|
import argparse |
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--sd15", default=None, type=str, required=True, help="Path to the original sd15.") |
|
parser.add_argument("--control", default=None, type=str, required=True, help="Path to the sd15 with control.") |
|
parser.add_argument("--dst", default=None, type=str, required=True, help="Path to the output difference model.") |
|
parser.add_argument("--fp16", action="store_true", help="Save as fp16.") |
|
parser.add_argument("--bf16", action="store_true", help="Save as bf16.") |
|
args = parser.parse_args() |
|
|
|
assert args.sd15 is not None, "Must provide a original sd15 model path!" |
|
assert args.control is not None, "Must provide a sd15 with control model path!" |
|
assert args.dst is not None, "Must provide a output path!" |
|
|
|
|
|
|
|
def get_node_name(name, parent_name): |
|
if len(name) <= len(parent_name): |
|
return False, '' |
|
p = name[:len(parent_name)] |
|
if p != parent_name: |
|
return False, '' |
|
return True, name[len(parent_name):] |
|
|
|
|
|
def remove_first_and_cond(sd): |
|
keys = list(sd.keys()) |
|
for key in keys: |
|
is_first_stage, _ = get_node_name(key, 'first_stage_model') |
|
is_cond_stage, _ = get_node_name(key, 'cond_stage_model') |
|
if is_first_stage or is_cond_stage: |
|
sd.pop(key, None) |
|
return sd |
|
|
|
print(f"loading: {args.sd15}") |
|
if args.sd15.endswith(".safetensors"): |
|
sd15_state_dict = load_file(args.sd15) |
|
else: |
|
sd15_state_dict = torch.load(args.sd15) |
|
sd15_state_dict = sd15_state_dict.pop("state_dict", sd15_state_dict) |
|
sd15_state_dict = remove_first_and_cond(sd15_state_dict) |
|
|
|
print(f"loading: {args.control}") |
|
if args.control.endswith(".safetensors"): |
|
control_state_dict = load_file(args.control) |
|
else: |
|
control_state_dict = torch.load(args.control) |
|
control_state_dict = remove_first_and_cond(control_state_dict) |
|
|
|
|
|
print(f"create difference") |
|
keys = list(control_state_dict.keys()) |
|
final_state_dict = {"difference": torch.tensor(1.0)} |
|
for key in keys: |
|
p = control_state_dict.pop(key) |
|
|
|
is_control, node_name = get_node_name(key, 'control_') |
|
if not is_control: |
|
continue |
|
|
|
sd15_key_name = 'model.diffusion_' + node_name |
|
if sd15_key_name in sd15_state_dict: |
|
|
|
p_new = p - sd15_state_dict.pop(sd15_key_name) |
|
if torch.max(torch.abs(p_new)) < 1e-6: |
|
print("no diff", key, sd15_key_name) |
|
continue |
|
else: |
|
|
|
p_new = p |
|
|
|
final_state_dict[key] = p_new |
|
|
|
save_dtype = None |
|
if args.fp16: |
|
save_dtype = torch.float16 |
|
elif args.bf16: |
|
save_dtype = torch.bfloat16 |
|
if save_dtype is not None: |
|
for key in final_state_dict.keys(): |
|
final_state_dict[key] = final_state_dict[key].to(save_dtype) |
|
|
|
print("saving difference.") |
|
if args.dst.endswith(".safetensors"): |
|
save_file(final_state_dict, args.dst) |
|
else: |
|
torch.save({"state_dict": final_state_dict}, args.dst) |
|
print("done!") |
|
|