Vintern_finetune / internvl_g /eval /evaluate_caption.py
tqv06's picture
Upload folder using huggingface_hub
866ee56 verified
raw
history blame
8.89 kB
import argparse
import itertools
import json
import os
import random
import time
from functools import partial
import torch
import torchvision.transforms as T
from internvl.model.internvl_stage2 import InternVLConfig, InternVLModel
from PIL import Image
from pycocoevalcap.eval import COCOEvalCap
from pycocotools.coco import COCO
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
from transformers import LlamaTokenizer
ds_collections = {
'flickr30k': {
'root': 'data/flickr30k/',
'annotation': 'data/flickr30k/flickr30k_test_karpathy.json',
},
'coco': {
'root': 'data/coco/',
'annotation': ['data/coco/annotations/coco_karpathy_test.json',
'data/coco/annotations/coco_karpathy_test_gt.json'],
},
'nocaps': {
'root': 'data/nocaps/images',
'annotation': 'data/nocaps/nocaps_val_4500_captions.json',
},
}
class CaptionDataset(torch.utils.data.Dataset):
def __init__(self, name, root, annotation, prompt, input_size=224):
if name == 'coco':
self.images = json.load(open(annotation))
else:
self.images = json.load(open(annotation))['images']
self.name = name
self.prompt = prompt
self.root = root
self.transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
if self.name == 'coco':
filename = self.images[idx]['image']
image_id = int(filename.split('_')[-1].replace('.jpg', ''))
image_path = os.path.join(self.root, filename)
else:
image_id = self.images[idx]['id']
if 'file_name' in self.images[idx]:
image_path = os.path.join(self.root, self.images[idx]['file_name'])
else:
image_path = os.path.join(self.root, self.images[idx]['image'])
image = Image.open(image_path)
pixel_values = self.transform(image).unsqueeze(0)
return {
'image_id': image_id,
'input_text': self.prompt,
'pixel_values': pixel_values
}
def collate_fn(inputs, tokenizer):
pixel_values = torch.cat([_['pixel_values'] for _ in inputs], dim=0)
image_ids = [_['image_id'] for _ in inputs]
input_texts = [_['input_text'] for _ in inputs]
input_tokens = tokenizer(input_texts, return_tensors='pt')
return pixel_values, image_ids, input_tokens.input_ids, input_tokens.attention_mask
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size, self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[:rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
def evaluate_qllama_model():
prompts = ['English caption:']
print('prompts:', prompts)
config = InternVLConfig.from_pretrained(args.checkpoint)
model = InternVLModel.from_pretrained(args.checkpoint, config=config).eval()
model = model.to(torch.float16).cuda()
tokenizer = LlamaTokenizer.from_pretrained(args.checkpoint)
tokenizer.add_eos_token = False
random.seed(args.seed)
summaries = []
for prompt in prompts:
for ds_name in args.datasets:
annotation = ds_collections[ds_name]['annotation']
if type(annotation) == list:
annotation = annotation[0]
if model.config.force_image_size is not None:
image_size = model.config.force_image_size
else:
image_size = model.config.vision_config.image_size
dataset = CaptionDataset(
name=ds_name,
root=ds_collections[ds_name]['root'],
annotation=annotation,
prompt=prompt,
input_size=image_size,
)
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=InferenceSampler(len(dataset)),
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=partial(collate_fn, tokenizer=tokenizer),
)
image_ids, captions = [], []
for _, (pixel_values, ids, input_ids, attention_mask) in tqdm(enumerate(dataloader)):
pred = model.generate(
pixel_values=pixel_values.cuda().to(torch.float16),
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=False,
num_beams=args.num_beams,
max_new_tokens=30,
min_new_tokens=8,
use_cache=True
)
image_ids.extend(ids)
caption = [tokenizer.decode(_.cpu(), skip_special_tokens=True).strip() for _ in pred]
captions.extend(caption)
print(caption)
torch.distributed.barrier()
world_size = torch.distributed.get_world_size()
merged_ids = [None for _ in range(world_size)]
merged_captions = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_ids, image_ids)
torch.distributed.all_gather_object(merged_captions, captions)
merged_ids = [_ for _ in itertools.chain.from_iterable(merged_ids)]
merged_captions = [_ for _ in itertools.chain.from_iterable(merged_captions)]
average_length = sum(len(x.split()) for x in merged_captions) / len(merged_captions)
print(f'Average length: {average_length}')
if torch.distributed.get_rank() == 0:
print(f'Evaluating {ds_name} ...')
results = []
for image_id, caption in zip(merged_ids, merged_captions):
results.append({
'image_id': int(image_id),
'caption': caption,
})
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
results_file = f'{ds_name}_{time_prefix}.json'
results_file = os.path.join(args.out_dir, results_file)
json.dump(results, open(results_file, 'w'))
annotation = ds_collections[ds_name]['annotation']
if type(annotation) == list:
annotation = annotation[-1]
coco = COCO(annotation)
coco_result = coco.loadRes(results_file)
coco_eval = COCOEvalCap(coco, coco_result)
coco_eval.evaluate()
summary = coco_eval.eval.items()
print([ds_name, prompt, average_length, summary])
summaries.append([ds_name, prompt, average_length, summary])
torch.distributed.barrier()
for summary in summaries:
print(summary)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, default='')
parser.add_argument('--datasets', type=str, default='coco,flickr30k,nocaps')
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--num-beams', type=int, default=5)
parser.add_argument('--out-dir', type=str, default='results')
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
os.makedirs(args.out_dir, exist_ok=True)
args.datasets = args.datasets.split(',')
print('datasets:', args.datasets)
assert args.batch_size == 1, 'Only batch size 1 is supported'
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
evaluate_qllama_model()