toto10's picture
fc7e96b182b21f5be42d5060b4cc04b1c2e517067a0c471c97505b29f93f45e5
55f64b0
raw
history blame
9.23 kB
import os
import subprocess
import glob
import cv2
import re
from transformers import AutoProcessor, CLIPSegForImageSegmentation
from PIL import Image
import torch
import numpy as np
def resize_img(img, w, h):
if img.shape[0] + img.shape[1] < h + w:
interpolation = interpolation=cv2.INTER_CUBIC
else:
interpolation = interpolation=cv2.INTER_AREA
return cv2.resize(img, (w, h), interpolation=interpolation)
def resize_all_img(path, frame_width, frame_height):
if not os.path.isdir(path):
return
pngs = glob.glob( os.path.join(path, "*.png") )
img = cv2.imread(pngs[0])
org_h,org_w = img.shape[0],img.shape[1]
if frame_width == -1 and frame_height == -1:
return
elif frame_width == -1 and frame_height != -1:
frame_width = int(frame_height * org_w / org_h)
elif frame_width != -1 and frame_height == -1:
frame_height = int(frame_width * org_h / org_w)
else:
pass
print("({0},{1}) resize to ({2},{3})".format(org_w, org_h, frame_width, frame_height))
for png in pngs:
img = cv2.imread(png)
img = resize_img(img, frame_width, frame_height)
cv2.imwrite(png, img)
def remove_pngs_in_dir(path):
if not os.path.isdir(path):
return
pngs = glob.glob( os.path.join(path, "*.png") )
for png in pngs:
os.remove(png)
def create_and_mask(mask_dir1, mask_dir2, output_dir):
masks = glob.glob( os.path.join(mask_dir1, "*.png") )
for mask1 in masks:
base_name = os.path.basename(mask1)
print("combine {0}".format(base_name))
mask2 = os.path.join(mask_dir2, base_name)
if not os.path.isfile(mask2):
print("{0} not found!!! -> skip".format(mask2))
continue
img_1 = cv2.imread(mask1)
img_2 = cv2.imread(mask2)
img_1 = np.minimum(img_1,img_2)
out_path = os.path.join(output_dir, base_name)
cv2.imwrite(out_path, img_1)
def create_mask_clipseg(input_dir, output_dir, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, mask_blur_size, mask_blur_size2):
from modules import devices
devices.torch_gc()
device = devices.get_optimal_device_name()
processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
model.to(device)
imgs = glob.glob( os.path.join(input_dir, "*.png") )
texts = [x.strip() for x in clipseg_mask_prompt.split(',')]
exclude_texts = [x.strip() for x in clipseg_exclude_prompt.split(',')] if clipseg_exclude_prompt else None
if exclude_texts:
all_texts = texts + exclude_texts
else:
all_texts = texts
for img_count,img in enumerate(imgs):
image = Image.open(img)
base_name = os.path.basename(img)
inputs = processor(text=all_texts, images=[image] * len(all_texts), padding="max_length", return_tensors="pt")
inputs = inputs.to(device)
with torch.no_grad(), devices.autocast():
outputs = model(**inputs)
if len(all_texts) == 1:
preds = outputs.logits.unsqueeze(0)
else:
preds = outputs.logits
mask_img = None
for i in range(len(all_texts)):
x = torch.sigmoid(preds[i])
x = x.to('cpu').detach().numpy()
# x[x < clipseg_mask_threshold] = 0
x = x > clipseg_mask_threshold
if i < len(texts):
if mask_img is None:
mask_img = x
else:
mask_img = np.maximum(mask_img,x)
else:
mask_img[x > 0] = 0
mask_img = mask_img*255
mask_img = mask_img.astype(np.uint8)
if mask_blur_size > 0:
mask_blur_size = mask_blur_size//2 * 2 + 1
mask_img = cv2.medianBlur(mask_img, mask_blur_size)
if mask_blur_size2 > 0:
mask_blur_size2 = mask_blur_size2//2 * 2 + 1
mask_img = cv2.GaussianBlur(mask_img, (mask_blur_size2, mask_blur_size2), 0)
mask_img = resize_img(mask_img, image.width, image.height)
mask_img = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2RGB)
save_path = os.path.join(output_dir, base_name)
cv2.imwrite(save_path, mask_img)
print("{0} / {1}".format( img_count+1,len(imgs) ))
devices.torch_gc()
def create_mask_transparent_background(input_dir, output_dir, tb_use_fast_mode, tb_use_jit, st1_mask_threshold):
fast_str = " --fast" if tb_use_fast_mode else ""
jit_str = " --jit" if tb_use_jit else ""
venv = "venv"
if 'VIRTUAL_ENV' in os.environ:
venv = os.environ['VIRTUAL_ENV']
bin_path = os.path.join(venv, "Scripts")
bin_path = os.path.join(bin_path, "transparent-background")
if os.path.isfile(bin_path) or os.path.isfile(bin_path + ".exe"):
subprocess.call(bin_path + " --source " + input_dir + " --dest " + output_dir + " --type map" + fast_str + jit_str, shell=True)
else:
subprocess.call("transparent-background --source " + input_dir + " --dest " + output_dir + " --type map" + fast_str + jit_str, shell=True)
mask_imgs = glob.glob( os.path.join(output_dir, "*.png") )
for m in mask_imgs:
img = cv2.imread(m)
img[img < int( 255 * st1_mask_threshold )] = 0
cv2.imwrite(m, img)
p = re.compile(r'([0-9]+)_[a-z]*\.png')
for mask in mask_imgs:
base_name = os.path.basename(mask)
m = p.fullmatch(base_name)
if m:
os.rename(mask, os.path.join(output_dir, m.group(1) + ".png"))
def ebsynth_utility_stage1(dbg, project_args, frame_width, frame_height, st1_masking_method_index, st1_mask_threshold, tb_use_fast_mode, tb_use_jit, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2, is_invert_mask):
dbg.print("stage1")
dbg.print("")
if st1_masking_method_index == 1 and (not clipseg_mask_prompt):
dbg.print("Error: clipseg_mask_prompt is Empty")
return
project_dir, original_movie_path, frame_path, frame_mask_path, _, _, _ = project_args
if is_invert_mask:
if os.path.isdir( frame_path ) and os.path.isdir( frame_mask_path ):
dbg.print("Skip as it appears that the frame and normal masks have already been generated.")
return
# remove_pngs_in_dir(frame_path)
if frame_mask_path:
remove_pngs_in_dir(frame_mask_path)
if frame_mask_path:
os.makedirs(frame_mask_path, exist_ok=True)
if os.path.isdir( frame_path ):
dbg.print("Skip frame extraction")
else:
os.makedirs(frame_path, exist_ok=True)
png_path = os.path.join(frame_path , "%05d.png")
# ffmpeg.exe -ss 00:00:00 -y -i %1 -qscale 0 -f image2 -c:v png "%05d.png"
subprocess.call("ffmpeg -ss 00:00:00 -y -i " + original_movie_path + " -qscale 0 -f image2 -c:v png " + png_path, shell=True)
dbg.print("frame extracted")
frame_width = max(frame_width,-1)
frame_height = max(frame_height,-1)
if frame_width != -1 or frame_height != -1:
resize_all_img(frame_path, frame_width, frame_height)
if frame_mask_path:
if st1_masking_method_index == 0:
create_mask_transparent_background(frame_path, frame_mask_path, tb_use_fast_mode, tb_use_jit, st1_mask_threshold)
elif st1_masking_method_index == 1:
create_mask_clipseg(frame_path, frame_mask_path, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2)
elif st1_masking_method_index == 2:
tb_tmp_path = os.path.join(project_dir , "tb_mask_tmp")
if not os.path.isdir( tb_tmp_path ):
os.makedirs(tb_tmp_path, exist_ok=True)
create_mask_transparent_background(frame_path, tb_tmp_path, tb_use_fast_mode, tb_use_jit, st1_mask_threshold)
create_mask_clipseg(frame_path, frame_mask_path, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2)
create_and_mask(tb_tmp_path,frame_mask_path,frame_mask_path)
dbg.print("mask created")
dbg.print("")
dbg.print("completed.")
def ebsynth_utility_stage1_invert(dbg, frame_mask_path, inv_mask_path):
dbg.print("stage 1 create_invert_mask")
dbg.print("")
if not os.path.isdir( frame_mask_path ):
dbg.print( frame_mask_path + " not found")
dbg.print("Normal masks must be generated previously.")
dbg.print("Do stage 1 with [Ebsynth Utility] Tab -> [configuration] -> [etc]-> [Mask Mode] = Normal setting first")
return
os.makedirs(inv_mask_path, exist_ok=True)
mask_imgs = glob.glob( os.path.join(frame_mask_path, "*.png") )
for m in mask_imgs:
img = cv2.imread(m)
inv = cv2.bitwise_not(img)
base_name = os.path.basename(m)
cv2.imwrite(os.path.join(inv_mask_path,base_name), inv)
dbg.print("")
dbg.print("completed.")