ptit-job-recommendation / job_recommendation_inference.py
trangannh's picture
Update job_recommendation_inference.py
ce0412b verified
raw
history blame
2.95 kB
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import json
def recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, companies, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vec, companies_majors_vec):
input_hard_skills_vec = tfidf_vectorizer_skills.transform([input_hard_skills])
input_soft_skills_vec = tfidf_vectorizer_skills.transform([input_soft_skills])
input_major_vec = tfidf_vectorizer_majors.transform([input_major])
input_skills_vec = (input_hard_skills_vec + input_soft_skills_vec) / 2
skills_similarity = cosine_similarity(input_skills_vec, companies_skills_vec)
major_similarity = cosine_similarity(input_major_vec, companies_majors_vec)
if skills_similarity.shape[1] != major_similarity.shape[1]:
min_dim = min(skills_similarity.shape[1], major_similarity.shape[1])
skills_similarity = skills_similarity[:, :min_dim]
major_similarity = major_similarity[:, :min_dim]
combined_similarity = (skills_similarity + major_similarity) / 2
sorted_company_indices = np.argsort(-combined_similarity[0])
recommended_companies = companies.iloc[sorted_company_indices]['Major'].values[:3]
return recommended_companies
def handler(event, context):
input_data = json.loads(event['body'])
input_hard_skills = input_data["input_hard_skills"]
input_soft_skills = input_data["input_soft_skills"]
input_major = input_data["input_major"]
users_data = "1st_train.csv"
applicants = pd.read_csv(users_data)
jobs_data = "jobs_data.csv"
companies = pd.read_csv(jobs_data)
tfidf_vectorizer_skills = TfidfVectorizer()
tfidf_vectorizer_majors = TfidfVectorizer()
all_skills = pd.concat([applicants['final_hard_skill'], applicants['final_soft_skill'],
companies['final_hard_skill'], companies['final_soft_skill']])
all_majors = pd.concat([applicants['candidate_field'], companies['Major']])
all_skills_vectorized = tfidf_vectorizer_skills.fit_transform(all_skills)
all_majors_vectorized = tfidf_vectorizer_majors.fit_transform(all_majors)
num_applicants = len(applicants)
num_companies = len(companies)
applicants_skills_vectorized = all_skills_vectorized[:num_applicants*2]
companies_skills_vectorized = all_skills_vectorized[num_applicants*2:]
applicants_majors_vectorized = all_majors_vectorized[:num_applicants]
companies_majors_vectorized = all_majors_vectorized[num_applicants:]
recommended_jobs = recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, companies, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vectorized, companies_majors_vectorized)
return {
'statusCode': 200,
'body': json.dumps(recommended_jobs.tolist())
}