|
|
import argparse |
|
|
import itertools |
|
|
import json |
|
|
import os |
|
|
import random |
|
|
import time |
|
|
from functools import partial |
|
|
|
|
|
import torch |
|
|
import torchvision.transforms as T |
|
|
from internvl.model.internvl_stage2 import InternVLConfig, InternVLModel |
|
|
from PIL import Image |
|
|
from pycocoevalcap.eval import COCOEvalCap |
|
|
from pycocotools.coco import COCO |
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
from tqdm import tqdm |
|
|
from transformers import LlamaTokenizer |
|
|
|
|
|
ds_collections = { |
|
|
'flickr30k': { |
|
|
'root': 'data/flickr30k/', |
|
|
'annotation': 'data/flickr30k/flickr30k_test_karpathy.json', |
|
|
}, |
|
|
'coco': { |
|
|
'root': 'data/coco/', |
|
|
'annotation': ['data/coco/annotations/coco_karpathy_test.json', |
|
|
'data/coco/annotations/coco_karpathy_test_gt.json'], |
|
|
}, |
|
|
'nocaps': { |
|
|
'root': 'data/nocaps/images', |
|
|
'annotation': 'data/nocaps/nocaps_val_4500_captions.json', |
|
|
}, |
|
|
} |
|
|
|
|
|
|
|
|
class CaptionDataset(torch.utils.data.Dataset): |
|
|
|
|
|
def __init__(self, name, root, annotation, prompt, input_size=224): |
|
|
if name == 'coco': |
|
|
self.images = json.load(open(annotation)) |
|
|
else: |
|
|
self.images = json.load(open(annotation))['images'] |
|
|
self.name = name |
|
|
self.prompt = prompt |
|
|
self.root = root |
|
|
self.transform = T.Compose([ |
|
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
|
T.ToTensor(), |
|
|
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) |
|
|
]) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.images) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
if self.name == 'coco': |
|
|
filename = self.images[idx]['image'] |
|
|
image_id = int(filename.split('_')[-1].replace('.jpg', '')) |
|
|
image_path = os.path.join(self.root, filename) |
|
|
else: |
|
|
image_id = self.images[idx]['id'] |
|
|
if 'file_name' in self.images[idx]: |
|
|
image_path = os.path.join(self.root, self.images[idx]['file_name']) |
|
|
else: |
|
|
image_path = os.path.join(self.root, self.images[idx]['image']) |
|
|
image = Image.open(image_path) |
|
|
pixel_values = self.transform(image).unsqueeze(0) |
|
|
return { |
|
|
'image_id': image_id, |
|
|
'input_text': self.prompt, |
|
|
'pixel_values': pixel_values |
|
|
} |
|
|
|
|
|
|
|
|
def collate_fn(inputs, tokenizer): |
|
|
pixel_values = torch.cat([_['pixel_values'] for _ in inputs], dim=0) |
|
|
image_ids = [_['image_id'] for _ in inputs] |
|
|
input_texts = [_['input_text'] for _ in inputs] |
|
|
input_tokens = tokenizer(input_texts, return_tensors='pt') |
|
|
|
|
|
return pixel_values, image_ids, input_tokens.input_ids, input_tokens.attention_mask |
|
|
|
|
|
|
|
|
class InferenceSampler(torch.utils.data.sampler.Sampler): |
|
|
|
|
|
def __init__(self, size): |
|
|
self._size = int(size) |
|
|
assert size > 0 |
|
|
self._rank = torch.distributed.get_rank() |
|
|
self._world_size = torch.distributed.get_world_size() |
|
|
self._local_indices = self._get_local_indices(size, self._world_size, self._rank) |
|
|
|
|
|
@staticmethod |
|
|
def _get_local_indices(total_size, world_size, rank): |
|
|
shard_size = total_size // world_size |
|
|
left = total_size % world_size |
|
|
shard_sizes = [shard_size + int(r < left) for r in range(world_size)] |
|
|
|
|
|
begin = sum(shard_sizes[:rank]) |
|
|
end = min(sum(shard_sizes[:rank + 1]), total_size) |
|
|
return range(begin, end) |
|
|
|
|
|
def __iter__(self): |
|
|
yield from self._local_indices |
|
|
|
|
|
def __len__(self): |
|
|
return len(self._local_indices) |
|
|
|
|
|
|
|
|
def evaluate_qllama_model(): |
|
|
prompts = ['English caption:'] |
|
|
print('prompts:', prompts) |
|
|
|
|
|
config = InternVLConfig.from_pretrained(args.checkpoint) |
|
|
model = InternVLModel.from_pretrained(args.checkpoint, config=config).eval() |
|
|
model = model.to(torch.float16).cuda() |
|
|
tokenizer = LlamaTokenizer.from_pretrained(args.checkpoint) |
|
|
tokenizer.add_eos_token = False |
|
|
|
|
|
random.seed(args.seed) |
|
|
summaries = [] |
|
|
for prompt in prompts: |
|
|
for ds_name in args.datasets: |
|
|
annotation = ds_collections[ds_name]['annotation'] |
|
|
if type(annotation) == list: |
|
|
annotation = annotation[0] |
|
|
if model.config.force_image_size is not None: |
|
|
image_size = model.config.force_image_size |
|
|
else: |
|
|
image_size = model.config.vision_config.image_size |
|
|
dataset = CaptionDataset( |
|
|
name=ds_name, |
|
|
root=ds_collections[ds_name]['root'], |
|
|
annotation=annotation, |
|
|
prompt=prompt, |
|
|
input_size=image_size, |
|
|
) |
|
|
dataloader = torch.utils.data.DataLoader( |
|
|
dataset=dataset, |
|
|
sampler=InferenceSampler(len(dataset)), |
|
|
batch_size=args.batch_size, |
|
|
num_workers=args.num_workers, |
|
|
pin_memory=True, |
|
|
drop_last=False, |
|
|
collate_fn=partial(collate_fn, tokenizer=tokenizer), |
|
|
) |
|
|
|
|
|
image_ids, captions = [], [] |
|
|
for _, (pixel_values, ids, input_ids, attention_mask) in tqdm(enumerate(dataloader)): |
|
|
pred = model.generate( |
|
|
pixel_values=pixel_values.cuda().to(torch.float16), |
|
|
input_ids=input_ids.cuda(), |
|
|
attention_mask=attention_mask.cuda(), |
|
|
do_sample=False, |
|
|
num_beams=args.num_beams, |
|
|
max_new_tokens=30, |
|
|
min_new_tokens=8, |
|
|
use_cache=True |
|
|
) |
|
|
image_ids.extend(ids) |
|
|
caption = [tokenizer.decode(_.cpu(), skip_special_tokens=True).strip() for _ in pred] |
|
|
captions.extend(caption) |
|
|
print(caption) |
|
|
|
|
|
torch.distributed.barrier() |
|
|
|
|
|
world_size = torch.distributed.get_world_size() |
|
|
merged_ids = [None for _ in range(world_size)] |
|
|
merged_captions = [None for _ in range(world_size)] |
|
|
torch.distributed.all_gather_object(merged_ids, image_ids) |
|
|
torch.distributed.all_gather_object(merged_captions, captions) |
|
|
|
|
|
merged_ids = [_ for _ in itertools.chain.from_iterable(merged_ids)] |
|
|
merged_captions = [_ for _ in itertools.chain.from_iterable(merged_captions)] |
|
|
average_length = sum(len(x.split()) for x in merged_captions) / len(merged_captions) |
|
|
print(f'Average length: {average_length}') |
|
|
|
|
|
if torch.distributed.get_rank() == 0: |
|
|
print(f'Evaluating {ds_name} ...') |
|
|
|
|
|
results = [] |
|
|
for image_id, caption in zip(merged_ids, merged_captions): |
|
|
results.append({ |
|
|
'image_id': int(image_id), |
|
|
'caption': caption, |
|
|
}) |
|
|
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) |
|
|
results_file = f'{ds_name}_{time_prefix}.json' |
|
|
results_file = os.path.join(args.out_dir, results_file) |
|
|
json.dump(results, open(results_file, 'w')) |
|
|
|
|
|
annotation = ds_collections[ds_name]['annotation'] |
|
|
if type(annotation) == list: |
|
|
annotation = annotation[-1] |
|
|
coco = COCO(annotation) |
|
|
coco_result = coco.loadRes(results_file) |
|
|
coco_eval = COCOEvalCap(coco, coco_result) |
|
|
coco_eval.evaluate() |
|
|
|
|
|
summary = coco_eval.eval.items() |
|
|
print([ds_name, prompt, average_length, summary]) |
|
|
summaries.append([ds_name, prompt, average_length, summary]) |
|
|
|
|
|
torch.distributed.barrier() |
|
|
|
|
|
for summary in summaries: |
|
|
print(summary) |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument('--checkpoint', type=str, default='') |
|
|
parser.add_argument('--datasets', type=str, default='coco,flickr30k,nocaps') |
|
|
parser.add_argument('--batch-size', type=int, default=1) |
|
|
parser.add_argument('--num-workers', type=int, default=1) |
|
|
parser.add_argument('--num-beams', type=int, default=5) |
|
|
parser.add_argument('--out-dir', type=str, default='results') |
|
|
parser.add_argument('--seed', type=int, default=0) |
|
|
args = parser.parse_args() |
|
|
|
|
|
os.makedirs(args.out_dir, exist_ok=True) |
|
|
|
|
|
args.datasets = args.datasets.split(',') |
|
|
print('datasets:', args.datasets) |
|
|
assert args.batch_size == 1, 'Only batch size 1 is supported' |
|
|
|
|
|
torch.distributed.init_process_group( |
|
|
backend='nccl', |
|
|
world_size=int(os.getenv('WORLD_SIZE', '1')), |
|
|
rank=int(os.getenv('RANK', '0')), |
|
|
) |
|
|
|
|
|
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0))) |
|
|
|
|
|
evaluate_qllama_model() |
|
|
|