toto10's picture
00a4ef3f9ad50e484da61893e60b77bb57629f7b9dd7d759346c4dda116cba15
a0611b0
raw
history blame
2.83 kB
import cv2
import base64
import numpy as np
from tqdm import tqdm
import os
from flow_utils import RAFT_estimate_flow
import h5py
import argparse
def main(args):
W, H = args.width, args.height
# Open the input video file
input_video = cv2.VideoCapture(args.input_video)
# Get useful info from the source video
fps = int(input_video.get(cv2.CAP_PROP_FPS))
total_frames = int(input_video.get(cv2.CAP_PROP_FRAME_COUNT))
prev_frame = None
# create an empty HDF5 file
with h5py.File(args.output_file, 'w') as f: pass
# open the file for writing a flow maps into it
with h5py.File(args.output_file, 'a') as f:
flow_maps = f.create_dataset('flow_maps', shape=(0, 2, H, W, 2), maxshape=(None, 2, H, W, 2), dtype=np.float16)
for ind in tqdm(range(total_frames)):
# Read the next frame from the input video
if not input_video.isOpened(): break
ret, cur_frame = input_video.read()
if not ret: break
cur_frame = cv2.resize(cur_frame, (W, H))
if prev_frame is not None:
next_flow, prev_flow, occlusion_mask, frame1_bg_removed, frame2_bg_removed = RAFT_estimate_flow(prev_frame, cur_frame, subtract_background=args.remove_background)
# write data into a file
flow_maps.resize(ind, axis=0)
flow_maps[ind-1, 0] = next_flow
flow_maps[ind-1, 1] = prev_flow
occlusion_mask = np.clip(occlusion_mask * 0.2 * 255, 0, 255).astype(np.uint8)
if args.visualize:
# show the last written frame - useful to catch any issue with the process
if args.remove_background:
img_show = cv2.hconcat([cur_frame, frame2_bg_removed, occlusion_mask])
else:
img_show = cv2.hconcat([cur_frame, occlusion_mask])
cv2.imshow('Out img', img_show)
if cv2.waitKey(1) & 0xFF == ord('q'): exit() # press Q to close the script while processing
prev_frame = cur_frame.copy()
# Release the input and output video files
input_video.release()
# Close all windows
if args.visualize: cv2.destroyAllWindows()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_video', help="Path to input video file", required=True)
parser.add_argument('-o', '--output_file', help="Path to output flow file. Stored in *.h5 format", required=True)
parser.add_argument('-W', '--width', help='Width of the generated flow maps', default=1024, type=int)
parser.add_argument('-H', '--height', help='Height of the generated flow maps', default=576, type=int)
parser.add_argument('-v', '--visualize', action='store_true', help='Show proceed images and occlusion maps')
parser.add_argument('-rb', '--remove_background', action='store_true', help='Remove background of the image')
args = parser.parse_args()
main(args)