|
import numpy as np |
|
from fastapi import FastAPI, Body |
|
from fastapi.exceptions import HTTPException |
|
from PIL import Image |
|
|
|
import gradio as gr |
|
|
|
from modules.api.models import * |
|
from modules.api import api |
|
|
|
from scripts import external_code, global_state |
|
from scripts.processor import preprocessor_sliders_config |
|
|
|
def encode_to_base64(image): |
|
if type(image) is str: |
|
return image |
|
elif type(image) is Image.Image: |
|
return api.encode_pil_to_base64(image) |
|
elif type(image) is np.ndarray: |
|
return encode_np_to_base64(image) |
|
else: |
|
return "" |
|
|
|
def encode_np_to_base64(image): |
|
pil = Image.fromarray(image) |
|
return api.encode_pil_to_base64(pil) |
|
|
|
def controlnet_api(_: gr.Blocks, app: FastAPI): |
|
@app.get("/controlnet/version") |
|
async def version(): |
|
return {"version": external_code.get_api_version()} |
|
|
|
@app.get("/controlnet/model_list") |
|
async def model_list(): |
|
up_to_date_model_list = external_code.get_models(update=True) |
|
print(up_to_date_model_list) |
|
return {"model_list": up_to_date_model_list} |
|
|
|
@app.get("/controlnet/module_list") |
|
async def module_list(alias_names: bool = False): |
|
_module_list = external_code.get_modules(alias_names) |
|
print(_module_list) |
|
|
|
return { |
|
"module_list": _module_list, |
|
"module_detail": external_code.get_modules_detail(alias_names) |
|
} |
|
|
|
@app.get("/controlnet/settings") |
|
async def settings(): |
|
max_models_num = external_code.get_max_models_num() |
|
return {"control_net_max_models_num":max_models_num} |
|
|
|
cached_cn_preprocessors = global_state.cache_preprocessors(global_state.cn_preprocessor_modules) |
|
@app.post("/controlnet/detect") |
|
async def detect( |
|
controlnet_module: str = Body("none", title='Controlnet Module'), |
|
controlnet_input_images: List[str] = Body([], title='Controlnet Input Images'), |
|
controlnet_processor_res: int = Body(512, title='Controlnet Processor Resolution'), |
|
controlnet_threshold_a: float = Body(64, title='Controlnet Threshold a'), |
|
controlnet_threshold_b: float = Body(64, title='Controlnet Threshold b') |
|
): |
|
controlnet_module = global_state.reverse_preprocessor_aliases.get(controlnet_module, controlnet_module) |
|
|
|
if controlnet_module not in cached_cn_preprocessors: |
|
raise HTTPException( |
|
status_code=422, detail="Module not available") |
|
|
|
if len(controlnet_input_images) == 0: |
|
raise HTTPException( |
|
status_code=422, detail="No image selected") |
|
|
|
print(f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module.") |
|
|
|
results = [] |
|
|
|
processor_module = cached_cn_preprocessors[controlnet_module] |
|
|
|
for input_image in controlnet_input_images: |
|
img = external_code.to_base64_nparray(input_image) |
|
results.append(processor_module(img, res=controlnet_processor_res, thr_a=controlnet_threshold_a, thr_b=controlnet_threshold_b)[0]) |
|
|
|
global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)() |
|
results64 = list(map(encode_to_base64, results)) |
|
return {"images": results64, "info": "Success"} |
|
|
|
try: |
|
import modules.script_callbacks as script_callbacks |
|
|
|
script_callbacks.on_app_started(controlnet_api) |
|
except: |
|
pass |
|
|