMENTED_BASELINES:
108
+ raise NotImplementedError(f"StarCasterBaseline currently only handles models of type {IMPLEMENTED_BASELINES}.")
109
+
110
+ self.base_model = model
111
+ if isinstance(self.base_model, TimeLLMModel):
112
+ self.wrapped_model = TimeLLMStarCasterWrapper(self.base_model)
113
+ if isinstance(self.base_model, UniTimeModel):
114
+ self.wrapped_model = UniTimeStarCasterWrapper(self.base_model)
115
+
116
+ def forward(self, past_time, context):
117
+ return self.wrapped_model(past_time, context)
118
+
119
+ def load_state_dict(self, state_dict, strict: bool = True, assign: bool = False):
120
+ return self.base_model.load_state_dict(state_dict, strict, assign)
121
+
122
+
123
+ class EvaluationPipeline:
124
+
125
+ def __init__(
126
+ self,
127
+ dataset: Iterable,
128
+ model: TimeLLMModel,
129
+ metrics: Optional[Union[Callable, Dict[str, Callable]]] = None
130
+ ):
131
+ self.dataset = dataset
132
+ self.metrics = metrics if metrics is not None else {"mse_loss" : truncate_mse_loss}
133
+
134
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
135
+ if self.device == "cpu":
136
+ warnings.warn("Warning: No CUDA device detected, proceeding with EvaluationPipeline on CPU .....")
137
+
138
+ self.model = StarCasterBaseline(model).to(self.device)
139
+
140
+ # TODO: This method needs to be replaced to handle actual StarCaster benchmark
141
+ def get_evaluation_loader(self) -> Iterable:
142
+ samples = []
143
+ for sample in self.dataset.values():
144
+ past_time = torch.from_numpy(sample["past_time"].to_numpy().T).float().to(self.device)
145
+ future_time = torch.from_numpy(sample["future_time"].to_numpy().T).float().to(self.device)
146
+ context = sample["context"]
147
+
148
+ samples.append([past_time, future_time, context])
149
+
150
+ return samples
151
+
152
+ def compute_loss(self, future_time, future_pred):
153
+ return {m_name : m(future_time, future_pred) for m_name, m in self.metrics.items()}
154
+
155
+ def evaluation_step(self, past_time, future_time, context):
156
+ with torch.no_grad():
157
+ future_pred = self.model(past_time, context)
158
+ loss = self.compute_loss(future_time, future_pred)
159
+ return loss, future_pred
160
+
161
+ @torch.no_grad()
162
+ def eval(self):
163
+ model.eval()
164
+ infer_dataloader = self.get_evaluation_loader()
165
+ losses, predictions = {m_name : [] for m_name in self.metrics.keys()}, []
166
+ for past_time, future_time, context in infer_dataloader:
167
+ loss_dict, preds = self.evaluation_step(past_time, future_time, context)
168
+
169
+ for m_name, loss in loss_dict.items(): losses[m_name].append(loss)
170
+ predictions.append(preds)
171
+
172
+ model.train()
173
+ return losses, predictions
174
+
175
+ if __name__ == "__main__":
176
+ # from argparse import ArgumentParser
177
+
178
+ # parser = ArgumentParser()
179
+
180
+ # parser.add_argument("--data_path", type=str, required=True)
181
+ # parser.add_argument("--ckpt_path", type=str, default=None)
182
+
183
+ # args = parser.parse_args()
184
+
185
+ # args = TIME_LLM_CONFIGS
186
+ args = DotDict(dict())
187
+
188
+ # args.ckpt_path = "./Time-LLM/checkpoints/long_term_forecast_ETTh1_512_96_TimeLLM_ETTh1_ftM_sl512_ll48_pl96_dm32_nh8_el2_dl1_df128_fc3_ebtimeF_Exp_0-TimeLLM-ETTh1/best_checkpoint/pytorch_model/mp_rank_00_model_states.pt"
189
+ args.ckpt_path = "/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/outputs/checkpoint_gpt2-small_full_etth1-96_instruct_6_2_0.5_96/model_s2036.pth"
190
+ args.data_path = "./example_data_dict_simple_dtypes.pkl"
191
+
192
+ dataset = pd.read_pickle(args.data_path)
193
+ # args.pred_len = find_pred_len_from_path(args.ckpt_path)
194
+ # args.model_name = find_model_name_from_path(args.ckpt_path)
195
+ args.pred_len = 96
196
+ args.model_name = "unitime" # "time-llm"
197
+
198
+ if args.model_name == "time-llm":
199
+ args.update(TIME_LLM_CONFIGS)
200
+ elif args.model_name == "unitime":
201
+ args.update(UNITIME_CONFIGS)
202
+
203
+ print(f"Initializing model from config:\n{args} .....")
204
+
205
+ if args.model_name == "time-llm":
206
+ model = TimeLLMModel(args)
207
+ elif args.model_name == "unitime":
208
+ model = UniTimeModel(args)
209
+
210
+ if args.ckpt_path is not None:
211
+ print(f"Loading model checkpoint from path {args.ckpt_path} .....")
212
+ ckpt = torch.load(args.ckpt_path)
213
+ if args.model_name == "time-llm":
214
+ model.load_state_dict(ckpt["module"]) # TODO: Change this to not be specific to the Time-LLM checkpoint
215
+ elif args.model_name == "unitime":
216
+ model.load_state_dict(ckpt)
217
+
218
+ pipeline = EvaluationPipeline(dataset, model, metrics={"mse_loss" : truncate_mse_loss, "mae_loss" : truncate_mae_loss})
219
+
220
+ print(f"Evaluating .....")
221
+ losses, predictions = pipeline.eval()
222
+ print(f"Got losses: {losses}")
223
+ print(f"Predictions has shape: {[pred.shape for pred in predictions]}")