toto10's picture
Upload folder using huggingface_hub (#1)
34097e9
raw
history blame
32.9 kB
import torch
import einops
import hashlib
import numpy as np
import torch.nn as nn
from enum import Enum
from modules import devices, lowvram, shared, scripts
cond_cast_unet = getattr(devices, 'cond_cast_unet', lambda x: x)
from ldm.modules.diffusionmodules.util import timestep_embedding
from ldm.modules.diffusionmodules.openaimodel import UNetModel
from ldm.modules.attention import BasicTransformerBlock
from ldm.models.diffusion.ddpm import extract_into_tensor
from modules.prompt_parser import MulticondLearnedConditioning, ComposableScheduledPromptConditioning, ScheduledPromptConditioning
POSITIVE_MARK_TOKEN = 1024
NEGATIVE_MARK_TOKEN = - POSITIVE_MARK_TOKEN
MARK_EPS = 1e-3
def prompt_context_is_marked(x):
t = x[..., 0, :]
m = torch.abs(t) - POSITIVE_MARK_TOKEN
m = torch.mean(torch.abs(m)).detach().cpu().float().numpy()
return float(m) < MARK_EPS
def mark_prompt_context(x, positive):
if isinstance(x, list):
for i in range(len(x)):
x[i] = mark_prompt_context(x[i], positive)
return x
if isinstance(x, MulticondLearnedConditioning):
x.batch = mark_prompt_context(x.batch, positive)
return x
if isinstance(x, ComposableScheduledPromptConditioning):
x.schedules = mark_prompt_context(x.schedules, positive)
return x
if isinstance(x, ScheduledPromptConditioning):
cond = x.cond
if prompt_context_is_marked(cond):
return x
mark = POSITIVE_MARK_TOKEN if positive else NEGATIVE_MARK_TOKEN
cond = torch.cat([torch.zeros_like(cond)[:1] + mark, cond], dim=0)
return ScheduledPromptConditioning(end_at_step=x.end_at_step, cond=cond)
return x
disable_controlnet_prompt_warning = True
# You can disable this warning using disable_controlnet_prompt_warning.
def unmark_prompt_context(x):
if not prompt_context_is_marked(x):
# ControlNet must know whether a prompt is conditional prompt (positive prompt) or unconditional conditioning prompt (negative prompt).
# You can use the hook.py's `mark_prompt_context` to mark the prompts that will be seen by ControlNet.
# Let us say XXX is a MulticondLearnedConditioning or a ComposableScheduledPromptConditioning or a ScheduledPromptConditioning or a list of these components,
# if XXX is a positive prompt, you should call mark_prompt_context(XXX, positive=True)
# if XXX is a negative prompt, you should call mark_prompt_context(XXX, positive=False)
# After you mark the prompts, the ControlNet will know which prompt is cond/uncond and works as expected.
# After you mark the prompts, the mismatch errors will disappear.
if not disable_controlnet_prompt_warning:
print('ControlNet Error: Failed to detect whether an instance is cond or uncond!')
print('ControlNet Error: This is mainly because other extension(s) blocked A1111\'s \"process.sample()\" and deleted ControlNet\'s sample function.')
print('ControlNet Error: ControlNet will shift to a backup backend but the results will be worse than expectation.')
print('Solution (For extension developers): Take a look at ControlNet\' hook.py '
'UnetHook.hook.process_sample and manually call mark_prompt_context to mark cond/uncond prompts.')
mark_batch = torch.ones(size=(x.shape[0], 1, 1, 1), dtype=x.dtype, device=x.device)
uc_indices = []
context = x
return mark_batch, uc_indices, context
mark = x[:, 0, :]
context = x[:, 1:, :]
mark = torch.mean(torch.abs(mark - NEGATIVE_MARK_TOKEN), dim=1)
mark = (mark > MARK_EPS).float()
mark_batch = mark[:, None, None, None].to(x.dtype).to(x.device)
uc_indices = mark.detach().cpu().numpy().tolist()
uc_indices = [i for i, item in enumerate(uc_indices) if item < 0.5]
return mark_batch, uc_indices, context
class ControlModelType(Enum):
"""
The type of Control Models (supported or not).
"""
ControlNet = "ControlNet, Lvmin Zhang"
T2I_Adapter = "T2I_Adapter, Chong Mou"
T2I_StyleAdapter = "T2I_StyleAdapter, Chong Mou"
T2I_CoAdapter = "T2I_CoAdapter, Chong Mou"
MasaCtrl = "MasaCtrl, Mingdeng Cao"
GLIGEN = "GLIGEN, Yuheng Li"
AttentionInjection = "AttentionInjection, Lvmin Zhang" # A simple attention injection written by Lvmin
StableSR = "StableSR, Jianyi Wang"
PromptDiffusion = "PromptDiffusion, Zhendong Wang"
ControlLoRA = "ControlLoRA, Wu Hecong"
# Written by Lvmin
class AutoMachine(Enum):
"""
Lvmin's algorithm for Attention/AdaIn AutoMachine States.
"""
Read = "Read"
Write = "Write"
class TorchHijackForUnet:
"""
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
"""
def __getattr__(self, item):
if item == 'cat':
return self.cat
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def cat(self, tensors, *args, **kwargs):
if len(tensors) == 2:
a, b = tensors
if a.shape[-2:] != b.shape[-2:]:
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
tensors = (a, b)
return torch.cat(tensors, *args, **kwargs)
th = TorchHijackForUnet()
class ControlParams:
def __init__(
self,
control_model,
preprocessor,
hint_cond,
weight,
guidance_stopped,
start_guidance_percent,
stop_guidance_percent,
advanced_weighting,
control_model_type,
hr_hint_cond,
global_average_pooling,
soft_injection,
cfg_injection,
**kwargs # To avoid errors
):
self.control_model = control_model
self.preprocessor = preprocessor
self._hint_cond = hint_cond
self.weight = weight
self.guidance_stopped = guidance_stopped
self.start_guidance_percent = start_guidance_percent
self.stop_guidance_percent = stop_guidance_percent
self.advanced_weighting = advanced_weighting
self.control_model_type = control_model_type
self.global_average_pooling = global_average_pooling
self.hr_hint_cond = hr_hint_cond
self.used_hint_cond = None
self.used_hint_cond_latent = None
self.used_hint_inpaint_hijack = None
self.soft_injection = soft_injection
self.cfg_injection = cfg_injection
@property
def hint_cond(self):
return self._hint_cond
# fix for all the extensions that modify hint_cond,
# by forcing used_hint_cond to update on the next timestep
# hr_hint_cond can stay the same, since most extensions dont modify the hires pass
# but if they do, it will cause problems
@hint_cond.setter
def hint_cond(self, new_hint_cond):
self._hint_cond = new_hint_cond
self.used_hint_cond = None
self.used_hint_cond_latent = None
self.used_hint_inpaint_hijack = None
def aligned_adding(base, x, require_channel_alignment):
if isinstance(x, float):
if x == 0.0:
return base
return base + x
if require_channel_alignment:
zeros = torch.zeros_like(base)
zeros[:, :x.shape[1], ...] = x
x = zeros
# resize to sample resolution
base_h, base_w = base.shape[-2:]
xh, xw = x.shape[-2:]
if base_h != xh or base_w != xw:
print('[Warning] ControlNet finds unexpected mis-alignment in tensor shape.')
x = th.nn.functional.interpolate(x, size=(base_h, base_w), mode="nearest")
return base + x
# DFS Search for Torch.nn.Module, Written by Lvmin
def torch_dfs(model: torch.nn.Module):
result = [model]
for child in model.children():
result += torch_dfs(child)
return result
def predict_start_from_noise(ldm, x_t, t, noise):
return extract_into_tensor(ldm.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract_into_tensor(ldm.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
def predict_noise_from_start(ldm, x_t, t, x0):
return (extract_into_tensor(ldm.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / extract_into_tensor(ldm.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
def blur(x, k):
y = torch.nn.functional.pad(x, (k, k, k, k), mode='replicate')
y = torch.nn.functional.avg_pool2d(y, (k*2+1, k*2+1), stride=(1, 1))
return y
class TorchCache:
def __init__(self):
self.cache = {}
def hash(self, key):
v = key.detach().cpu().numpy().astype(np.float32)
v = (v * 1000.0).astype(np.int32)
v = np.ascontiguousarray(v.copy())
sha = hashlib.sha1(v).hexdigest()
return sha
def get(self, key):
key = self.hash(key)
return self.cache.get(key, None)
def set(self, key, value):
self.cache[self.hash(key)] = value
class UnetHook(nn.Module):
def __init__(self, lowvram=False) -> None:
super().__init__()
self.lowvram = lowvram
self.model = None
self.sd_ldm = None
self.control_params = None
self.attention_auto_machine = AutoMachine.Read
self.attention_auto_machine_weight = 1.0
self.gn_auto_machine = AutoMachine.Read
self.gn_auto_machine_weight = 1.0
self.current_style_fidelity = 0.0
self.current_uc_indices = None
def guidance_schedule_handler(self, x):
for param in self.control_params:
current_sampling_percent = (x.sampling_step / x.total_sampling_steps)
param.guidance_stopped = current_sampling_percent < param.start_guidance_percent or current_sampling_percent > param.stop_guidance_percent
def hook(self, model, sd_ldm, control_params, process):
self.model = model
self.sd_ldm = sd_ldm
self.control_params = control_params
outer = self
def process_sample(*args, **kwargs):
# ControlNet must know whether a prompt is conditional prompt (positive prompt) or unconditional conditioning prompt (negative prompt).
# You can use the hook.py's `mark_prompt_context` to mark the prompts that will be seen by ControlNet.
# Let us say XXX is a MulticondLearnedConditioning or a ComposableScheduledPromptConditioning or a ScheduledPromptConditioning or a list of these components,
# if XXX is a positive prompt, you should call mark_prompt_context(XXX, positive=True)
# if XXX is a negative prompt, you should call mark_prompt_context(XXX, positive=False)
# After you mark the prompts, the ControlNet will know which prompt is cond/uncond and works as expected.
# After you mark the prompts, the mismatch errors will disappear.
mark_prompt_context(kwargs.get('conditioning', []), positive=True)
mark_prompt_context(kwargs.get('unconditional_conditioning', []), positive=False)
mark_prompt_context(getattr(process, 'hr_c', []), positive=True)
mark_prompt_context(getattr(process, 'hr_uc', []), positive=False)
return process.sample_before_CN_hack(*args, **kwargs)
def vae_forward(x, batch_size, mask=None):
try:
if x.shape[1] > 3:
x = x[:, 0:3, :, :]
x = x * 2.0 - 1.0
if mask is not None:
x = x * (1.0 - mask)
x = x.type(devices.dtype_vae)
vae_output = outer.vae_cache.get(x)
if vae_output is None:
with devices.autocast():
vae_output = outer.sd_ldm.encode_first_stage(x)
vae_output = outer.sd_ldm.get_first_stage_encoding(vae_output)
outer.vae_cache.set(x, vae_output)
print(f'ControlNet used {str(devices.dtype_vae)} VAE to encode {vae_output.shape}.')
latent = vae_output
if latent.shape[0] != batch_size:
latent = torch.cat([latent.clone() for _ in range(batch_size)], dim=0)
latent = latent.type(devices.dtype_unet)
return latent
except Exception as e:
print(e)
raise ValueError('ControlNet failed to use VAE. Please try to add `--no-half-vae`, `--no-half` and remove `--precision full` in launch cmd.')
def forward(self, x, timesteps=None, context=None, **kwargs):
total_controlnet_embedding = [0.0] * 13
total_t2i_adapter_embedding = [0.0] * 4
require_inpaint_hijack = False
is_in_high_res_fix = False
batch_size = int(x.shape[0])
# Handle cond-uncond marker
cond_mark, outer.current_uc_indices, context = unmark_prompt_context(context)
# print(str(cond_mark[:, 0, 0, 0].detach().cpu().numpy().tolist()) + ' - ' + str(outer.current_uc_indices))
# High-res fix
for param in outer.control_params:
# select which hint_cond to use
if param.used_hint_cond is None:
param.used_hint_cond = param.hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
# has high-res fix
if param.hr_hint_cond is not None and x.ndim == 4 and param.hint_cond.ndim == 4 and param.hr_hint_cond.ndim == 4:
_, _, h_lr, w_lr = param.hint_cond.shape
_, _, h_hr, w_hr = param.hr_hint_cond.shape
_, _, h, w = x.shape
h, w = h * 8, w * 8
if abs(h - h_lr) < abs(h - h_hr):
is_in_high_res_fix = False
if param.used_hint_cond is not param.hint_cond:
param.used_hint_cond = param.hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
else:
is_in_high_res_fix = True
if param.used_hint_cond is not param.hr_hint_cond:
param.used_hint_cond = param.hr_hint_cond
param.used_hint_cond_latent = None
param.used_hint_inpaint_hijack = None
# Convert control image to latent
for param in outer.control_params:
if param.used_hint_cond_latent is not None:
continue
if param.control_model_type not in [ControlModelType.AttentionInjection] \
and 'colorfix' not in param.preprocessor['name'] \
and 'inpaint_only' not in param.preprocessor['name']:
continue
param.used_hint_cond_latent = vae_forward(param.used_hint_cond, batch_size=batch_size)
# handle prompt token control
for param in outer.control_params:
if param.guidance_stopped:
continue
if param.control_model_type not in [ControlModelType.T2I_StyleAdapter]:
continue
param.control_model.to(devices.get_device_for("controlnet"))
control = param.control_model(x=x, hint=param.used_hint_cond, timesteps=timesteps, context=context)
control = torch.cat([control.clone() for _ in range(batch_size)], dim=0)
control *= param.weight
control *= cond_mark[:, :, :, 0]
context = torch.cat([context, control.clone()], dim=1)
# handle ControlNet / T2I_Adapter
for param in outer.control_params:
if param.guidance_stopped:
continue
if param.control_model_type not in [ControlModelType.ControlNet, ControlModelType.T2I_Adapter]:
continue
param.control_model.to(devices.get_device_for("controlnet"))
# inpaint model workaround
x_in = x
control_model = param.control_model.control_model
if param.control_model_type == ControlModelType.ControlNet:
if x.shape[1] != control_model.input_blocks[0][0].in_channels and x.shape[1] == 9:
# inpaint_model: 4 data + 4 downscaled image + 1 mask
x_in = x[:, :4, ...]
require_inpaint_hijack = True
assert param.used_hint_cond is not None, f"Controlnet is enabled but no input image is given"
hint = param.used_hint_cond
# ControlNet inpaint protocol
if hint.shape[1] == 4:
c = hint[:, 0:3, :, :]
m = hint[:, 3:4, :, :]
m = (m > 0.5).float()
hint = c * (1 - m) - m
control = param.control_model(x=x_in, hint=hint, timesteps=timesteps, context=context)
control_scales = ([param.weight] * 13)
if outer.lowvram:
param.control_model.to("cpu")
if param.cfg_injection or param.global_average_pooling:
if param.control_model_type == ControlModelType.T2I_Adapter:
control = [torch.cat([c.clone() for _ in range(batch_size)], dim=0) for c in control]
control = [c * cond_mark for c in control]
if param.soft_injection or is_in_high_res_fix:
# important! use the soft weights with high-res fix can significantly reduce artifacts.
if param.control_model_type == ControlModelType.T2I_Adapter:
control_scales = [param.weight * x for x in (0.25, 0.62, 0.825, 1.0)]
elif param.control_model_type == ControlModelType.ControlNet:
control_scales = [param.weight * (0.825 ** float(12 - i)) for i in range(13)]
if param.advanced_weighting is not None:
control_scales = param.advanced_weighting
control = [c * scale for c, scale in zip(control, control_scales)]
if param.global_average_pooling:
control = [torch.mean(c, dim=(2, 3), keepdim=True) for c in control]
for idx, item in enumerate(control):
target = None
if param.control_model_type == ControlModelType.ControlNet:
target = total_controlnet_embedding
if param.control_model_type == ControlModelType.T2I_Adapter:
target = total_t2i_adapter_embedding
if target is not None:
target[idx] = item + target[idx]
# Clear attention and AdaIn cache
for module in outer.attn_module_list:
module.bank = []
module.style_cfgs = []
for module in outer.gn_module_list:
module.mean_bank = []
module.var_bank = []
module.style_cfgs = []
# Handle attention and AdaIn control
for param in outer.control_params:
if param.guidance_stopped:
continue
if param.used_hint_cond_latent is None:
continue
if param.control_model_type not in [ControlModelType.AttentionInjection]:
continue
ref_xt = outer.sd_ldm.q_sample(param.used_hint_cond_latent, torch.round(timesteps.float()).long())
# Inpaint Hijack
if x.shape[1] == 9:
ref_xt = torch.cat([
ref_xt,
torch.zeros_like(ref_xt)[:, 0:1, :, :],
param.used_hint_cond_latent
], dim=1)
outer.current_style_fidelity = float(param.preprocessor['threshold_a'])
outer.current_style_fidelity = max(0.0, min(1.0, outer.current_style_fidelity))
if param.cfg_injection:
outer.current_style_fidelity = 1.0
elif param.soft_injection or is_in_high_res_fix:
outer.current_style_fidelity = 0.0
control_name = param.preprocessor['name']
if control_name in ['reference_only', 'reference_adain+attn']:
outer.attention_auto_machine = AutoMachine.Write
outer.attention_auto_machine_weight = param.weight
if control_name in ['reference_adain', 'reference_adain+attn']:
outer.gn_auto_machine = AutoMachine.Write
outer.gn_auto_machine_weight = param.weight
outer.original_forward(
x=ref_xt.to(devices.dtype_unet),
timesteps=timesteps.to(devices.dtype_unet),
context=context.to(devices.dtype_unet)
)
outer.attention_auto_machine = AutoMachine.Read
outer.gn_auto_machine = AutoMachine.Read
# Replace x_t to support inpaint models
for param in outer.control_params:
if param.used_hint_cond.shape[1] != 4:
continue
if x.shape[1] != 9:
continue
if param.used_hint_inpaint_hijack is None:
mask_pixel = param.used_hint_cond[:, 3:4, :, :]
image_pixel = param.used_hint_cond[:, 0:3, :, :]
mask_pixel = (mask_pixel > 0.5).to(mask_pixel.dtype)
masked_latent = vae_forward(image_pixel, batch_size, mask=mask_pixel)
mask_latent = torch.nn.functional.max_pool2d(mask_pixel, (8, 8))
if mask_latent.shape[0] != batch_size:
mask_latent = torch.cat([mask_latent.clone() for _ in range(batch_size)], dim=0)
param.used_hint_inpaint_hijack = torch.cat([mask_latent, masked_latent], dim=1)
param.used_hint_inpaint_hijack.to(x.dtype).to(x.device)
x = torch.cat([x[:, :4, :, :], param.used_hint_inpaint_hijack], dim=1)
# A1111 fix for medvram.
if shared.cmd_opts.medvram:
try:
# Trigger the register_forward_pre_hook
outer.sd_ldm.model()
except:
pass
# U-Net Encoder
hs = []
with th.no_grad():
t_emb = cond_cast_unet(timestep_embedding(timesteps, self.model_channels, repeat_only=False))
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for i, module in enumerate(self.input_blocks):
h = module(h, emb, context)
if (i + 1) % 3 == 0:
h = aligned_adding(h, total_t2i_adapter_embedding.pop(0), require_inpaint_hijack)
hs.append(h)
h = self.middle_block(h, emb, context)
# U-Net Middle Block
h = aligned_adding(h, total_controlnet_embedding.pop(), require_inpaint_hijack)
# U-Net Decoder
for i, module in enumerate(self.output_blocks):
h = th.cat([h, aligned_adding(hs.pop(), total_controlnet_embedding.pop(), require_inpaint_hijack)], dim=1)
h = module(h, emb, context)
# U-Net Output
h = h.type(x.dtype)
h = self.out(h)
# Post-processing for color fix
for param in outer.control_params:
if param.used_hint_cond_latent is None:
continue
if 'colorfix' not in param.preprocessor['name']:
continue
k = int(param.preprocessor['threshold_a'])
if is_in_high_res_fix:
k *= 2
# Inpaint hijack
xt = x[:, :4, :, :]
x0_origin = param.used_hint_cond_latent
t = torch.round(timesteps.float()).long()
x0_prd = predict_start_from_noise(outer.sd_ldm, xt, t, h)
x0 = x0_prd - blur(x0_prd, k) + blur(x0_origin, k)
if '+sharp' in param.preprocessor['name']:
detail_weight = float(param.preprocessor['threshold_b']) * 0.01
neg = detail_weight * blur(x0, k) + (1 - detail_weight) * x0
x0 = cond_mark * x0 + (1 - cond_mark) * neg
eps_prd = predict_noise_from_start(outer.sd_ldm, xt, t, x0)
w = max(0.0, min(1.0, float(param.weight)))
h = eps_prd * w + h * (1 - w)
# Post-processing for restore
for param in outer.control_params:
if param.used_hint_cond_latent is None:
continue
if 'inpaint_only' not in param.preprocessor['name']:
continue
if param.used_hint_cond.shape[1] != 4:
continue
# Inpaint hijack
xt = x[:, :4, :, :]
mask = param.used_hint_cond[:, 3:4, :, :]
mask = torch.nn.functional.max_pool2d(mask, (10, 10), stride=(8, 8), padding=1)
x0_origin = param.used_hint_cond_latent
t = torch.round(timesteps.float()).long()
x0_prd = predict_start_from_noise(outer.sd_ldm, xt, t, h)
x0 = x0_prd * mask + x0_origin * (1 - mask)
eps_prd = predict_noise_from_start(outer.sd_ldm, xt, t, x0)
w = max(0.0, min(1.0, float(param.weight)))
h = eps_prd * w + h * (1 - w)
return h
def forward_webui(*args, **kwargs):
# webui will handle other compoments
try:
if shared.cmd_opts.lowvram:
lowvram.send_everything_to_cpu()
return forward(*args, **kwargs)
finally:
if self.lowvram:
for param in self.control_params:
if isinstance(param.control_model, torch.nn.Module):
param.control_model.to("cpu")
def hacked_basic_transformer_inner_forward(self, x, context=None):
x_norm1 = self.norm1(x)
self_attn1 = None
if self.disable_self_attn:
# Do not use self-attention
self_attn1 = self.attn1(x_norm1, context=context)
else:
# Use self-attention
self_attention_context = x_norm1
if outer.attention_auto_machine == AutoMachine.Write:
if outer.attention_auto_machine_weight > self.attn_weight:
self.bank.append(self_attention_context.detach().clone())
self.style_cfgs.append(outer.current_style_fidelity)
if outer.attention_auto_machine == AutoMachine.Read:
if len(self.bank) > 0:
style_cfg = sum(self.style_cfgs) / float(len(self.style_cfgs))
self_attn1_uc = self.attn1(x_norm1, context=torch.cat([self_attention_context] + self.bank, dim=1))
self_attn1_c = self_attn1_uc.clone()
if len(outer.current_uc_indices) > 0 and style_cfg > 1e-5:
self_attn1_c[outer.current_uc_indices] = self.attn1(
x_norm1[outer.current_uc_indices],
context=self_attention_context[outer.current_uc_indices])
self_attn1 = style_cfg * self_attn1_c + (1.0 - style_cfg) * self_attn1_uc
self.bank = []
self.style_cfgs = []
if self_attn1 is None:
self_attn1 = self.attn1(x_norm1, context=self_attention_context)
x = self_attn1.to(x.dtype) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
def hacked_group_norm_forward(self, *args, **kwargs):
eps = 1e-6
x = self.original_forward(*args, **kwargs)
y = None
if outer.gn_auto_machine == AutoMachine.Write:
if outer.gn_auto_machine_weight > self.gn_weight:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append(mean)
self.var_bank.append(var)
self.style_cfgs.append(outer.current_style_fidelity)
if outer.gn_auto_machine == AutoMachine.Read:
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
style_cfg = sum(self.style_cfgs) / float(len(self.style_cfgs))
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
var_acc = sum(self.var_bank) / float(len(self.var_bank))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
y_uc = (((x - mean) / std) * std_acc) + mean_acc
y_c = y_uc.clone()
if len(outer.current_uc_indices) > 0 and style_cfg > 1e-5:
y_c[outer.current_uc_indices] = x.to(y_c.dtype)[outer.current_uc_indices]
y = style_cfg * y_c + (1.0 - style_cfg) * y_uc
self.mean_bank = []
self.var_bank = []
self.style_cfgs = []
if y is None:
y = x
return y.to(x.dtype)
if getattr(process, 'sample_before_CN_hack', None) is None:
process.sample_before_CN_hack = process.sample
process.sample = process_sample
model._original_forward = model.forward
outer.original_forward = model.forward
model.forward = forward_webui.__get__(model, UNetModel)
outer.vae_cache = TorchCache()
all_modules = torch_dfs(model)
attn_modules = [module for module in all_modules if isinstance(module, BasicTransformerBlock)]
attn_modules = sorted(attn_modules, key=lambda x: - x.norm1.normalized_shape[0])
for i, module in enumerate(attn_modules):
if getattr(module, '_original_inner_forward', None) is None:
module._original_inner_forward = module._forward
module._forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
module.bank = []
module.style_cfgs = []
module.attn_weight = float(i) / float(len(attn_modules))
gn_modules = [model.middle_block]
model.middle_block.gn_weight = 0
input_block_indices = [4, 5, 7, 8, 10, 11]
for w, i in enumerate(input_block_indices):
module = model.input_blocks[i]
module.gn_weight = 1.0 - float(w) / float(len(input_block_indices))
gn_modules.append(module)
output_block_indices = [0, 1, 2, 3, 4, 5, 6, 7]
for w, i in enumerate(output_block_indices):
module = model.output_blocks[i]
module.gn_weight = float(w) / float(len(output_block_indices))
gn_modules.append(module)
for i, module in enumerate(gn_modules):
if getattr(module, 'original_forward', None) is None:
module.original_forward = module.forward
module.forward = hacked_group_norm_forward.__get__(module, torch.nn.Module)
module.mean_bank = []
module.var_bank = []
module.style_cfgs = []
module.gn_weight *= 2
outer.attn_module_list = attn_modules
outer.gn_module_list = gn_modules
scripts.script_callbacks.on_cfg_denoiser(self.guidance_schedule_handler)
def restore(self, model):
scripts.script_callbacks.remove_callbacks_for_function(self.guidance_schedule_handler)
if hasattr(self, "control_params"):
del self.control_params
if not hasattr(model, "_original_forward"):
# no such handle, ignore
return
model.forward = model._original_forward
del model._original_forward