Upload folder using huggingface_hub
Browse files
eq_bench.json/openai-community__gpt2/results_2024-10-27T17-03-52.150542.json
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"eq_bench": {
|
4 |
+
"alias": "eq_bench",
|
5 |
+
"eqbench,none": 0.0,
|
6 |
+
"eqbench_stderr,none": 0.0,
|
7 |
+
"percent_parseable,none": 0.0,
|
8 |
+
"percent_parseable_stderr,none": 0.0
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"eq_bench": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"eq_bench": {
|
16 |
+
"task": "eq_bench",
|
17 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
18 |
+
"validation_split": "validation",
|
19 |
+
"doc_to_text": "prompt",
|
20 |
+
"doc_to_target": "reference_answer_fullscale",
|
21 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"num_fewshot": 0,
|
26 |
+
"metric_list": [
|
27 |
+
{
|
28 |
+
"metric": "eqbench",
|
29 |
+
"aggregation": "mean",
|
30 |
+
"higher_is_better": true
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"metric": "percent_parseable",
|
34 |
+
"aggregation": "mean",
|
35 |
+
"higher_is_better": true
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"output_type": "generate_until",
|
39 |
+
"generation_kwargs": {
|
40 |
+
"do_sample": false,
|
41 |
+
"temperature": 0.0,
|
42 |
+
"max_gen_toks": 80,
|
43 |
+
"until": [
|
44 |
+
"\n\n"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"repeats": 1,
|
48 |
+
"should_decontaminate": false,
|
49 |
+
"metadata": {
|
50 |
+
"version": 2.1
|
51 |
+
}
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"versions": {
|
55 |
+
"eq_bench": 2.1
|
56 |
+
},
|
57 |
+
"n-shot": {
|
58 |
+
"eq_bench": 0
|
59 |
+
},
|
60 |
+
"higher_is_better": {
|
61 |
+
"eq_bench": {
|
62 |
+
"eqbench": true,
|
63 |
+
"percent_parseable": true
|
64 |
+
}
|
65 |
+
},
|
66 |
+
"n-samples": {
|
67 |
+
"eq_bench": {
|
68 |
+
"original": 171,
|
69 |
+
"effective": 171
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"config": {
|
73 |
+
"model": "hf",
|
74 |
+
"model_args": "pretrained=openai-community/gpt2,dtype=auto,trust_remote_code=True",
|
75 |
+
"model_num_parameters": 124439808,
|
76 |
+
"model_dtype": "torch.float32",
|
77 |
+
"model_revision": "main",
|
78 |
+
"model_sha": "607a30d783dfa663caf39e06633721c8d4cfcd7e",
|
79 |
+
"batch_size": "auto",
|
80 |
+
"batch_sizes": [],
|
81 |
+
"device": null,
|
82 |
+
"use_cache": null,
|
83 |
+
"limit": null,
|
84 |
+
"bootstrap_iters": 100000,
|
85 |
+
"gen_kwargs": null,
|
86 |
+
"random_seed": 0,
|
87 |
+
"numpy_seed": 1234,
|
88 |
+
"torch_seed": 1234,
|
89 |
+
"fewshot_seed": 1234
|
90 |
+
},
|
91 |
+
"git_hash": "7882043b",
|
92 |
+
"date": 1730073796.3589597,
|
93 |
+
"pretty_env_info": "PyTorch version: 2.5.0+cu124\nIs debug build: False\nCUDA used to build PyTorch: 12.4\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.5 LTS (x86_64)\nGCC version: (Ubuntu 10.5.0-1ubuntu1~22.04) 10.5.0\nClang version: 15.0.7\nCMake version: version 3.26.3\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.8.0-47-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 11.5.119\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080\nNvidia driver version: 555.58.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 43 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: AuthenticAMD\nModel name: AMD Ryzen 9 3900X 12-Core Processor\nCPU family: 23\nModel: 113\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 0\nFrequency boost: enabled\nCPU max MHz: 4672.0698\nCPU min MHz: 2200.0000\nBogoMIPS: 7585.66\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es\nVirtualization: AMD-V\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 6 MiB (12 instances)\nL3 cache: 64 MiB (4 instances)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Reg file data sampling: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection\nVulnerability Spec rstack overflow: Mitigation; Safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==2.1.2\n[pip3] torch==2.5.0\n[pip3] torchmetrics==1.4.0\n[pip3] torchvision==0.20.0\n[pip3] triton==3.1.0\n[conda] blas 1.0 mkl \n[conda] mkl 2021.4.0 h06a4308_640 \n[conda] mkl-service 2.4.0 py39h7f8727e_0 \n[conda] mkl_fft 1.3.1 py39hd3c417c_0 \n[conda] mkl_random 1.2.2 py39h51133e4_0 \n[conda] numpy 1.21.5 py39he7a7128_1 \n[conda] numpy-base 1.21.5 py39hf524024_1 \n[conda] numpydoc 1.2 pyhd3eb1b0_0 ",
|
94 |
+
"transformers_version": "4.45.0",
|
95 |
+
"upper_git_hash": null,
|
96 |
+
"tokenizer_pad_token": [
|
97 |
+
"<|endoftext|>",
|
98 |
+
"50256"
|
99 |
+
],
|
100 |
+
"tokenizer_eos_token": [
|
101 |
+
"<|endoftext|>",
|
102 |
+
"50256"
|
103 |
+
],
|
104 |
+
"tokenizer_bos_token": [
|
105 |
+
"<|endoftext|>",
|
106 |
+
"50256"
|
107 |
+
],
|
108 |
+
"eot_token_id": 50256,
|
109 |
+
"max_length": 1024,
|
110 |
+
"task_hashes": {},
|
111 |
+
"model_source": "hf",
|
112 |
+
"model_name": "openai-community/gpt2",
|
113 |
+
"model_name_sanitized": "openai-community__gpt2",
|
114 |
+
"system_instruction": null,
|
115 |
+
"system_instruction_sha": null,
|
116 |
+
"fewshot_as_multiturn": false,
|
117 |
+
"chat_template": null,
|
118 |
+
"chat_template_sha": null,
|
119 |
+
"start_time": 6865.042045323,
|
120 |
+
"end_time": 6907.059375842,
|
121 |
+
"total_evaluation_time_seconds": "42.0173305190001"
|
122 |
+
}
|