toto10's picture
Upload folder using huggingface_hub (#1)
34097e9
raw
history blame
22.9 kB
'''
Hijack version of kohya-ss/additional_networks/scripts/lora_compvis.py
'''
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import copy
import math
import re
from typing import NamedTuple
import torch
from locon import LoConModule
class LoRAInfo(NamedTuple):
lora_name: str
module_name: str
module: torch.nn.Module
multiplier: float
dim: int
alpha: float
def create_network_and_apply_compvis(du_state_dict, multiplier_tenc, multiplier_unet, text_encoder, unet, **kwargs):
# get device and dtype from unet
for module in unet.modules():
if module.__class__.__name__ == "Linear":
param: torch.nn.Parameter = module.weight
# device = param.device
dtype = param.dtype
break
# get dims (rank) and alpha from state dict
# currently it is assumed all LoRA have same alpha. alpha may be different in future.
network_alpha = None
conv_alpha = None
network_dim = None
conv_dim = None
for key, value in du_state_dict.items():
if network_alpha is None and 'alpha' in key:
network_alpha = value
if network_dim is None and 'lora_down' in key and len(value.size()) == 2:
network_dim = value.size()[0]
if network_alpha is not None and network_dim is not None:
break
if network_alpha is None:
network_alpha = network_dim
print(f"dimension: {network_dim},\n"
f"alpha: {network_alpha},\n"
f"multiplier_unet: {multiplier_unet},\n"
f"multiplier_tenc: {multiplier_tenc}"
)
if network_dim is None:
print(f"The selected model is not LoRA or not trained by `sd-scripts`?")
network_dim = 4
network_alpha = 1
# create, apply and load weights
network = LoConNetworkCompvis(
text_encoder, unet, du_state_dict,
multiplier_tenc = multiplier_tenc,
multiplier_unet = multiplier_unet,
)
state_dict = network.apply_lora_modules(du_state_dict) # some weights are applied to text encoder
network.to(dtype) # with this, if error comes from next line, the model will be used
info = network.load_state_dict(state_dict, strict=False)
# remove redundant warnings
if len(info.missing_keys) > 4:
missing_keys = []
alpha_count = 0
for key in info.missing_keys:
if 'alpha' not in key:
missing_keys.append(key)
else:
if alpha_count == 0:
missing_keys.append(key)
alpha_count += 1
if alpha_count > 1:
missing_keys.append(
f"... and {alpha_count-1} alphas. The model doesn't have alpha, use dim (rannk) as alpha. You can ignore this message.")
info = torch.nn.modules.module._IncompatibleKeys(missing_keys, info.unexpected_keys)
return network, info
class LoConNetworkCompvis(torch.nn.Module):
# UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
# TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LOCON_TARGET = ["ResBlock", "Downsample", "Upsample"]
UNET_TARGET_REPLACE_MODULE = ["SpatialTransformer"] + LOCON_TARGET # , "Attention"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["ResidualAttentionBlock", "CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
@classmethod
def convert_diffusers_name_to_compvis(cls, v2, du_name):
"""
convert diffusers's LoRA name to CompVis
"""
cv_name = None
if "lora_unet_" in du_name:
m = re.search(r"_down_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_attn_index = int(m.group(2))
du_suffix = m.group(3)
cv_index = 1 + du_block_index * 3 + du_attn_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_input_blocks_{cv_index}_1_{du_suffix}"
return cv_name
m = re.search(r"_mid_block_attentions_(\d+)_(.+)", du_name)
if m:
du_suffix = m.group(2)
cv_name = f"lora_unet_middle_block_1_{du_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_attn_index = int(m.group(2))
du_suffix = m.group(3)
cv_index = du_block_index * 3 + du_attn_index # 3,4,5, 6,7,8, 9,10,11
cv_name = f"lora_unet_output_blocks_{cv_index}_1_{du_suffix}"
return cv_name
m = re.search(r"_down_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_res_index = int(m.group(2))
du_suffix = m.group(3)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_index = 1 + du_block_index * 3 + du_res_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_input_blocks_{cv_index}_0_{cv_suffix}"
return cv_name
m = re.search(r"_down_blocks_(\d+)_downsamplers_0_conv", du_name)
if m:
block_index = int(m.group(1))
cv_index = 3 + block_index * 3
cv_name = f"lora_unet_input_blocks_{cv_index}_0_op"
return cv_name
m = re.search(r"_mid_block_resnets_(\d+)_(.+)", du_name)
if m:
index = int(m.group(1))
du_suffix = m.group(2)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_name = f"lora_unet_middle_block_{index*2}_{cv_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_res_index = int(m.group(2))
du_suffix = m.group(3)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_index = du_block_index * 3 + du_res_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_output_blocks_{cv_index}_0_{cv_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_upsamplers_0_conv", du_name)
if m:
block_index = int(m.group(1))
cv_index = block_index * 3 + 2
cv_name = f"lora_unet_output_blocks_{cv_index}_{bool(block_index)+1}_conv"
return cv_name
elif "lora_te_" in du_name:
m = re.search(r"_model_encoder_layers_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_suffix = m.group(2)
cv_index = du_block_index
if v2:
if 'mlp_fc1' in du_suffix:
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in du_suffix:
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc2', 'mlp_c_proj')}"
elif 'self_attn':
# handled later
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('self_attn', 'attn')}"
else:
cv_name = f"lora_te_wrapped_transformer_text_model_encoder_layers_{cv_index}_{du_suffix}"
assert cv_name is not None, f"conversion failed: {du_name}. the model may not be trained by `sd-scripts`."
return cv_name
@classmethod
def convert_state_dict_name_to_compvis(cls, v2, state_dict):
"""
convert keys in state dict to load it by load_state_dict
"""
new_sd = {}
for key, value in state_dict.items():
tokens = key.split('.')
compvis_name = LoConNetworkCompvis.convert_diffusers_name_to_compvis(v2, tokens[0])
new_key = compvis_name + '.' + '.'.join(tokens[1:])
new_sd[new_key] = value
return new_sd
def __init__(self, text_encoder, unet, du_state_dict, multiplier_tenc=1.0, multiplier_unet=1.0) -> None:
super().__init__()
self.multiplier_unet = multiplier_unet
self.multiplier_tenc = multiplier_tenc
# create module instances
for name, module in text_encoder.named_modules():
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == 'MultiheadAttention':
self.v2 = True
break
else:
continue
break
else:
self.v2 = False
comp_state_dict = {}
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules, multiplier):
nonlocal comp_state_dict
loras = []
replaced_modules = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
layer = child_module.__class__.__name__
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
if layer == "Linear" or layer == "Conv2d":
if '_resblocks_23_' in lora_name: # ignore last block in StabilityAi Text Encoder
break
if f'{lora_name}.lora_down.weight' not in comp_state_dict:
if module.__class__.__name__ in LoConNetworkCompvis.LOCON_TARGET:
continue
else:
print(f'Cannot find: "{lora_name}", skipped')
continue
rank = comp_state_dict[f'{lora_name}.lora_down.weight'].shape[0]
alpha = comp_state_dict.get(f'{lora_name}.alpha', torch.tensor(rank)).item()
lora = LoConModule(lora_name, child_module, multiplier, rank, alpha)
loras.append(lora)
replaced_modules.append(child_module)
elif child_module.__class__.__name__ == "MultiheadAttention":
# make four modules: not replacing forward method but merge weights
self.v2 = True
for suffix in ['q', 'k', 'v', 'out']:
module_name = prefix + '.' + name + '.' + child_name # ~.attn
module_name = module_name.replace('.', '_')
if '_resblocks_23_' in module_name: # ignore last block in StabilityAi Text Encoder
break
lora_name = module_name + '_' + suffix
lora_info = LoRAInfo(lora_name, module_name, child_module, multiplier, 0, 0)
loras.append(lora_info)
replaced_modules.append(child_module)
return loras, replaced_modules
for k,v in LoConNetworkCompvis.convert_state_dict_name_to_compvis(self.v2, du_state_dict).items():
comp_state_dict[k] = v
self.text_encoder_loras, te_rep_modules = create_modules(
LoConNetworkCompvis.LORA_PREFIX_TEXT_ENCODER,
text_encoder,
LoConNetworkCompvis.TEXT_ENCODER_TARGET_REPLACE_MODULE,
self.multiplier_tenc
)
print(f"create LoCon for Text Encoder: {len(self.text_encoder_loras)} modules.")
self.unet_loras, unet_rep_modules = create_modules(
LoConNetworkCompvis.LORA_PREFIX_UNET,
unet,
LoConNetworkCompvis.UNET_TARGET_REPLACE_MODULE,
self.multiplier_unet
)
print(f"create LoCon for U-Net: {len(self.unet_loras)} modules.")
# make backup of original forward/weights, if multiple modules are applied, do in 1st module only
backed_up = False # messaging purpose only
for rep_module in te_rep_modules + unet_rep_modules:
if rep_module.__class__.__name__ == "MultiheadAttention": # multiple MHA modules are in list, prevent to backed up forward
if not hasattr(rep_module, "_lora_org_weights"):
# avoid updating of original weights. state_dict is reference to original weights
rep_module._lora_org_weights = copy.deepcopy(rep_module.state_dict())
backed_up = True
elif not hasattr(rep_module, "_lora_org_forward"):
rep_module._lora_org_forward = rep_module.forward
backed_up = True
if backed_up:
print("original forward/weights is backed up.")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def restore(self, text_encoder, unet):
# restore forward/weights from property for all modules
restored = False # messaging purpose only
modules = []
modules.extend(text_encoder.modules())
modules.extend(unet.modules())
for module in modules:
if hasattr(module, "_lora_org_forward"):
module.forward = module._lora_org_forward
del module._lora_org_forward
restored = True
if hasattr(module, "_lora_org_weights"): # module doesn't have forward and weights at same time currently, but supports it for future changing
module.load_state_dict(module._lora_org_weights)
del module._lora_org_weights
restored = True
if restored:
print("original forward/weights is restored.")
def apply_lora_modules(self, du_state_dict):
# conversion 1st step: convert names in state_dict
state_dict = LoConNetworkCompvis.convert_state_dict_name_to_compvis(self.v2, du_state_dict)
# check state_dict has text_encoder or unet
weights_has_text_encoder = weights_has_unet = False
for key in state_dict.keys():
if key.startswith(LoConNetworkCompvis.LORA_PREFIX_TEXT_ENCODER):
weights_has_text_encoder = True
elif key.startswith(LoConNetworkCompvis.LORA_PREFIX_UNET):
weights_has_unet = True
if weights_has_text_encoder and weights_has_unet:
break
apply_text_encoder = weights_has_text_encoder
apply_unet = weights_has_unet
if apply_text_encoder:
print("enable LoCon for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoCon for U-Net")
else:
self.unet_loras = []
# add modules to network: this makes state_dict can be got from LoRANetwork
mha_loras = {}
for lora in self.text_encoder_loras + self.unet_loras:
if type(lora) == LoConModule:
lora.apply_to() # ensure remove reference to original Linear: reference makes key of state_dict
self.add_module(lora.lora_name, lora)
else:
# SD2.x MultiheadAttention merge weights to MHA weights
lora_info: LoRAInfo = lora
if lora_info.module_name not in mha_loras:
mha_loras[lora_info.module_name] = {}
lora_dic = mha_loras[lora_info.module_name]
lora_dic[lora_info.lora_name] = lora_info
if len(lora_dic) == 4:
# calculate and apply
w_q_dw = state_dict.get(lora_info.module_name + '_q_proj.lora_down.weight')
if w_q_dw is not None: # corresponding LoRa module exists
w_q_up = state_dict[lora_info.module_name + '_q_proj.lora_up.weight']
w_q_ap = state_dict.get(lora_info.module_name + '_q_proj.alpha', None)
w_k_dw = state_dict[lora_info.module_name + '_k_proj.lora_down.weight']
w_k_up = state_dict[lora_info.module_name + '_k_proj.lora_up.weight']
w_k_ap = state_dict.get(lora_info.module_name + '_k_proj.alpha', None)
w_v_dw = state_dict[lora_info.module_name + '_v_proj.lora_down.weight']
w_v_up = state_dict[lora_info.module_name + '_v_proj.lora_up.weight']
w_v_ap = state_dict.get(lora_info.module_name + '_v_proj.alpha', None)
w_out_dw = state_dict[lora_info.module_name + '_out_proj.lora_down.weight']
w_out_up = state_dict[lora_info.module_name + '_out_proj.lora_up.weight']
w_out_ap = state_dict.get(lora_info.module_name + '_out_proj.alpha', None)
sd = lora_info.module.state_dict()
qkv_weight = sd['in_proj_weight']
out_weight = sd['out_proj.weight']
dev = qkv_weight.device
def merge_weights(weight, up_weight, down_weight, alpha=None):
# calculate in float
if alpha is None:
alpha = down_weight.shape[0]
alpha = float(alpha)
scale = alpha / down_weight.shape[0]
dtype = weight.dtype
weight = weight.float() + lora_info.multiplier * (up_weight.to(dev, dtype=torch.float) @ down_weight.to(dev, dtype=torch.float)) * scale
weight = weight.to(dtype)
return weight
q_weight, k_weight, v_weight = torch.chunk(qkv_weight, 3)
if q_weight.size()[1] == w_q_up.size()[0]:
q_weight = merge_weights(q_weight, w_q_up, w_q_dw, w_q_ap)
k_weight = merge_weights(k_weight, w_k_up, w_k_dw, w_k_ap)
v_weight = merge_weights(v_weight, w_v_up, w_v_dw, w_v_ap)
qkv_weight = torch.cat([q_weight, k_weight, v_weight])
out_weight = merge_weights(out_weight, w_out_up, w_out_dw, w_out_ap)
sd['in_proj_weight'] = qkv_weight.to(dev)
sd['out_proj.weight'] = out_weight.to(dev)
lora_info.module.load_state_dict(sd)
else:
# different dim, version mismatch
print(f"shape of weight is different: {lora_info.module_name}. SD version may be different")
for t in ["q", "k", "v", "out"]:
del state_dict[f"{lora_info.module_name}_{t}_proj.lora_down.weight"]
del state_dict[f"{lora_info.module_name}_{t}_proj.lora_up.weight"]
alpha_key = f"{lora_info.module_name}_{t}_proj.alpha"
if alpha_key in state_dict:
del state_dict[alpha_key]
else:
# corresponding weight not exists: version mismatch
pass
# conversion 2nd step: convert weight's shape (and handle wrapped)
state_dict = self.convert_state_dict_shape_to_compvis(state_dict)
return state_dict
def convert_state_dict_shape_to_compvis(self, state_dict):
# shape conversion
current_sd = self.state_dict() # to get target shape
wrapped = False
count = 0
for key in list(state_dict.keys()):
if key not in current_sd:
continue # might be error or another version
if "wrapped" in key:
wrapped = True
value: torch.Tensor = state_dict[key]
if value.size() != current_sd[key].size():
# print(key, value.size(), current_sd[key].size())
# print(f"convert weights shape: {key}, from: {value.size()}, {len(value.size())}")
count += 1
if '.alpha' in key:
assert value.size().numel() == 1
value = torch.tensor(value.item())
elif len(value.size()) == 4:
value = value.squeeze(3).squeeze(2)
else:
value = value.unsqueeze(2).unsqueeze(3)
state_dict[key] = value
if tuple(value.size()) != tuple(current_sd[key].size()):
print(
f"weight's shape is different: {key} expected {current_sd[key].size()} found {value.size()}. SD version may be different")
del state_dict[key]
print(f"shapes for {count} weights are converted.")
# convert wrapped
if not wrapped:
print("remove 'wrapped' from keys")
for key in list(state_dict.keys()):
if "_wrapped_" in key:
new_key = key.replace("_wrapped_", "_")
state_dict[new_key] = state_dict[key]
del state_dict[key]
return state_dict