extensions / addtional /scripts /addnet_xyz_grid_support.py
toto10's picture
Upload folder using huggingface_hub (#1)
34097e9
raw
history blame
6.93 kB
import os
import os.path
from modules import shared
import modules.scripts as scripts
from scripts import model_util, util
from scripts.model_util import MAX_MODEL_COUNT
LORA_TRAIN_METADATA_NAMES = {
"ss_session_id": "Session ID",
"ss_training_started_at": "Training started at",
"ss_output_name": "Output name",
"ss_learning_rate": "Learning rate",
"ss_text_encoder_lr": "Text encoder LR",
"ss_unet_lr": "UNet LR",
"ss_num_train_images": "# of training images",
"ss_num_reg_images": "# of reg images",
"ss_num_batches_per_epoch": "Batches per epoch",
"ss_num_epochs": "Total epochs",
"ss_epoch": "Epoch",
"ss_batch_size_per_device": "Batch size/device",
"ss_total_batch_size": "Total batch size",
"ss_gradient_checkpointing": "Gradient checkpointing",
"ss_gradient_accumulation_steps": "Gradient accum. steps",
"ss_max_train_steps": "Max train steps",
"ss_lr_warmup_steps": "LR warmup steps",
"ss_lr_scheduler": "LR scheduler",
"ss_network_module": "Network module",
"ss_network_dim": "Network dim",
"ss_network_alpha": "Network alpha",
"ss_mixed_precision": "Mixed precision",
"ss_full_fp16": "Full FP16",
"ss_v2": "V2",
"ss_resolution": "Resolution",
"ss_clip_skip": "Clip skip",
"ss_max_token_length": "Max token length",
"ss_color_aug": "Color aug",
"ss_flip_aug": "Flip aug",
"ss_random_crop": "Random crop",
"ss_shuffle_caption": "Shuffle caption",
"ss_cache_latents": "Cache latents",
"ss_enable_bucket": "Enable bucket",
"ss_min_bucket_reso": "Min bucket reso.",
"ss_max_bucket_reso": "Max bucket reso.",
"ss_seed": "Seed",
"ss_keep_tokens": "Keep tokens",
"ss_dataset_dirs": "Dataset dirs.",
"ss_reg_dataset_dirs": "Reg dataset dirs.",
"ss_sd_model_name": "SD model name",
"ss_vae_name": "VAE name",
"ss_training_comment": "Comment",
}
xy_grid = None # XY Grid module
script_class = None # additional_networks scripts.Script class
axis_params = [{}] * MAX_MODEL_COUNT
def update_axis_params(i, module, model):
axis_params[i] = {"module": module, "model": model}
def get_axis_model_choices(i):
module = axis_params[i].get("module", "None")
model = axis_params[i].get("model", "None")
if module == "LoRA":
if model != "None":
sort_by = shared.opts.data.get("additional_networks_sort_models_by", "name")
return ["None"] + model_util.get_model_list(module, model, "", sort_by)
return [f"select `Model {i+1}` in `Additional Networks`. models in same folder for selected one will be shown here."]
def update_script_args(p, value, arg_idx):
global script_class
for s in scripts.scripts_txt2img.alwayson_scripts:
if isinstance(s, script_class):
args = list(p.script_args)
# print(f"Changed arg {arg_idx} from {args[s.args_from + arg_idx - 1]} to {value}")
args[s.args_from + arg_idx] = value
p.script_args = tuple(args)
break
def confirm_models(p, xs):
for x in xs:
if x in ["", "None"]:
continue
if not model_util.find_closest_lora_model_name(x):
raise RuntimeError(f"Unknown LoRA model: {x}")
def apply_module(p, x, xs, i):
update_script_args(p, True, 0) # set Enabled to True
update_script_args(p, x, 2 + 4 * i) # enabled, separate_weights, ({module}, model, weight_unet, weight_tenc), ...
def apply_model(p, x, xs, i):
name = model_util.find_closest_lora_model_name(x)
update_script_args(p, True, 0)
update_script_args(p, name, 3 + 4 * i) # enabled, separate_weights, (module, {model}, weight_unet, weight_tenc), ...
def apply_weight(p, x, xs, i):
update_script_args(p, True, 0)
update_script_args(p, x, 4 + 4 * i) # enabled, separate_weights, (module, model, {weight_unet, weight_tenc}), ...
update_script_args(p, x, 5 + 4 * i)
def apply_weight_unet(p, x, xs, i):
update_script_args(p, True, 0)
update_script_args(p, x, 4 + 4 * i) # enabled, separate_weights, (module, model, {weight_unet}, weight_tenc), ...
def apply_weight_tenc(p, x, xs, i):
update_script_args(p, True, 0)
update_script_args(p, x, 5 + 4 * i) # enabled, separate_weights, (module, model, weight_unet, {weight_tenc}), ...
def format_lora_model(p, opt, x):
global xy_grid
model = model_util.find_closest_lora_model_name(x)
if model is None or model.lower() in ["", "none"]:
return "None"
value = xy_grid.format_value(p, opt, model)
model_path = model_util.lora_models.get(model)
metadata = model_util.read_model_metadata(model_path, "LoRA")
if not metadata:
return value
metadata_names = util.split_path_list(shared.opts.data.get("additional_networks_xy_grid_model_metadata", ""))
if not metadata_names:
return value
for name in metadata_names:
name = name.strip()
if name in metadata:
formatted_name = LORA_TRAIN_METADATA_NAMES.get(name, name)
value += f"\n{formatted_name}: {metadata[name]}, "
return value.strip(" ").strip(",")
def initialize(script):
global xy_grid, script_class
xy_grid = None
script_class = script
for scriptDataTuple in scripts.scripts_data:
if os.path.basename(scriptDataTuple.path) == "xy_grid.py" or os.path.basename(scriptDataTuple.path) == "xyz_grid.py":
xy_grid = scriptDataTuple.module
for i in range(MAX_MODEL_COUNT):
model = xy_grid.AxisOption(
f"AddNet Model {i+1}",
str,
lambda p, x, xs, i=i: apply_model(p, x, xs, i),
format_lora_model,
confirm_models,
cost=0.5,
choices=lambda i=i: get_axis_model_choices(i),
)
weight = xy_grid.AxisOption(
f"AddNet Weight {i+1}",
float,
lambda p, x, xs, i=i: apply_weight(p, x, xs, i),
xy_grid.format_value_add_label,
None,
cost=0.5,
)
weight_unet = xy_grid.AxisOption(
f"AddNet UNet Weight {i+1}",
float,
lambda p, x, xs, i=i: apply_weight_unet(p, x, xs, i),
xy_grid.format_value_add_label,
None,
cost=0.5,
)
weight_tenc = xy_grid.AxisOption(
f"AddNet TEnc Weight {i+1}",
float,
lambda p, x, xs, i=i: apply_weight_tenc(p, x, xs, i),
xy_grid.format_value_add_label,
None,
cost=0.5,
)
xy_grid.axis_options.extend([model, weight, weight_unet, weight_tenc])