|
''' |
|
https://github.com/KohakuBlueleaf/LoCon |
|
''' |
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class LoConModule(nn.Module): |
|
""" |
|
modifed from kohya-ss/sd-scripts/networks/lora:LoRAModule |
|
""" |
|
|
|
def __init__(self, lora_name, org_module: nn.Module, multiplier=1.0, lora_dim=4, alpha=1): |
|
""" if alpha == 0 or None, alpha is rank (no scaling). """ |
|
super().__init__() |
|
self.lora_name = lora_name |
|
self.lora_dim = lora_dim |
|
|
|
if org_module.__class__.__name__ == 'Conv2d': |
|
|
|
in_dim = org_module.in_channels |
|
k_size = org_module.kernel_size |
|
stride = org_module.stride |
|
padding = org_module.padding |
|
out_dim = org_module.out_channels |
|
self.lora_down = nn.Conv2d(in_dim, lora_dim, k_size, stride, padding, bias=False) |
|
self.lora_up = nn.Conv2d(lora_dim, out_dim, (1, 1), bias=False) |
|
else: |
|
in_dim = org_module.in_features |
|
out_dim = org_module.out_features |
|
self.lora_down = nn.Linear(in_dim, lora_dim, bias=False) |
|
self.lora_up = nn.Linear(lora_dim, out_dim, bias=False) |
|
|
|
if type(alpha) == torch.Tensor: |
|
alpha = alpha.detach().float().numpy() |
|
alpha = lora_dim if alpha is None or alpha == 0 else alpha |
|
self.scale = alpha / self.lora_dim |
|
self.register_buffer('alpha', torch.tensor(alpha)) |
|
|
|
|
|
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) |
|
torch.nn.init.zeros_(self.lora_up.weight) |
|
|
|
self.multiplier = multiplier |
|
self.org_module = org_module |
|
|
|
def apply_to(self): |
|
self.org_forward = self.org_module.forward |
|
self.org_module.forward = self.forward |
|
del self.org_module |
|
|
|
def forward(self, x): |
|
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale |