|
import torch |
|
from PIL import Image |
|
from torch import Tensor |
|
from torch.nn import functional as F |
|
|
|
from torchvision.transforms import ToTensor, ToPILImage |
|
|
|
def adain_color_fix(target: Image, source: Image): |
|
|
|
to_tensor = ToTensor() |
|
target_tensor = to_tensor(target).unsqueeze(0) |
|
source_tensor = to_tensor(source).unsqueeze(0) |
|
|
|
|
|
result_tensor = adaptive_instance_normalization(target_tensor, source_tensor) |
|
|
|
|
|
to_image = ToPILImage() |
|
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0)) |
|
|
|
return result_image |
|
|
|
def wavelet_color_fix(target: Image, source: Image): |
|
|
|
to_tensor = ToTensor() |
|
target_tensor = to_tensor(target).unsqueeze(0) |
|
source_tensor = to_tensor(source).unsqueeze(0) |
|
|
|
|
|
result_tensor = wavelet_reconstruction(target_tensor, source_tensor) |
|
|
|
|
|
to_image = ToPILImage() |
|
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0)) |
|
|
|
return result_image |
|
|
|
def calc_mean_std(feat: Tensor, eps=1e-5): |
|
"""Calculate mean and std for adaptive_instance_normalization. |
|
Args: |
|
feat (Tensor): 4D tensor. |
|
eps (float): A small value added to the variance to avoid |
|
divide-by-zero. Default: 1e-5. |
|
""" |
|
size = feat.size() |
|
assert len(size) == 4, 'The input feature should be 4D tensor.' |
|
b, c = size[:2] |
|
feat_var = feat.view(b, c, -1).var(dim=2) + eps |
|
feat_std = feat_var.sqrt().view(b, c, 1, 1) |
|
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) |
|
return feat_mean, feat_std |
|
|
|
def adaptive_instance_normalization(content_feat:Tensor, style_feat:Tensor): |
|
"""Adaptive instance normalization. |
|
Adjust the reference features to have the similar color and illuminations |
|
as those in the degradate features. |
|
Args: |
|
content_feat (Tensor): The reference feature. |
|
style_feat (Tensor): The degradate features. |
|
""" |
|
size = content_feat.size() |
|
style_mean, style_std = calc_mean_std(style_feat) |
|
content_mean, content_std = calc_mean_std(content_feat) |
|
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) |
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size) |
|
|
|
def wavelet_blur(image: Tensor, radius: int): |
|
""" |
|
Apply wavelet blur to the input tensor. |
|
""" |
|
|
|
|
|
kernel_vals = [ |
|
[0.0625, 0.125, 0.0625], |
|
[0.125, 0.25, 0.125], |
|
[0.0625, 0.125, 0.0625], |
|
] |
|
kernel = torch.tensor(kernel_vals, dtype=image.dtype, device=image.device) |
|
|
|
kernel = kernel[None, None] |
|
|
|
kernel = kernel.repeat(3, 1, 1, 1) |
|
image = F.pad(image, (radius, radius, radius, radius), mode='replicate') |
|
|
|
output = F.conv2d(image, kernel, groups=3, dilation=radius) |
|
return output |
|
|
|
def wavelet_decomposition(image: Tensor, levels=5): |
|
""" |
|
Apply wavelet decomposition to the input tensor. |
|
This function only returns the low frequency & the high frequency. |
|
""" |
|
high_freq = torch.zeros_like(image) |
|
for i in range(levels): |
|
radius = 2 ** i |
|
low_freq = wavelet_blur(image, radius) |
|
high_freq += (image - low_freq) |
|
image = low_freq |
|
|
|
return high_freq, low_freq |
|
|
|
def wavelet_reconstruction(content_feat:Tensor, style_feat:Tensor): |
|
""" |
|
Apply wavelet decomposition, so that the content will have the same color as the style. |
|
""" |
|
|
|
content_high_freq, content_low_freq = wavelet_decomposition(content_feat) |
|
del content_low_freq |
|
|
|
style_high_freq, style_low_freq = wavelet_decomposition(style_feat) |
|
del style_high_freq |
|
|
|
return content_high_freq + style_low_freq |
|
|
|
|