Create inference.py
Browse files- inference.py +58 -0
inference.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import numpy as np
|
6 |
+
from typing import List, Dict
|
7 |
+
|
8 |
+
# Function to load model components
|
9 |
+
def load_model_components(model_path):
|
10 |
+
with open(model_path, 'rb') as f:
|
11 |
+
model_components = pickle.load(f)
|
12 |
+
return model_components
|
13 |
+
|
14 |
+
# Function to recommend jobs based on input skills and major
|
15 |
+
def recommend_jobs_for_input_skills(input_hard_skills: str, input_soft_skills: str, input_major: str,
|
16 |
+
jobs_data: pd.DataFrame, model_path: str) -> List[str]:
|
17 |
+
# Load saved model components
|
18 |
+
tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vec, companies_majors_vec = load_model_components(model_path)
|
19 |
+
|
20 |
+
# Vectorize input skills and major
|
21 |
+
input_hard_skills_vec = tfidf_vectorizer_skills.transform([input_hard_skills])
|
22 |
+
input_soft_skills_vec = tfidf_vectorizer_skills.transform([input_soft_skills])
|
23 |
+
input_major_vec = tfidf_vectorizer_majors.transform([input_major])
|
24 |
+
|
25 |
+
# Average the vectorized hard and soft skills
|
26 |
+
input_skills_vec = (input_hard_skills_vec + input_soft_skills_vec) / 2
|
27 |
+
|
28 |
+
# Compute similarities
|
29 |
+
skills_similarity = cosine_similarity(input_skills_vec, companies_skills_vec)
|
30 |
+
major_similarity = cosine_similarity(input_major_vec, companies_majors_vec)
|
31 |
+
|
32 |
+
# Ensure the number of companies in both similarities is aligned
|
33 |
+
if skills_similarity.shape[1] != major_similarity.shape[1]:
|
34 |
+
min_dim = min(skills_similarity.shape[1], major_similarity.shape[1])
|
35 |
+
skills_similarity = skills_similarity[:, :min_dim]
|
36 |
+
major_similarity = major_similarity[:, :min_dim]
|
37 |
+
|
38 |
+
# Combine similarities
|
39 |
+
combined_similarity = (skills_similarity + major_similarity) / 2
|
40 |
+
|
41 |
+
# Get top 3 job recommendations
|
42 |
+
sorted_company_indices = np.argsort(-combined_similarity[0])
|
43 |
+
recommended_jobs = jobs_data.iloc[sorted_company_indices]['Major'].values[:3]
|
44 |
+
|
45 |
+
return recommended_jobs.tolist()
|
46 |
+
|
47 |
+
# Example usage for testing
|
48 |
+
if __name__ == "__main__":
|
49 |
+
input_hard_skills = "Python, Java, Finance, Excel"
|
50 |
+
input_soft_skills = "Communication, Teamwork"
|
51 |
+
input_major = "Computer Science"
|
52 |
+
|
53 |
+
jobs_data = pd.read_csv("jobs_data.csv")
|
54 |
+
model_path = "recommendation_model.pkl"
|
55 |
+
|
56 |
+
recommended_jobs = recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, jobs_data, model_path)
|
57 |
+
print("Recommended Jobs based on input skills and major:")
|
58 |
+
print(recommended_jobs)
|