toto10's picture
Upload folder using huggingface_hub (#1)
34097e9
raw
history blame
43.6 kB
import gc
import os
from collections import OrderedDict
from copy import copy
from typing import Dict, Optional
import importlib
import modules.scripts as scripts
from modules import shared, devices, script_callbacks, processing, masking, images
import gradio as gr
from einops import rearrange
from scripts import global_state, hook, external_code, processor, batch_hijack, controlnet_version, utils
importlib.reload(processor)
importlib.reload(utils)
importlib.reload(global_state)
importlib.reload(hook)
importlib.reload(external_code)
importlib.reload(batch_hijack)
from scripts.cldm import PlugableControlModel
from scripts.processor import *
from scripts.adapter import PlugableAdapter
from scripts.utils import load_state_dict
from scripts.hook import ControlParams, UnetHook, ControlModelType
from scripts.ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img
from modules.images import save_image
import cv2
import numpy as np
import torch
from pathlib import Path
from PIL import Image, ImageFilter, ImageOps
from scripts.lvminthin import lvmin_thin, nake_nms
from scripts.processor import model_free_preprocessors
gradio_compat = True
try:
from distutils.version import LooseVersion
from importlib_metadata import version
if LooseVersion(version("gradio")) < LooseVersion("3.10"):
gradio_compat = False
except ImportError:
pass
def find_closest_lora_model_name(search: str):
if not search:
return None
if search in global_state.cn_models:
return search
search = search.lower()
if search in global_state.cn_models_names:
return global_state.cn_models_names.get(search)
applicable = [name for name in global_state.cn_models_names.keys()
if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return global_state.cn_models_names[applicable[0]]
def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
p.__class__ = processing.StableDiffusionProcessingTxt2Img
dummy = processing.StableDiffusionProcessingTxt2Img()
for k,v in dummy.__dict__.items():
if hasattr(p, k):
continue
setattr(p, k, v)
global_state.update_cn_models()
def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
if image is None:
return None
if isinstance(image, (tuple, list)):
image = {'image': image[0], 'mask': image[1]}
elif not isinstance(image, dict):
image = {'image': image, 'mask': None}
else: # type(image) is dict
# copy to enable modifying the dict and prevent response serialization error
image = dict(image)
if isinstance(image['image'], str):
if os.path.exists(image['image']):
image['image'] = np.array(Image.open(image['image'])).astype('uint8')
elif image['image']:
image['image'] = external_code.to_base64_nparray(image['image'])
else:
image['image'] = None
# If there is no image, return image with None image and None mask
if image['image'] is None:
image['mask'] = None
return image
if isinstance(image['mask'], str):
if os.path.exists(image['mask']):
image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
elif image['mask']:
image['mask'] = external_code.to_base64_nparray(image['mask'])
else:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
elif image['mask'] is None:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
return image
class Script(scripts.Script):
model_cache = OrderedDict()
def __init__(self) -> None:
super().__init__()
self.latest_network = None
self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
self.unloadable = global_state.cn_preprocessor_unloadable
self.input_image = None
self.latest_model_hash = ""
self.enabled_units = []
self.detected_map = []
self.post_processors = []
batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)
def title(self):
return "ControlNet"
def show(self, is_img2img):
return scripts.AlwaysVisible
def get_threshold_block(self, proc):
pass
def get_default_ui_unit(self, is_ui=True):
cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
return cls(
enabled=False,
module="none",
model="None"
)
def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str):
group = ControlNetUiGroup(
gradio_compat,
self.infotext_fields,
self.get_default_ui_unit(),
self.preprocessor,
)
group.render(tabname, elem_id_tabname)
group.register_callbacks(is_img2img)
return group.render_and_register_unit(tabname, is_img2img)
def ui(self, is_img2img):
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be an array of all components that are used in processing.
Values of those returned components will be passed to run() and process() functions.
"""
self.infotext_fields = []
self.paste_field_names = []
controls = ()
max_models = shared.opts.data.get("control_net_max_models_num", 1)
elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
with gr.Group(elem_id=elem_id_tabname):
with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
if max_models > 1:
with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
for i in range(max_models):
with gr.Tab(f"ControlNet Unit {i}"):
controls += (self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname),)
else:
with gr.Column():
controls += (self.uigroup(f"ControlNet", is_img2img, elem_id_tabname),)
if shared.opts.data.get("control_net_sync_field_args", False):
for _, field_name in self.infotext_fields:
self.paste_field_names.append(field_name)
return controls
def clear_control_model_cache(self):
Script.model_cache.clear()
gc.collect()
devices.torch_gc()
def load_control_model(self, p, unet, model, lowvram):
if model in Script.model_cache:
print(f"Loading model from cache: {model}")
return Script.model_cache[model]
# Remove model from cache to clear space before building another model
if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
Script.model_cache.popitem(last=False)
gc.collect()
devices.torch_gc()
model_net = self.build_control_model(p, unet, model, lowvram)
if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
Script.model_cache[model] = model_net
return model_net
def build_control_model(self, p, unet, model, lowvram):
if model is None or model == 'None':
raise RuntimeError(f"You have not selected any ControlNet Model.")
model_path = global_state.cn_models.get(model, None)
if model_path is None:
model = find_closest_lora_model_name(model)
model_path = global_state.cn_models.get(model, None)
if model_path is None:
raise RuntimeError(f"model not found: {model}")
# trim '"' at start/end
if model_path.startswith("\"") and model_path.endswith("\""):
model_path = model_path[1:-1]
if not os.path.exists(model_path):
raise ValueError(f"file not found: {model_path}")
print(f"Loading model: {model}")
state_dict = load_state_dict(model_path)
network_module = PlugableControlModel
network_config = shared.opts.data.get("control_net_model_config", global_state.default_conf)
if not os.path.isabs(network_config):
network_config = os.path.join(global_state.script_dir, network_config)
if any([k.startswith("body.") or k == 'style_embedding' for k, v in state_dict.items()]):
# adapter model
network_module = PlugableAdapter
network_config = shared.opts.data.get("control_net_model_adapter_config", global_state.default_conf_adapter)
if not os.path.isabs(network_config):
network_config = os.path.join(global_state.script_dir, network_config)
model_path = os.path.abspath(model_path)
model_stem = Path(model_path).stem
model_dir_name = os.path.dirname(model_path)
possible_config_filenames = [
os.path.join(model_dir_name, model_stem + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem + ".yaml"),
os.path.join(model_dir_name, model_stem.replace('_fp16', '') + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem.replace('_fp16', '') + ".yaml"),
os.path.join(model_dir_name, model_stem.replace('_diff', '') + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem.replace('_diff', '') + ".yaml"),
os.path.join(model_dir_name, model_stem.replace('-fp16', '') + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem.replace('-fp16', '') + ".yaml"),
os.path.join(model_dir_name, model_stem.replace('-diff', '') + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem.replace('-diff', '') + ".yaml")
]
override_config = possible_config_filenames[0]
for possible_config_filename in possible_config_filenames:
if os.path.exists(possible_config_filename):
override_config = possible_config_filename
break
if 'v11' in model_stem.lower() or 'shuffle' in model_stem.lower():
assert os.path.exists(override_config), f'Error: The model config {override_config} is missing. ControlNet 1.1 must have configs.'
if os.path.exists(override_config):
network_config = override_config
else:
print(f'ERROR: ControlNet cannot find model config [{override_config}] \n'
f'ERROR: ControlNet will use a WRONG config [{network_config}] to load your model. \n'
f'ERROR: The WRONG config may not match your model. The generated results can be bad. \n'
f'ERROR: You are using a ControlNet model [{model_stem}] without correct YAML config file. \n'
f'ERROR: The performance of this model may be worse than your expectation. \n'
f'ERROR: If this model cannot get good results, the reason is that you do not have a YAML file for the model. \n'
f'Solution: Please download YAML file, or ask your model provider to provide [{override_config}] for you to download.\n'
f'Hint: You can take a look at [{os.path.join(global_state.script_dir, "models")}] to find many existing YAML files.\n')
print(f"Loading config: {network_config}")
network = network_module(
state_dict=state_dict,
config_path=network_config,
lowvram=lowvram,
base_model=unet,
)
network.to(p.sd_model.device, dtype=p.sd_model.dtype)
print(f"ControlNet model {model} loaded.")
return network
@staticmethod
def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
if not force and not shared.opts.data.get("control_net_allow_script_control", False):
return default
def get_element(obj, strict=False):
if not isinstance(obj, list):
return obj if not strict or idx == 0 else None
elif idx < len(obj):
return obj[idx]
else:
return None
attribute_value = get_element(getattr(p, attribute, None), strict)
default_value = get_element(default)
return attribute_value if attribute_value is not None else default_value
def parse_remote_call(self, p, unit: external_code.ControlNetUnit, idx):
selector = self.get_remote_call
unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
unit.module = selector(p, "control_net_module", unit.module, idx)
unit.model = selector(p, "control_net_model", unit.model, idx)
unit.weight = selector(p, "control_net_weight", unit.weight, idx)
unit.image = selector(p, "control_net_image", unit.image, idx)
unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)
return unit
def detectmap_proc(self, detected_map, module, resize_mode, h, w):
if 'inpaint' in module:
detected_map = detected_map.astype(np.float32)
else:
detected_map = HWC3(detected_map)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def get_pytorch_control(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w')
y = y.clone()
y = y.to(devices.get_device_for("controlnet"))
y = y.clone()
return y
def high_quality_resize(x, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
if resize_mode == external_code.ResizeMode.RESIZE:
detected_map = high_quality_resize(detected_map, (w, h))
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
old_h, old_w, _ = detected_map.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
if resize_mode == external_code.ResizeMode.OUTER_FIT:
k = min(k0, k1)
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
detected_map = high_quality_background
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
else:
k = max(k0, k1)
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
def get_enabled_units(self, p):
units = external_code.get_all_units_in_processing(p)
enabled_units = []
if len(units) == 0:
# fill a null group
remote_unit = self.parse_remote_call(p, self.get_default_ui_unit(), 0)
if remote_unit.enabled:
units.append(remote_unit)
for idx, unit in enumerate(units):
unit = self.parse_remote_call(p, unit, idx)
if not unit.enabled:
continue
enabled_units.append(copy(unit))
if len(units) != 1:
log_key = f"ControlNet {idx}"
else:
log_key = "ControlNet"
log_value = {
"preprocessor": unit.module,
"model": unit.model,
"weight": unit.weight,
"starting/ending": str((unit.guidance_start, unit.guidance_end)),
"resize mode": str(unit.resize_mode),
"pixel perfect": str(unit.pixel_perfect),
"control mode": str(unit.control_mode),
"preprocessor params": str((unit.processor_res, unit.threshold_a, unit.threshold_b)),
}
log_value = str(log_value).replace('\'', '').replace('{', '').replace('}', '')
p.extra_generation_params.update({log_key: log_value})
return enabled_units
def process(self, p, *args):
"""
This function is called before processing begins for AlwaysVisible scripts.
You can modify the processing object (p) here, inject hooks, etc.
args contains all values returned by components from ui()
"""
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
if self.latest_network is not None:
# always restore (~0.05s)
self.latest_network.restore(unet)
if not batch_hijack.instance.is_batch:
self.enabled_units = self.get_enabled_units(p)
if len(self.enabled_units) == 0:
self.latest_network = None
return
detected_maps = []
forward_params = []
post_processors = []
hook_lowvram = False
# cache stuff
if self.latest_model_hash != p.sd_model.sd_model_hash:
self.clear_control_model_cache()
# unload unused preproc
module_list = [unit.module for unit in self.enabled_units]
for key in self.unloadable:
if key not in module_list:
self.unloadable.get(key, lambda:None)()
self.latest_model_hash = p.sd_model.sd_model_hash
for idx, unit in enumerate(self.enabled_units):
unit.module = global_state.get_module_basename(unit.module)
p_input_image = self.get_remote_call(p, "control_net_input_image", None, idx)
image = image_dict_from_any(unit.image)
if image is not None:
while len(image['mask'].shape) < 3:
image['mask'] = image['mask'][..., np.newaxis]
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
control_mode = external_code.control_mode_from_value(unit.control_mode)
if unit.low_vram:
hook_lowvram = True
if unit.module in model_free_preprocessors:
model_net = None
else:
model_net = self.load_control_model(p, unet, unit.model, unit.low_vram)
model_net.reset()
if batch_hijack.instance.is_batch and getattr(p, "image_control", None) is not None:
input_image = HWC3(np.asarray(p.image_control))
elif p_input_image is not None:
if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
color = HWC3(np.asarray(p_input_image['image']))
alpha = np.asarray(p_input_image['mask'])[..., None]
input_image = np.concatenate([color, alpha], axis=2)
else:
input_image = HWC3(np.asarray(p_input_image))
elif image is not None:
# Need to check the image for API compatibility
if isinstance(image['image'], str):
from modules.api.api import decode_base64_to_image
input_image = HWC3(np.asarray(decode_base64_to_image(image['image'])))
else:
input_image = HWC3(image['image'])
have_mask = 'mask' in image and not ((image['mask'][:, :, 0] == 0).all() or (image['mask'][:, :, 0] == 255).all())
if 'inpaint' in unit.module:
print("using inpaint as input")
color = HWC3(image['image'])
if have_mask:
alpha = image['mask'][:, :, 0:1]
else:
alpha = np.zeros_like(color)[:, :, 0:1]
input_image = np.concatenate([color, alpha], axis=2)
else:
if have_mask:
print("using mask as input")
input_image = HWC3(image['mask'][:, :, 0])
unit.module = 'none' # Always use black bg and white line
else:
# use img2img init_image as default
input_image = getattr(p, "init_images", [None])[0]
if input_image is None:
if batch_hijack.instance.is_batch:
shared.state.interrupted = True
raise ValueError('controlnet is enabled but no input image is given')
input_image = HWC3(np.asarray(input_image))
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
if a1111_i2i_resize_mode is not None:
if a1111_i2i_resize_mode == 0:
resize_mode = external_code.ResizeMode.RESIZE
elif a1111_i2i_resize_mode == 1:
resize_mode = external_code.ResizeMode.INNER_FIT
elif a1111_i2i_resize_mode == 2:
resize_mode = external_code.ResizeMode.OUTER_FIT
has_mask = False
if input_image.ndim == 3:
if input_image.shape[2] == 4:
if np.max(input_image[:, :, 3]) > 127:
has_mask = True
a1111_mask = getattr(p, "image_mask", None)
if 'inpaint' in unit.module and not has_mask and a1111_mask is not None:
a1111_mask = a1111_mask.convert('L')
if getattr(p, "inpainting_mask_invert", False):
a1111_mask = ImageOps.invert(a1111_mask)
if getattr(p, "mask_blur", 0) > 0:
a1111_mask = a1111_mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
a1111_mask = np.asarray(a1111_mask)
if a1111_mask.ndim == 2:
if a1111_mask.shape[0] == input_image.shape[0]:
if a1111_mask.shape[1] == input_image.shape[1]:
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
input_image = np.ascontiguousarray(input_image.copy()).copy()
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
if a1111_i2i_resize_mode is not None:
if a1111_i2i_resize_mode == 0:
resize_mode = external_code.ResizeMode.RESIZE
elif a1111_i2i_resize_mode == 1:
resize_mode = external_code.ResizeMode.INNER_FIT
elif a1111_i2i_resize_mode == 2:
resize_mode = external_code.ResizeMode.OUTER_FIT
if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
and p.inpaint_full_res and p.image_mask is not None:
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
input_image = [Image.fromarray(x) for x in input_image]
mask = p.image_mask.convert('L')
if p.inpainting_mask_invert:
mask = ImageOps.invert(mask)
if p.mask_blur > 0:
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
if resize_mode == external_code.ResizeMode.INNER_FIT:
input_image = [images.resize_image(1, i, mask.width, mask.height) for i in input_image]
elif resize_mode == external_code.ResizeMode.OUTER_FIT:
input_image = [images.resize_image(2, i, mask.width, mask.height) for i in input_image]
else:
input_image = [images.resize_image(0, i, mask.width, mask.height) for i in input_image]
input_image = [x.crop(crop_region) for x in input_image]
input_image = [images.resize_image(2, x, p.width, p.height) for x in input_image]
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
input_image = np.stack(input_image, axis=2)
if 'inpaint' in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
and p.inpainting_fill and p.image_mask is not None:
print('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
unit.module = 'inpaint'
try:
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
np.random.seed((tmp_seed + tmp_subseed) & 0xFFFFFFFF)
except Exception as e:
print(e)
print('Warning: Failed to use consistent random seed.')
# safe numpy
input_image = np.ascontiguousarray(input_image.copy()).copy()
print(f"Loading preprocessor: {unit.module}")
preprocessor = self.preprocessor[unit.module]
h, w, bsz = p.height, p.width, p.batch_size
h = (h // 8) * 8
w = (w // 8) * 8
preprocessor_resolution = unit.processor_res
if unit.pixel_perfect:
raw_H, raw_W, _ = input_image.shape
target_H, target_W = h, w
k0 = float(target_H) / float(raw_H)
k1 = float(target_W) / float(raw_W)
if resize_mode == external_code.ResizeMode.OUTER_FIT:
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else:
estimation = max(k0, k1) * float(min(raw_H, raw_W))
preprocessor_resolution = int(np.round(estimation))
print(f'Pixel Perfect Mode Enabled.')
print(f'resize_mode = {str(resize_mode)}')
print(f'raw_H = {raw_H}')
print(f'raw_W = {raw_W}')
print(f'target_H = {target_H}')
print(f'target_W = {target_W}')
print(f'estimation = {estimation}')
print(f'preprocessor resolution = {preprocessor_resolution}')
detected_map, is_image = preprocessor(input_image, res=preprocessor_resolution, thr_a=unit.threshold_a, thr_b=unit.threshold_b)
if unit.module == "none" and "style" in unit.model:
detected_map_bytes = detected_map[:,:,0].tobytes()
detected_map = np.ndarray((round(input_image.shape[0]/4),input_image.shape[1]),dtype="float32",buffer=detected_map_bytes)
detected_map = torch.Tensor(detected_map).to(devices.get_device_for("controlnet"))
is_image = False
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
hr_y = int(p.height * p.hr_scale)
hr_x = int(p.width * p.hr_scale)
else:
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
hr_y = (hr_y // 8) * 8
hr_x = (hr_x // 8) * 8
if is_image:
hr_control, hr_detected_map = self.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
detected_maps.append((hr_detected_map, unit.module))
else:
hr_control = detected_map
else:
hr_control = None
if is_image:
control, detected_map = self.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
detected_maps.append((detected_map, unit.module))
else:
control = detected_map
if unit.module == 'clip_vision':
detected_maps.append((processor.clip_vision_visualization(detected_map), unit.module))
control_model_type = ControlModelType.ControlNet
if isinstance(model_net, PlugableAdapter):
control_model_type = ControlModelType.T2I_Adapter
if getattr(model_net, "target", None) == "scripts.adapter.StyleAdapter":
control_model_type = ControlModelType.T2I_StyleAdapter
if 'reference' in unit.module:
control_model_type = ControlModelType.AttentionInjection
global_average_pooling = False
if model_net is not None:
if model_net.config.model.params.get("global_average_pooling", False):
global_average_pooling = True
preprocessor_dict = dict(
name=unit.module,
preprocessor_resolution=preprocessor_resolution,
threshold_a=unit.threshold_a,
threshold_b=unit.threshold_b
)
forward_param = ControlParams(
control_model=model_net,
preprocessor=preprocessor_dict,
hint_cond=control,
weight=unit.weight,
guidance_stopped=False,
start_guidance_percent=unit.guidance_start,
stop_guidance_percent=unit.guidance_end,
advanced_weighting=None,
control_model_type=control_model_type,
global_average_pooling=global_average_pooling,
hr_hint_cond=hr_control,
soft_injection=control_mode != external_code.ControlMode.BALANCED,
cfg_injection=control_mode == external_code.ControlMode.CONTROL,
)
forward_params.append(forward_param)
if unit.module == 'inpaint_only':
final_inpaint_feed = hr_control if hr_control is not None else control
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
sigma = 7
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
_, Hmask, Wmask = final_inpaint_mask.shape
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
def inpaint_only_post_processing(x):
_, H, W = x.shape
if Hmask != H or Wmask != W:
print('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
r = final_inpaint_raw.to(x.dtype).to(x.device)
m = final_inpaint_mask.to(x.dtype).to(x.device)
return m * x + (1 - m) * r
post_processors.append(inpaint_only_post_processing)
del model_net
self.latest_network = UnetHook(lowvram=hook_lowvram)
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)
self.detected_map = detected_maps
self.post_processors = post_processors
def postprocess_batch(self, p, *args, **kwargs):
images = kwargs.get('images', [])
for post_processor in self.post_processors:
for i in range(images.shape[0]):
images[i] = post_processor(images[i])
return
def postprocess(self, p, processed, *args):
processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower()
if not batch_hijack.instance.is_batch:
self.enabled_units.clear()
if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None:
for detect_map, module in self.detected_map:
detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module)
if not os.path.isabs(detectmap_dir):
detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir)
if module != "none":
os.makedirs(detectmap_dir, exist_ok=True)
img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy())
save_image(img, detectmap_dir, module)
if self.latest_network is None:
return
if not batch_hijack.instance.is_batch:
if not shared.opts.data.get("control_net_no_detectmap", False):
if 'sd upscale' not in processor_params_flag:
if self.detected_map is not None:
for detect_map, module in self.detected_map:
if detect_map is None:
continue
detect_map = np.ascontiguousarray(detect_map.copy()).copy()
if detect_map.ndim == 3 and detect_map.shape[2] == 4:
inpaint_mask = detect_map[:, :, 3]
detect_map = detect_map[:, :, 0:3]
detect_map[inpaint_mask > 127] = 0
processed.images.extend([
Image.fromarray(
detect_map.clip(0, 255).astype(np.uint8)
)
])
self.input_image = None
self.latest_network.restore(p.sd_model.model.diffusion_model)
self.latest_network = None
self.detected_map.clear()
gc.collect()
devices.torch_gc()
def batch_tab_process(self, p, batches, *args, **kwargs):
self.enabled_units = self.get_enabled_units(p)
for unit_i, unit in enumerate(self.enabled_units):
unit.batch_images = iter([batch[unit_i] for batch in batches])
def batch_tab_process_each(self, p, *args, **kwargs):
for unit_i, unit in enumerate(self.enabled_units):
if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue
unit.image = next(unit.batch_images)
def batch_tab_postprocess_each(self, p, processed, *args, **kwargs):
for unit_i, unit in enumerate(self.enabled_units):
if getattr(unit, 'loopback', False):
output_images = getattr(processed, 'images', [])[processed.index_of_first_image:]
if output_images:
unit.image = np.array(output_images[0])
else:
print(f'Warning: No loopback image found for controlnet unit {unit_i}. Using control map from last batch iteration instead')
def batch_tab_postprocess(self, p, *args, **kwargs):
self.enabled_units.clear()
self.input_image = None
if self.latest_network is None: return
self.latest_network.restore(shared.sd_model.model.diffusion_model)
self.latest_network = None
self.detected_map.clear()
def on_ui_settings():
section = ('control_net', "ControlNet")
shared.opts.add_option("control_net_model_config", shared.OptionInfo(
global_state.default_conf, "Config file for Control Net models", section=section))
shared.opts.add_option("control_net_model_adapter_config", shared.OptionInfo(
global_state.default_conf_adapter, "Config file for Adapter models", section=section))
shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
global_state.default_detectedmap_dir, "Directory for detected maps auto saving", section=section))
shared.opts.add_option("control_net_models_path", shared.OptionInfo(
"", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
"", "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", section=section))
shared.opts.add_option("control_net_max_models_num", shared.OptionInfo(
1, "Multi ControlNet: Max models amount (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
1, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 5, "step": 1}, section=section))
shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
False, "Passing ControlNet parameters with \"Send to img2img\"", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_disable_control_type", shared.OptionInfo(
False, "Disable control type selection", gr.Checkbox, {"interactive": True}, section=section))
batch_hijack.instance.do_hijack()
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)