|
import os |
|
|
|
import torch |
|
import numpy as np |
|
|
|
import modules.scripts as scripts |
|
from modules import shared, script_callbacks |
|
import gradio as gr |
|
|
|
import modules.ui |
|
from modules.ui_components import ToolButton, FormRow |
|
|
|
from scripts import addnet_xyz_grid_support, lora_compvis, model_util, metadata_editor |
|
from scripts.model_util import lora_models, MAX_MODEL_COUNT |
|
|
|
|
|
memo_symbol = "\U0001F4DD" |
|
addnet_paste_params = {"txt2img": [], "img2img": []} |
|
|
|
|
|
class Script(scripts.Script): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
self.latest_params = [(None, None, None, None)] * MAX_MODEL_COUNT |
|
self.latest_networks = [] |
|
self.latest_model_hash = "" |
|
|
|
def title(self): |
|
return "Additional networks for generating" |
|
|
|
def show(self, is_img2img): |
|
return scripts.AlwaysVisible |
|
|
|
def ui(self, is_img2img): |
|
global addnet_paste_params |
|
|
|
|
|
ctrls = [] |
|
weight_sliders = [] |
|
model_dropdowns = [] |
|
|
|
tabname = "txt2img" |
|
if is_img2img: |
|
tabname = "img2img" |
|
|
|
paste_params = addnet_paste_params[tabname] |
|
paste_params.clear() |
|
|
|
self.infotext_fields = [] |
|
self.paste_field_names = [] |
|
|
|
with gr.Group(): |
|
with gr.Accordion("Additional Networks", open=False): |
|
with gr.Row(): |
|
enabled = gr.Checkbox(label="Enable", value=False) |
|
ctrls.append(enabled) |
|
self.infotext_fields.append((enabled, "AddNet Enabled")) |
|
separate_weights = gr.Checkbox(label="Separate UNet/Text Encoder weights", value=False) |
|
ctrls.append(separate_weights) |
|
self.infotext_fields.append((separate_weights, "AddNet Separate Weights")) |
|
|
|
for i in range(MAX_MODEL_COUNT): |
|
with FormRow(variant="compact"): |
|
module = gr.Dropdown(["LoRA"], label=f"Network module {i+1}", value="LoRA") |
|
model = gr.Dropdown(list(lora_models.keys()), label=f"Model {i+1}", value="None") |
|
with gr.Row(visible=False): |
|
model_path = gr.Textbox(value="None", interactive=False, visible=False) |
|
model.change( |
|
lambda module, model, i=i: model_util.lora_models.get(model, "None"), |
|
inputs=[module, model], |
|
outputs=[model_path], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
model_info = ToolButton(value=memo_symbol, elem_id=f"additional_networks_send_to_metadata_editor_{i}") |
|
model_info.click(fn=None, _js="addnet_send_to_metadata_editor", inputs=[module, model_path], outputs=[]) |
|
|
|
module.change( |
|
lambda module, model, i=i: addnet_xyz_grid_support.update_axis_params(i, module, model), |
|
inputs=[module, model], |
|
outputs=[], |
|
) |
|
model.change( |
|
lambda module, model, i=i: addnet_xyz_grid_support.update_axis_params(i, module, model), |
|
inputs=[module, model], |
|
outputs=[], |
|
) |
|
|
|
|
|
|
|
with gr.Column() as col: |
|
weight = gr.Slider(label=f"Weight {i+1}", value=1.0, minimum=-1.0, maximum=2.0, step=0.05, visible=True) |
|
weight_unet = gr.Slider( |
|
label=f"UNet Weight {i+1}", value=1.0, minimum=-1.0, maximum=2.0, step=0.05, visible=False |
|
) |
|
weight_tenc = gr.Slider( |
|
label=f"TEnc Weight {i+1}", value=1.0, minimum=-1.0, maximum=2.0, step=0.05, visible=False |
|
) |
|
|
|
weight.change(lambda w: (w, w), inputs=[weight], outputs=[weight_unet, weight_tenc]) |
|
weight.release(lambda w: (w, w), inputs=[weight], outputs=[weight_unet, weight_tenc]) |
|
paste_params.append({"module": module, "model": model}) |
|
|
|
ctrls.extend((module, model, weight_unet, weight_tenc)) |
|
weight_sliders.extend((weight, weight_unet, weight_tenc)) |
|
model_dropdowns.append(model) |
|
|
|
self.infotext_fields.extend( |
|
[ |
|
(module, f"AddNet Module {i+1}"), |
|
(model, f"AddNet Model {i+1}"), |
|
(weight, f"AddNet Weight {i+1}"), |
|
(weight_unet, f"AddNet Weight A {i+1}"), |
|
(weight_tenc, f"AddNet Weight B {i+1}"), |
|
] |
|
) |
|
|
|
for _, field_name in self.infotext_fields: |
|
self.paste_field_names.append(field_name) |
|
|
|
def update_weight_sliders(separate, *sliders): |
|
updates = [] |
|
for w, w_unet, w_tenc in zip(*(iter(sliders),) * 3): |
|
if not separate: |
|
w_unet = w |
|
w_tenc = w |
|
updates.append(gr.Slider.update(visible=not separate)) |
|
updates.append(gr.Slider.update(visible=separate, value=w_unet)) |
|
updates.append(gr.Slider.update(visible=separate, value=w_tenc)) |
|
return updates |
|
|
|
separate_weights.change(update_weight_sliders, inputs=[separate_weights] + weight_sliders, outputs=weight_sliders) |
|
|
|
def refresh_all_models(*dropdowns): |
|
model_util.update_models() |
|
updates = [] |
|
for dd in dropdowns: |
|
if dd in lora_models: |
|
selected = dd |
|
else: |
|
selected = "None" |
|
update = gr.Dropdown.update(value=selected, choices=list(lora_models.keys())) |
|
updates.append(update) |
|
return updates |
|
|
|
|
|
with gr.Accordion("Extra args", open=False): |
|
with gr.Row(): |
|
mask_image = gr.Image(label="mask image:") |
|
ctrls.append(mask_image) |
|
|
|
refresh_models = gr.Button(value="Refresh models") |
|
refresh_models.click(refresh_all_models, inputs=model_dropdowns, outputs=model_dropdowns) |
|
ctrls.append(refresh_models) |
|
|
|
return ctrls |
|
|
|
def set_infotext_fields(self, p, params): |
|
for i, t in enumerate(params): |
|
module, model, weight_unet, weight_tenc = t |
|
if model is None or model == "None" or len(model) == 0 or (weight_unet == 0 and weight_tenc == 0): |
|
continue |
|
p.extra_generation_params.update( |
|
{ |
|
"AddNet Enabled": True, |
|
f"AddNet Module {i+1}": module, |
|
f"AddNet Model {i+1}": model, |
|
f"AddNet Weight A {i+1}": weight_unet, |
|
f"AddNet Weight B {i+1}": weight_tenc, |
|
} |
|
) |
|
|
|
def restore_networks(self, sd_model): |
|
unet = sd_model.model.diffusion_model |
|
text_encoder = sd_model.cond_stage_model |
|
|
|
if len(self.latest_networks) > 0: |
|
print("restoring last networks") |
|
for network, _ in self.latest_networks[::-1]: |
|
network.restore(text_encoder, unet) |
|
self.latest_networks.clear() |
|
|
|
def process_batch(self, p, *args, **kwargs): |
|
unet = p.sd_model.model.diffusion_model |
|
text_encoder = p.sd_model.cond_stage_model |
|
|
|
if not args[0]: |
|
self.restore_networks(p.sd_model) |
|
return |
|
|
|
params = [] |
|
for i, ctrl in enumerate(args[2:]): |
|
if i % 4 == 0: |
|
param = [ctrl] |
|
else: |
|
param.append(ctrl) |
|
if i % 4 == 3: |
|
params.append(param) |
|
|
|
models_changed = len(self.latest_networks) == 0 |
|
models_changed = models_changed or self.latest_model_hash != p.sd_model.sd_model_hash |
|
if not models_changed: |
|
for (l_module, l_model, l_weight_unet, l_weight_tenc), (module, model, weight_unet, weight_tenc) in zip( |
|
self.latest_params, params |
|
): |
|
if l_module != module or l_model != model or l_weight_unet != weight_unet or l_weight_tenc != weight_tenc: |
|
models_changed = True |
|
break |
|
|
|
if models_changed: |
|
self.restore_networks(p.sd_model) |
|
self.latest_params = params |
|
self.latest_model_hash = p.sd_model.sd_model_hash |
|
|
|
for module, model, weight_unet, weight_tenc in self.latest_params: |
|
if model is None or model == "None" or len(model) == 0: |
|
continue |
|
if weight_unet == 0 and weight_tenc == 0: |
|
print(f"ignore because weight is 0: {model}") |
|
continue |
|
|
|
model_path = lora_models.get(model, None) |
|
if model_path is None: |
|
raise RuntimeError(f"model not found: {model}") |
|
|
|
if model_path.startswith('"') and model_path.endswith('"'): |
|
model_path = model_path[1:-1] |
|
if not os.path.exists(model_path): |
|
print(f"file not found: {model_path}") |
|
continue |
|
|
|
print(f"{module} weight_unet: {weight_unet}, weight_tenc: {weight_tenc}, model: {model}") |
|
if module == "LoRA": |
|
if os.path.splitext(model_path)[1] == ".safetensors": |
|
from safetensors.torch import load_file |
|
|
|
du_state_dict = load_file(model_path) |
|
else: |
|
du_state_dict = torch.load(model_path, map_location="cpu") |
|
|
|
network, info = lora_compvis.create_network_and_apply_compvis( |
|
du_state_dict, weight_tenc, weight_unet, text_encoder, unet |
|
) |
|
|
|
network.to(p.sd_model.device, dtype=p.sd_model.dtype) |
|
|
|
print(f"LoRA model {model} loaded: {info}") |
|
self.latest_networks.append((network, model)) |
|
if len(self.latest_networks) > 0: |
|
print("setting (or sd model) changed. new networks created.") |
|
|
|
|
|
if len(self.latest_networks) > 0: |
|
mask_image = args[-2] |
|
if mask_image is not None: |
|
mask_image = mask_image.astype(np.float32) / 255.0 |
|
print(f"use mask image to control LoRA regions.") |
|
for i, (network, model) in enumerate(self.latest_networks[:3]): |
|
if not hasattr(network, "set_mask"): |
|
continue |
|
mask = mask_image[:, :, i] |
|
if mask.max() <= 0: |
|
continue |
|
mask = torch.tensor(mask, dtype=p.sd_model.dtype, device=p.sd_model.device) |
|
|
|
network.set_mask(mask, height=p.height, width=p.width, hr_height=p.hr_upscale_to_y, hr_width=p.hr_upscale_to_x) |
|
print(f"apply mask. channel: {i}, model: {model}") |
|
else: |
|
for network, _ in self.latest_networks: |
|
if hasattr(network, "set_mask"): |
|
network.set_mask(None) |
|
|
|
self.set_infotext_fields(p, self.latest_params) |
|
|
|
|
|
def on_script_unloaded(): |
|
if shared.sd_model: |
|
for s in scripts.scripts_txt2img.alwayson_scripts: |
|
if isinstance(s, Script): |
|
s.restore_networks(shared.sd_model) |
|
break |
|
|
|
|
|
def on_ui_tabs(): |
|
global addnet_paste_params |
|
with gr.Blocks(analytics_enabled=False) as additional_networks_interface: |
|
metadata_editor.setup_ui(addnet_paste_params) |
|
|
|
return [(additional_networks_interface, "Additional Networks", "additional_networks")] |
|
|
|
|
|
def on_ui_settings(): |
|
section = ("additional_networks", "Additional Networks") |
|
shared.opts.add_option( |
|
"additional_networks_extra_lora_path", |
|
shared.OptionInfo( |
|
"", |
|
"""Extra paths to scan for LoRA models, comma-separated. Paths containing commas must be enclosed in double quotes. In the path, " (one quote) must be replaced by "" (two quotes).""", |
|
section=section, |
|
), |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_sort_models_by", |
|
shared.OptionInfo( |
|
"name", |
|
"Sort LoRA models by", |
|
gr.Radio, |
|
{"choices": ["name", "date", "path name", "rating", "has user metadata"]}, |
|
section=section, |
|
), |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_reverse_sort_order", shared.OptionInfo(False, "Reverse model sort order", section=section) |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_model_name_filter", shared.OptionInfo("", "LoRA model name filter", section=section) |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_xy_grid_model_metadata", |
|
shared.OptionInfo( |
|
"", |
|
'Metadata to show in XY-Grid label for Model axes, comma-separated (example: "ss_learning_rate, ss_num_epochs")', |
|
section=section, |
|
), |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_hash_thread_count", |
|
shared.OptionInfo(1, "# of threads to use for hash calculation (increase if using an SSD)", section=section), |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_back_up_model_when_saving", |
|
shared.OptionInfo(True, "Make a backup copy of the model being edited when saving its metadata.", section=section), |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_show_only_safetensors", |
|
shared.OptionInfo(False, "Only show .safetensors format models", section=section), |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_show_only_models_with_metadata", |
|
shared.OptionInfo( |
|
"disabled", |
|
"Only show models that have/don't have user-added metadata", |
|
gr.Radio, |
|
{"choices": ["disabled", "has metadata", "missing metadata"]}, |
|
section=section, |
|
), |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_max_top_tags", shared.OptionInfo(20, "Max number of top tags to show", section=section) |
|
) |
|
shared.opts.add_option( |
|
"additional_networks_max_dataset_folders", shared.OptionInfo(20, "Max number of dataset folders to show", section=section) |
|
) |
|
|
|
|
|
def on_infotext_pasted(infotext, params): |
|
if "AddNet Enabled" not in params: |
|
params["AddNet Enabled"] = "False" |
|
|
|
|
|
if "AddNet Separate Weights" not in params: |
|
params["AddNet Separate Weights"] = "False" |
|
|
|
for i in range(MAX_MODEL_COUNT): |
|
|
|
if f"AddNet Weight {i+1}" in params: |
|
params[f"AddNet Weight A {i+1}"] = params[f"AddNet Weight {i+1}"] |
|
params[f"AddNet Weight B {i+1}"] = params[f"AddNet Weight {i+1}"] |
|
|
|
if f"AddNet Module {i+1}" not in params: |
|
params[f"AddNet Module {i+1}"] = "LoRA" |
|
if f"AddNet Model {i+1}" not in params: |
|
params[f"AddNet Model {i+1}"] = "None" |
|
if f"AddNet Weight A {i+1}" not in params: |
|
params[f"AddNet Weight A {i+1}"] = "0" |
|
if f"AddNet Weight B {i+1}" not in params: |
|
params[f"AddNet Weight B {i+1}"] = "0" |
|
|
|
params[f"AddNet Weight {i+1}"] = params[f"AddNet Weight A {i+1}"] |
|
|
|
if params[f"AddNet Weight A {i+1}"] != params[f"AddNet Weight B {i+1}"]: |
|
params["AddNet Separate Weights"] = "True" |
|
|
|
|
|
params[f"AddNet Model {i+1}"] = str(model_util.find_closest_lora_model_name(params[f"AddNet Model {i+1}"])) |
|
|
|
addnet_xyz_grid_support.update_axis_params(i, params[f"AddNet Module {i+1}"], params[f"AddNet Model {i+1}"]) |
|
|
|
|
|
addnet_xyz_grid_support.initialize(Script) |
|
|
|
|
|
script_callbacks.on_script_unloaded(on_script_unloaded) |
|
script_callbacks.on_ui_tabs(on_ui_tabs) |
|
script_callbacks.on_ui_settings(on_ui_settings) |
|
script_callbacks.on_infotext_pasted(on_infotext_pasted) |
|
|