toto10 commited on
Commit
77a1f98
1 Parent(s): 69d7d9b

6740428533df2221747f574764f854c868e77752bef4ae9123d3eed0913b2cef

Browse files
Files changed (50) hide show
  1. extensions/microsoftexcel-controlnet/scripts/__pycache__/hook.cpython-310.pyc +0 -0
  2. extensions/microsoftexcel-controlnet/scripts/__pycache__/lvminthin.cpython-310.pyc +0 -0
  3. extensions/microsoftexcel-controlnet/scripts/__pycache__/movie2movie.cpython-310.pyc +0 -0
  4. extensions/microsoftexcel-controlnet/scripts/__pycache__/processor.cpython-310.pyc +0 -0
  5. extensions/microsoftexcel-controlnet/scripts/__pycache__/utils.cpython-310.pyc +0 -0
  6. extensions/microsoftexcel-controlnet/scripts/__pycache__/xyz_grid_support.cpython-310.pyc +0 -0
  7. extensions/microsoftexcel-controlnet/scripts/adapter.py +397 -0
  8. extensions/microsoftexcel-controlnet/scripts/api.py +92 -0
  9. extensions/microsoftexcel-controlnet/scripts/batch_hijack.py +215 -0
  10. extensions/microsoftexcel-controlnet/scripts/cldm.py +372 -0
  11. extensions/microsoftexcel-controlnet/scripts/controlnet.py +920 -0
  12. extensions/microsoftexcel-controlnet/scripts/controlnet_version.py +7 -0
  13. extensions/microsoftexcel-controlnet/scripts/external_code.py +346 -0
  14. extensions/microsoftexcel-controlnet/scripts/global_state.py +222 -0
  15. extensions/microsoftexcel-controlnet/scripts/hook.py +749 -0
  16. extensions/microsoftexcel-controlnet/scripts/lvminthin.py +88 -0
  17. extensions/microsoftexcel-controlnet/scripts/movie2movie.py +176 -0
  18. extensions/microsoftexcel-controlnet/scripts/processor.py +871 -0
  19. extensions/microsoftexcel-controlnet/scripts/ui/__pycache__/controlnet_ui_group.cpython-310.pyc +0 -0
  20. extensions/microsoftexcel-controlnet/scripts/ui/controlnet_ui_group.py +974 -0
  21. extensions/microsoftexcel-controlnet/scripts/utils.py +109 -0
  22. extensions/microsoftexcel-controlnet/scripts/xyz_grid_support.py +443 -0
  23. extensions/microsoftexcel-controlnet/tests/annotator_tests/openpose_tests/body_test.py +50 -0
  24. extensions/microsoftexcel-controlnet/tests/annotator_tests/openpose_tests/detection_test.py +109 -0
  25. extensions/microsoftexcel-controlnet/tests/annotator_tests/openpose_tests/json_encode_test.py +81 -0
  26. extensions/microsoftexcel-controlnet/tests/annotator_tests/openpose_tests/openpose_e2e_test.py +95 -0
  27. extensions/microsoftexcel-controlnet/tests/cn_script/__init__.py +0 -0
  28. extensions/microsoftexcel-controlnet/tests/cn_script/batch_hijack_test.py +332 -0
  29. extensions/microsoftexcel-controlnet/tests/cn_script/utils_test.py +65 -0
  30. extensions/microsoftexcel-controlnet/tests/external_code_api/__init__.py +0 -0
  31. extensions/microsoftexcel-controlnet/tests/external_code_api/external_code_test.py +120 -0
  32. extensions/microsoftexcel-controlnet/tests/external_code_api/script_args_test.py +34 -0
  33. extensions/microsoftexcel-controlnet/tests/images/expected_ski_output.png +0 -0
  34. extensions/microsoftexcel-controlnet/tests/images/expected_woman_all_output.png +0 -0
  35. extensions/microsoftexcel-controlnet/tests/images/expected_woman_face_output.png +0 -0
  36. extensions/microsoftexcel-controlnet/tests/images/expected_woman_hand_output.png +0 -0
  37. extensions/microsoftexcel-controlnet/tests/images/ski.jpg +0 -0
  38. extensions/microsoftexcel-controlnet/tests/images/woman.jpeg +0 -0
  39. extensions/microsoftexcel-controlnet/tests/utils.py +40 -0
  40. extensions/microsoftexcel-controlnet/tests/web_api/__init__.py +0 -0
  41. extensions/microsoftexcel-controlnet/tests/web_api/detect_test.py +41 -0
  42. extensions/microsoftexcel-controlnet/tests/web_api/img2img_test.py +102 -0
  43. extensions/microsoftexcel-controlnet/tests/web_api/txt2img_test.py +134 -0
  44. extensions/microsoftexcel-images-browser.zip +3 -0
  45. extensions/microsoftexcel-supermerger/.gitignore +131 -0
  46. extensions/microsoftexcel-supermerger/LICENSE +663 -0
  47. extensions/microsoftexcel-supermerger/README.md +152 -0
  48. extensions/microsoftexcel-supermerger/README_ja.md +154 -0
  49. extensions/microsoftexcel-supermerger/calcmode_en.md +0 -0
  50. extensions/microsoftexcel-supermerger/changelog.md +57 -0
extensions/microsoftexcel-controlnet/scripts/__pycache__/hook.cpython-310.pyc ADDED
Binary file (20.7 kB). View file
 
extensions/microsoftexcel-controlnet/scripts/__pycache__/lvminthin.cpython-310.pyc ADDED
Binary file (2.67 kB). View file
 
extensions/microsoftexcel-controlnet/scripts/__pycache__/movie2movie.cpython-310.pyc ADDED
Binary file (5.03 kB). View file
 
extensions/microsoftexcel-controlnet/scripts/__pycache__/processor.cpython-310.pyc ADDED
Binary file (15.5 kB). View file
 
extensions/microsoftexcel-controlnet/scripts/__pycache__/utils.cpython-310.pyc ADDED
Binary file (4.6 kB). View file
 
extensions/microsoftexcel-controlnet/scripts/__pycache__/xyz_grid_support.cpython-310.pyc ADDED
Binary file (13.5 kB). View file
 
extensions/microsoftexcel-controlnet/scripts/adapter.py ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import importlib
6
+ from collections import OrderedDict
7
+
8
+ from omegaconf import OmegaConf
9
+ from copy import deepcopy
10
+ from modules import devices, lowvram, shared, scripts
11
+ cond_cast_unet = getattr(devices, 'cond_cast_unet', lambda x: x)
12
+ from ldm.modules.diffusionmodules.util import timestep_embedding
13
+ from ldm.modules.diffusionmodules.openaimodel import UNetModel
14
+
15
+
16
+ class TorchHijackForUnet:
17
+ """
18
+ This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
19
+ this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
20
+ """
21
+
22
+ def __getattr__(self, item):
23
+ if item == 'cat':
24
+ return self.cat
25
+
26
+ if hasattr(torch, item):
27
+ return getattr(torch, item)
28
+
29
+ raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
30
+
31
+ def cat(self, tensors, *args, **kwargs):
32
+ if len(tensors) == 2:
33
+ a, b = tensors
34
+ if a.shape[-2:] != b.shape[-2:]:
35
+ a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
36
+
37
+ tensors = (a, b)
38
+
39
+ return torch.cat(tensors, *args, **kwargs)
40
+
41
+
42
+ th = TorchHijackForUnet()
43
+
44
+
45
+ def align(hint, size):
46
+ b, c, h1, w1 = hint.shape
47
+ h, w = size
48
+ if h != h1 or w != w1:
49
+ hint = th.nn.functional.interpolate(hint, size=size, mode="nearest")
50
+ return hint
51
+
52
+
53
+ def get_node_name(name, parent_name):
54
+ if len(name) <= len(parent_name):
55
+ return False, ''
56
+ p = name[:len(parent_name)]
57
+ if p != parent_name:
58
+ return False, ''
59
+ return True, name[len(parent_name):]
60
+
61
+
62
+ def get_obj_from_str(string, reload=False):
63
+ module, cls = string.rsplit(".", 1)
64
+ if reload:
65
+ module_imp = importlib.import_module(module)
66
+ importlib.reload(module_imp)
67
+ return getattr(importlib.import_module(module, package=None), cls)
68
+
69
+
70
+ class PlugableAdapter(nn.Module):
71
+ def __init__(self, state_dict, config_path, lowvram=False, base_model=None) -> None:
72
+ super().__init__()
73
+ self.config = OmegaConf.load(config_path)
74
+ model = Adapter
75
+ try:
76
+ self.target = self.config.model.target
77
+ model = get_obj_from_str(self.config.model.target)
78
+ except ImportError:
79
+ pass
80
+
81
+ self.control_model = model(**self.config.model.params)
82
+ self.control_model.load_state_dict(state_dict)
83
+ self.lowvram = lowvram
84
+ self.control = None
85
+ self.hint_cond = None
86
+
87
+ if not self.lowvram:
88
+ self.control_model.to(devices.get_device_for("controlnet"))
89
+
90
+ def reset(self):
91
+ self.control = None
92
+ self.hint_cond = None
93
+
94
+ def forward(self, hint=None, x=None, *args, **kwargs):
95
+ if self.control is not None:
96
+ return deepcopy(self.control)
97
+
98
+ self.hint_cond = cond_cast_unet(hint)
99
+ hint_in = cond_cast_unet(hint)
100
+
101
+ if hasattr(self.control_model, 'conv_in') and self.control_model.conv_in.in_channels == 64:
102
+ hint_in = hint_in[:, 0:1, :, :]
103
+
104
+ self.control = self.control_model(hint_in)
105
+ return deepcopy(self.control)
106
+
107
+
108
+ def conv_nd(dims, *args, **kwargs):
109
+ """
110
+ Create a 1D, 2D, or 3D convolution module.
111
+ """
112
+ if dims == 1:
113
+ return nn.Conv1d(*args, **kwargs)
114
+ elif dims == 2:
115
+ return nn.Conv2d(*args, **kwargs)
116
+ elif dims == 3:
117
+ return nn.Conv3d(*args, **kwargs)
118
+ raise ValueError(f"unsupported dimensions: {dims}")
119
+
120
+ def avg_pool_nd(dims, *args, **kwargs):
121
+ """
122
+ Create a 1D, 2D, or 3D average pooling module.
123
+ """
124
+ if dims == 1:
125
+ return nn.AvgPool1d(*args, **kwargs)
126
+ elif dims == 2:
127
+ return nn.AvgPool2d(*args, **kwargs)
128
+ elif dims == 3:
129
+ return nn.AvgPool3d(*args, **kwargs)
130
+ raise ValueError(f"unsupported dimensions: {dims}")
131
+
132
+
133
+ class Downsample(nn.Module):
134
+ """
135
+ A downsampling layer with an optional convolution.
136
+ :param channels: channels in the inputs and outputs.
137
+ :param use_conv: a bool determining if a convolution is applied.
138
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
139
+ downsampling occurs in the inner-two dimensions.
140
+ """
141
+
142
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
143
+ super().__init__()
144
+ self.channels = channels
145
+ self.out_channels = out_channels or channels
146
+ self.use_conv = use_conv
147
+ self.dims = dims
148
+ stride = 2 if dims != 3 else (1, 2, 2)
149
+ if use_conv:
150
+ self.op = conv_nd(
151
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
152
+ )
153
+ else:
154
+ assert self.channels == self.out_channels
155
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
156
+
157
+ def forward(self, x):
158
+ assert x.shape[1] == self.channels
159
+ return self.op(x)
160
+
161
+
162
+ class ResnetBlock(nn.Module):
163
+ def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
164
+ super().__init__()
165
+ ps = ksize//2
166
+ if in_c != out_c or sk==False:
167
+ self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
168
+ else:
169
+ # print('n_in')
170
+ self.in_conv = None
171
+ self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
172
+ self.act = nn.ReLU()
173
+ self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
174
+ if sk==False:
175
+ self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
176
+ else:
177
+ # print('n_sk')
178
+ self.skep = None
179
+
180
+ self.down = down
181
+ if self.down == True:
182
+ self.down_opt = Downsample(in_c, use_conv=use_conv)
183
+
184
+ def forward(self, x):
185
+ if self.down == True:
186
+ x = self.down_opt(x)
187
+ if self.in_conv is not None: # edit
188
+ h = self.in_conv(x)
189
+ # x = self.in_conv(x)
190
+ # else:
191
+ # x = x
192
+
193
+ h = self.block1(h)
194
+ h = self.act(h)
195
+ h = self.block2(h)
196
+ if self.skep is not None:
197
+ return h + self.skep(x)
198
+ else:
199
+ return h + x
200
+
201
+
202
+ class ResnetBlock(nn.Module):
203
+ def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
204
+ super().__init__()
205
+ ps = ksize//2
206
+ if in_c != out_c or sk==False:
207
+ self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
208
+ else:
209
+ # print('n_in')
210
+ self.in_conv = None
211
+ self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
212
+ self.act = nn.ReLU()
213
+ self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
214
+ if sk==False:
215
+ self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
216
+ else:
217
+ self.skep = None
218
+
219
+ self.down = down
220
+ if self.down == True:
221
+ self.down_opt = Downsample(in_c, use_conv=use_conv)
222
+
223
+ def forward(self, x):
224
+ if self.down == True:
225
+ x = self.down_opt(x)
226
+ if self.in_conv is not None: # edit
227
+ x = self.in_conv(x)
228
+
229
+ h = self.block1(x)
230
+ h = self.act(h)
231
+ h = self.block2(h)
232
+ if self.skep is not None:
233
+ return h + self.skep(x)
234
+ else:
235
+ return h + x
236
+
237
+
238
+ class Adapter(nn.Module):
239
+ def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
240
+ super(Adapter, self).__init__()
241
+ self.unshuffle = nn.PixelUnshuffle(8)
242
+ self.channels = channels
243
+ self.nums_rb = nums_rb
244
+ self.body = []
245
+ for i in range(len(channels)):
246
+ for j in range(nums_rb):
247
+ if (i!=0) and (j==0):
248
+ self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
249
+ else:
250
+ self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
251
+ self.body = nn.ModuleList(self.body)
252
+ self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
253
+
254
+ def forward(self, x):
255
+ # unshuffle
256
+ x = self.unshuffle(x)
257
+ # extract features
258
+ features = []
259
+ x = self.conv_in(x)
260
+ for i in range(len(self.channels)):
261
+ for j in range(self.nums_rb):
262
+ idx = i*self.nums_rb +j
263
+ x = self.body[idx](x)
264
+ features.append(x)
265
+
266
+ return features
267
+
268
+ class LayerNorm(nn.LayerNorm):
269
+ """Subclass torch's LayerNorm to handle fp16."""
270
+
271
+ def forward(self, x: torch.Tensor):
272
+ orig_type = x.dtype
273
+ ret = super().forward(x.type(torch.float32))
274
+ return ret.type(orig_type)
275
+
276
+
277
+ class QuickGELU(nn.Module):
278
+
279
+ def forward(self, x: torch.Tensor):
280
+ return x * torch.sigmoid(1.702 * x)
281
+
282
+
283
+ class ResidualAttentionBlock(nn.Module):
284
+
285
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
286
+ super().__init__()
287
+
288
+ self.attn = nn.MultiheadAttention(d_model, n_head)
289
+ self.ln_1 = LayerNorm(d_model)
290
+ self.mlp = nn.Sequential(
291
+ OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()),
292
+ ("c_proj", nn.Linear(d_model * 4, d_model))]))
293
+ self.ln_2 = LayerNorm(d_model)
294
+ self.attn_mask = attn_mask
295
+
296
+ def attention(self, x: torch.Tensor):
297
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
298
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
299
+
300
+ def forward(self, x: torch.Tensor):
301
+ x = x + self.attention(self.ln_1(x))
302
+ x = x + self.mlp(self.ln_2(x))
303
+ return x
304
+
305
+
306
+ class StyleAdapter(nn.Module):
307
+
308
+ def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4):
309
+ super().__init__()
310
+
311
+ scale = width ** -0.5
312
+ self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)])
313
+ self.num_token = num_token
314
+ self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale)
315
+ self.ln_post = LayerNorm(width)
316
+ self.ln_pre = LayerNorm(width)
317
+ self.proj = nn.Parameter(scale * torch.randn(width, context_dim))
318
+
319
+ def forward(self, x):
320
+ # x shape [N, HW+1, C]
321
+ style_embedding = self.style_embedding + torch.zeros(
322
+ (x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device)
323
+
324
+ x = torch.cat([x, style_embedding], dim=1)
325
+ x = self.ln_pre(x)
326
+ x = x.permute(1, 0, 2) # NLD -> LND
327
+ x = self.transformer_layes(x)
328
+ x = x.permute(1, 0, 2) # LND -> NLD
329
+
330
+ x = self.ln_post(x[:, -self.num_token:, :])
331
+ x = x @ self.proj
332
+
333
+ return x
334
+
335
+
336
+ class ResnetBlock_light(nn.Module):
337
+ def __init__(self, in_c):
338
+ super().__init__()
339
+ self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1)
340
+ self.act = nn.ReLU()
341
+ self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1)
342
+
343
+ def forward(self, x):
344
+ h = self.block1(x)
345
+ h = self.act(h)
346
+ h = self.block2(h)
347
+
348
+ return h + x
349
+
350
+
351
+ class extractor(nn.Module):
352
+ def __init__(self, in_c, inter_c, out_c, nums_rb, down=False):
353
+ super().__init__()
354
+ self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0)
355
+ self.body = []
356
+ for _ in range(nums_rb):
357
+ self.body.append(ResnetBlock_light(inter_c))
358
+ self.body = nn.Sequential(*self.body)
359
+ self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0)
360
+ self.down = down
361
+ if self.down == True:
362
+ self.down_opt = Downsample(in_c, use_conv=False)
363
+
364
+ def forward(self, x):
365
+ if self.down == True:
366
+ x = self.down_opt(x)
367
+ x = self.in_conv(x)
368
+ x = self.body(x)
369
+ x = self.out_conv(x)
370
+
371
+ return x
372
+
373
+
374
+ class Adapter_light(nn.Module):
375
+ def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
376
+ super(Adapter_light, self).__init__()
377
+ self.unshuffle = nn.PixelUnshuffle(8)
378
+ self.channels = channels
379
+ self.nums_rb = nums_rb
380
+ self.body = []
381
+ for i in range(len(channels)):
382
+ if i == 0:
383
+ self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
384
+ else:
385
+ self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True))
386
+ self.body = nn.ModuleList(self.body)
387
+
388
+ def forward(self, x):
389
+ # unshuffle
390
+ x = self.unshuffle(x)
391
+ # extract features
392
+ features = []
393
+ for i in range(len(self.channels)):
394
+ x = self.body[i](x)
395
+ features.append(x)
396
+
397
+ return features
extensions/microsoftexcel-controlnet/scripts/api.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from fastapi import FastAPI, Body
3
+ from fastapi.exceptions import HTTPException
4
+ from PIL import Image
5
+
6
+ import gradio as gr
7
+
8
+ from modules.api.models import *
9
+ from modules.api import api
10
+
11
+ from scripts import external_code, global_state
12
+ from scripts.processor import preprocessor_sliders_config
13
+
14
+ def encode_to_base64(image):
15
+ if type(image) is str:
16
+ return image
17
+ elif type(image) is Image.Image:
18
+ return api.encode_pil_to_base64(image)
19
+ elif type(image) is np.ndarray:
20
+ return encode_np_to_base64(image)
21
+ else:
22
+ return ""
23
+
24
+ def encode_np_to_base64(image):
25
+ pil = Image.fromarray(image)
26
+ return api.encode_pil_to_base64(pil)
27
+
28
+ def controlnet_api(_: gr.Blocks, app: FastAPI):
29
+ @app.get("/controlnet/version")
30
+ async def version():
31
+ return {"version": external_code.get_api_version()}
32
+
33
+ @app.get("/controlnet/model_list")
34
+ async def model_list():
35
+ up_to_date_model_list = external_code.get_models(update=True)
36
+ print(up_to_date_model_list)
37
+ return {"model_list": up_to_date_model_list}
38
+
39
+ @app.get("/controlnet/module_list")
40
+ async def module_list(alias_names: bool = False):
41
+ _module_list = external_code.get_modules(alias_names)
42
+ print(_module_list)
43
+
44
+ return {
45
+ "module_list": _module_list,
46
+ "module_detail": external_code.get_modules_detail(alias_names)
47
+ }
48
+
49
+ @app.get("/controlnet/settings")
50
+ async def settings():
51
+ max_models_num = external_code.get_max_models_num()
52
+ return {"control_net_max_models_num":max_models_num}
53
+
54
+ cached_cn_preprocessors = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
55
+ @app.post("/controlnet/detect")
56
+ async def detect(
57
+ controlnet_module: str = Body("none", title='Controlnet Module'),
58
+ controlnet_input_images: List[str] = Body([], title='Controlnet Input Images'),
59
+ controlnet_processor_res: int = Body(512, title='Controlnet Processor Resolution'),
60
+ controlnet_threshold_a: float = Body(64, title='Controlnet Threshold a'),
61
+ controlnet_threshold_b: float = Body(64, title='Controlnet Threshold b')
62
+ ):
63
+ controlnet_module = global_state.reverse_preprocessor_aliases.get(controlnet_module, controlnet_module)
64
+
65
+ if controlnet_module not in cached_cn_preprocessors:
66
+ raise HTTPException(
67
+ status_code=422, detail="Module not available")
68
+
69
+ if len(controlnet_input_images) == 0:
70
+ raise HTTPException(
71
+ status_code=422, detail="No image selected")
72
+
73
+ print(f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module.")
74
+
75
+ results = []
76
+
77
+ processor_module = cached_cn_preprocessors[controlnet_module]
78
+
79
+ for input_image in controlnet_input_images:
80
+ img = external_code.to_base64_nparray(input_image)
81
+ results.append(processor_module(img, res=controlnet_processor_res, thr_a=controlnet_threshold_a, thr_b=controlnet_threshold_b)[0])
82
+
83
+ global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)()
84
+ results64 = list(map(encode_to_base64, results))
85
+ return {"images": results64, "info": "Success"}
86
+
87
+ try:
88
+ import modules.script_callbacks as script_callbacks
89
+
90
+ script_callbacks.on_app_started(controlnet_api)
91
+ except:
92
+ pass
extensions/microsoftexcel-controlnet/scripts/batch_hijack.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from copy import copy
3
+ from enum import Enum
4
+ from typing import Tuple, List
5
+
6
+ from modules import img2img, processing, shared, script_callbacks
7
+ from scripts import external_code
8
+
9
+
10
+ class BatchHijack:
11
+ def __init__(self):
12
+ self.is_batch = False
13
+ self.batch_index = 0
14
+ self.batch_size = 1
15
+ self.init_seed = None
16
+ self.init_subseed = None
17
+ self.process_batch_callbacks = [self.on_process_batch]
18
+ self.process_batch_each_callbacks = []
19
+ self.postprocess_batch_each_callbacks = [self.on_postprocess_batch_each]
20
+ self.postprocess_batch_callbacks = [self.on_postprocess_batch]
21
+
22
+ def img2img_process_batch_hijack(self, p, *args, **kwargs):
23
+ cn_is_batch, batches, output_dir, _ = get_cn_batches(p)
24
+ if not cn_is_batch:
25
+ return getattr(img2img, '__controlnet_original_process_batch')(p, *args, **kwargs)
26
+
27
+ self.dispatch_callbacks(self.process_batch_callbacks, p, batches, output_dir)
28
+
29
+ try:
30
+ return getattr(img2img, '__controlnet_original_process_batch')(p, *args, **kwargs)
31
+ finally:
32
+ self.dispatch_callbacks(self.postprocess_batch_callbacks, p)
33
+
34
+ def processing_process_images_hijack(self, p, *args, **kwargs):
35
+ if self.is_batch:
36
+ # we are in img2img batch tab, do a single batch iteration
37
+ return self.process_images_cn_batch(p, *args, **kwargs)
38
+
39
+ cn_is_batch, batches, output_dir, input_file_names = get_cn_batches(p)
40
+ if not cn_is_batch:
41
+ # we are not in batch mode, fallback to original function
42
+ return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
43
+
44
+ output_images = []
45
+ try:
46
+ self.dispatch_callbacks(self.process_batch_callbacks, p, batches, output_dir)
47
+
48
+ for batch_i in range(self.batch_size):
49
+ processed = self.process_images_cn_batch(p, *args, **kwargs)
50
+ if shared.opts.data.get('controlnet_show_batch_images_in_ui', False):
51
+ output_images.extend(processed.images[processed.index_of_first_image:])
52
+
53
+ if output_dir:
54
+ self.save_images(output_dir, input_file_names[batch_i], processed.images[processed.index_of_first_image:])
55
+
56
+ if shared.state.interrupted:
57
+ break
58
+
59
+ finally:
60
+ self.dispatch_callbacks(self.postprocess_batch_callbacks, p)
61
+
62
+ if output_images:
63
+ processed.images = output_images
64
+ else:
65
+ processed = processing.Processed(p, [], p.seed)
66
+
67
+ return processed
68
+
69
+ def process_images_cn_batch(self, p, *args, **kwargs):
70
+ self.dispatch_callbacks(self.process_batch_each_callbacks, p)
71
+ old_detectmap_output = shared.opts.data.get('control_net_no_detectmap', False)
72
+ try:
73
+ shared.opts.data.update({'control_net_no_detectmap': True})
74
+ processed = getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
75
+ finally:
76
+ shared.opts.data.update({'control_net_no_detectmap': old_detectmap_output})
77
+
78
+ self.dispatch_callbacks(self.postprocess_batch_each_callbacks, p, processed)
79
+
80
+ # do not go past control net batch size
81
+ if self.batch_index >= self.batch_size:
82
+ shared.state.interrupted = True
83
+
84
+ return processed
85
+
86
+ def save_images(self, output_dir, init_image_path, output_images):
87
+ os.makedirs(output_dir, exist_ok=True)
88
+ for n, processed_image in enumerate(output_images):
89
+ filename = os.path.basename(init_image_path)
90
+
91
+ if n > 0:
92
+ left, right = os.path.splitext(filename)
93
+ filename = f"{left}-{n}{right}"
94
+
95
+ if processed_image.mode == 'RGBA':
96
+ processed_image = processed_image.convert("RGB")
97
+ processed_image.save(os.path.join(output_dir, filename))
98
+
99
+ def do_hijack(self):
100
+ script_callbacks.on_script_unloaded(self.undo_hijack)
101
+ hijack_function(
102
+ module=img2img,
103
+ name='process_batch',
104
+ new_name='__controlnet_original_process_batch',
105
+ new_value=self.img2img_process_batch_hijack,
106
+ )
107
+ hijack_function(
108
+ module=processing,
109
+ name='process_images_inner',
110
+ new_name='__controlnet_original_process_images_inner',
111
+ new_value=self.processing_process_images_hijack
112
+ )
113
+
114
+ def undo_hijack(self):
115
+ unhijack_function(
116
+ module=img2img,
117
+ name='process_batch',
118
+ new_name='__controlnet_original_process_batch',
119
+ )
120
+ unhijack_function(
121
+ module=processing,
122
+ name='process_images_inner',
123
+ new_name='__controlnet_original_process_images_inner',
124
+ )
125
+
126
+ def adjust_job_count(self, p):
127
+ if shared.state.job_count == -1:
128
+ shared.state.job_count = p.n_iter
129
+ shared.state.job_count *= self.batch_size
130
+
131
+ def on_process_batch(self, p, batches, output_dir, *args):
132
+ print('controlnet batch mode')
133
+ self.is_batch = True
134
+ self.batch_index = 0
135
+ self.batch_size = len(batches)
136
+ processing.fix_seed(p)
137
+ if shared.opts.data.get('controlnet_increment_seed_during_batch', False):
138
+ self.init_seed = p.seed
139
+ self.init_subseed = p.subseed
140
+ self.adjust_job_count(p)
141
+ p.do_not_save_grid = True
142
+ p.do_not_save_samples = bool(output_dir)
143
+
144
+ def on_postprocess_batch_each(self, p, *args):
145
+ self.batch_index += 1
146
+ if shared.opts.data.get('controlnet_increment_seed_during_batch', False):
147
+ p.seed = p.seed + len(p.all_prompts)
148
+ p.subseed = p.subseed + len(p.all_prompts)
149
+
150
+ def on_postprocess_batch(self, p, *args):
151
+ self.is_batch = False
152
+ self.batch_index = 0
153
+ self.batch_size = 1
154
+ if shared.opts.data.get('controlnet_increment_seed_during_batch', False):
155
+ p.seed = self.init_seed
156
+ p.all_seeds = [self.init_seed]
157
+ p.subseed = self.init_subseed
158
+ p.all_subseeds = [self.init_subseed]
159
+
160
+ def dispatch_callbacks(self, callbacks, *args):
161
+ for callback in callbacks:
162
+ callback(*args)
163
+
164
+
165
+ def hijack_function(module, name, new_name, new_value):
166
+ # restore original function in case of reload
167
+ unhijack_function(module=module, name=name, new_name=new_name)
168
+ setattr(module, new_name, getattr(module, name))
169
+ setattr(module, name, new_value)
170
+
171
+
172
+ def unhijack_function(module, name, new_name):
173
+ if hasattr(module, new_name):
174
+ setattr(module, name, getattr(module, new_name))
175
+ delattr(module, new_name)
176
+
177
+
178
+ class InputMode(Enum):
179
+ SIMPLE = "simple"
180
+ BATCH = "batch"
181
+
182
+
183
+ def get_cn_batches(p: processing.StableDiffusionProcessing) -> Tuple[bool, List[List[str]], str, List[str]]:
184
+ units = external_code.get_all_units_in_processing(p)
185
+ units = [copy(unit) for unit in units if getattr(unit, 'enabled', False)]
186
+ any_unit_is_batch = False
187
+ output_dir = ''
188
+ input_file_names = []
189
+ for unit in units:
190
+ if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
191
+ any_unit_is_batch = True
192
+ output_dir = getattr(unit, 'output_dir', '')
193
+ if isinstance(unit.batch_images, str):
194
+ unit.batch_images = shared.listfiles(unit.batch_images)
195
+ input_file_names = unit.batch_images
196
+
197
+ if any_unit_is_batch:
198
+ cn_batch_size = min(len(getattr(unit, 'batch_images', []))
199
+ for unit in units
200
+ if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH)
201
+ else:
202
+ cn_batch_size = 1
203
+
204
+ batches = [[] for _ in range(cn_batch_size)]
205
+ for i in range(cn_batch_size):
206
+ for unit in units:
207
+ if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.SIMPLE:
208
+ batches[i].append(unit.image)
209
+ else:
210
+ batches[i].append(unit.batch_images[i])
211
+
212
+ return any_unit_is_batch, batches, output_dir, input_file_names
213
+
214
+
215
+ instance = BatchHijack()
extensions/microsoftexcel-controlnet/scripts/cldm.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from omegaconf import OmegaConf
4
+ from modules import devices, shared
5
+
6
+ cond_cast_unet = getattr(devices, 'cond_cast_unet', lambda x: x)
7
+
8
+ from ldm.util import exists
9
+ from ldm.modules.attention import SpatialTransformer
10
+ from ldm.modules.diffusionmodules.util import conv_nd, linear, zero_module, timestep_embedding
11
+ from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
12
+
13
+
14
+ class TorchHijackForUnet:
15
+ """
16
+ This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
17
+ this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
18
+ """
19
+
20
+ def __getattr__(self, item):
21
+ if item == 'cat':
22
+ return self.cat
23
+
24
+ if hasattr(torch, item):
25
+ return getattr(torch, item)
26
+
27
+ raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
28
+
29
+ def cat(self, tensors, *args, **kwargs):
30
+ if len(tensors) == 2:
31
+ a, b = tensors
32
+ if a.shape[-2:] != b.shape[-2:]:
33
+ a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
34
+
35
+ tensors = (a, b)
36
+
37
+ return torch.cat(tensors, *args, **kwargs)
38
+
39
+
40
+ th = TorchHijackForUnet()
41
+
42
+
43
+ def align(hint, size):
44
+ b, c, h1, w1 = hint.shape
45
+ h, w = size
46
+ if h != h1 or w != w1:
47
+ hint = th.nn.functional.interpolate(hint, size=size, mode="nearest")
48
+ return hint
49
+
50
+
51
+ def get_node_name(name, parent_name):
52
+ if len(name) <= len(parent_name):
53
+ return False, ''
54
+ p = name[:len(parent_name)]
55
+ if p != parent_name:
56
+ return False, ''
57
+ return True, name[len(parent_name):]
58
+
59
+
60
+ class PlugableControlModel(nn.Module):
61
+ def __init__(self, state_dict, config_path, lowvram=False, base_model=None) -> None:
62
+ super().__init__()
63
+ self.config = OmegaConf.load(config_path)
64
+ self.control_model = ControlNet(**self.config.model.params.control_stage_config.params)
65
+
66
+ if any([k.startswith("control_model.") for k, v in state_dict.items()]):
67
+ if 'difference' in state_dict and base_model is not None:
68
+ print('We will stop supporting diff models soon because of its lack of robustness.')
69
+ print('Please begin to use official models as soon as possible.')
70
+
71
+ unet_state_dict = base_model.state_dict()
72
+ unet_state_dict_keys = unet_state_dict.keys()
73
+ final_state_dict = {}
74
+ counter = 0
75
+ for key in state_dict.keys():
76
+ if not key.startswith("control_model."):
77
+ continue
78
+ p = state_dict[key]
79
+ is_control, node_name = get_node_name(key, 'control_')
80
+ key_name = node_name.replace("model.", "") if is_control else key
81
+ if key_name in unet_state_dict_keys:
82
+ p_new = p + unet_state_dict[key_name].clone().cpu()
83
+ counter += 1
84
+ else:
85
+ p_new = p
86
+ final_state_dict[key] = p_new
87
+ print(f'Diff model cloned: {counter} values')
88
+ state_dict = final_state_dict
89
+ state_dict = {k.replace("control_model.", ""): v for k, v in state_dict.items() if k.startswith("control_model.")}
90
+
91
+ self.control_model.load_state_dict(state_dict)
92
+ if not lowvram:
93
+ self.control_model.to(devices.get_device_for("controlnet"))
94
+
95
+ def reset(self):
96
+ pass
97
+
98
+ def forward(self, *args, **kwargs):
99
+ return self.control_model(*args, **kwargs)
100
+
101
+
102
+ class ControlNet(nn.Module):
103
+ def __init__(
104
+ self,
105
+ image_size,
106
+ in_channels,
107
+ model_channels,
108
+ hint_channels,
109
+ num_res_blocks,
110
+ attention_resolutions,
111
+ dropout=0,
112
+ channel_mult=(1, 2, 4, 8),
113
+ conv_resample=True,
114
+ dims=2,
115
+ use_checkpoint=False,
116
+ use_fp16=False,
117
+ num_heads=-1,
118
+ num_head_channels=-1,
119
+ num_heads_upsample=-1,
120
+ use_scale_shift_norm=False,
121
+ resblock_updown=False,
122
+ use_new_attention_order=False,
123
+ use_spatial_transformer=False, # custom transformer support
124
+ transformer_depth=1, # custom transformer support
125
+ context_dim=None, # custom transformer support
126
+ # custom support for prediction of discrete ids into codebook of first stage vq model
127
+ n_embed=None,
128
+ legacy=True,
129
+ disable_self_attentions=None,
130
+ num_attention_blocks=None,
131
+ disable_middle_self_attn=False,
132
+ use_linear_in_transformer=False,
133
+ ):
134
+ use_fp16 = getattr(devices, 'dtype_unet', devices.dtype) == th.float16 and not getattr(shared.cmd_opts, "no_half_controlnet", False)
135
+
136
+ super().__init__()
137
+ if use_spatial_transformer:
138
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
139
+
140
+ if context_dim is not None:
141
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
142
+ from omegaconf.listconfig import ListConfig
143
+ if type(context_dim) == ListConfig:
144
+ context_dim = list(context_dim)
145
+
146
+ if num_heads_upsample == -1:
147
+ num_heads_upsample = num_heads
148
+
149
+ if num_heads == -1:
150
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
151
+
152
+ if num_head_channels == -1:
153
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
154
+
155
+ self.dims = dims
156
+ self.image_size = image_size
157
+ self.in_channels = in_channels
158
+ self.model_channels = model_channels
159
+ if isinstance(num_res_blocks, int):
160
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
161
+ else:
162
+ if len(num_res_blocks) != len(channel_mult):
163
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
164
+ "as a list/tuple (per-level) with the same length as channel_mult")
165
+ self.num_res_blocks = num_res_blocks
166
+ if disable_self_attentions is not None:
167
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
168
+ assert len(disable_self_attentions) == len(channel_mult)
169
+ if num_attention_blocks is not None:
170
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
171
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(
172
+ len(num_attention_blocks))))
173
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
174
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
175
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
176
+ f"attention will still not be set.")
177
+
178
+ self.attention_resolutions = attention_resolutions
179
+ self.dropout = dropout
180
+ self.channel_mult = channel_mult
181
+ self.conv_resample = conv_resample
182
+ self.use_checkpoint = use_checkpoint
183
+ self.dtype = th.float16 if use_fp16 else th.float32
184
+ self.num_heads = num_heads
185
+ self.num_head_channels = num_head_channels
186
+ self.num_heads_upsample = num_heads_upsample
187
+ self.predict_codebook_ids = n_embed is not None
188
+
189
+ time_embed_dim = model_channels * 4
190
+ self.time_embed = nn.Sequential(
191
+ linear(model_channels, time_embed_dim),
192
+ nn.SiLU(),
193
+ linear(time_embed_dim, time_embed_dim),
194
+ )
195
+
196
+ self.input_blocks = nn.ModuleList(
197
+ [
198
+ TimestepEmbedSequential(
199
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
200
+ )
201
+ ]
202
+ )
203
+ self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
204
+
205
+ self.input_hint_block = TimestepEmbedSequential(
206
+ conv_nd(dims, hint_channels, 16, 3, padding=1),
207
+ nn.SiLU(),
208
+ conv_nd(dims, 16, 16, 3, padding=1),
209
+ nn.SiLU(),
210
+ conv_nd(dims, 16, 32, 3, padding=1, stride=2),
211
+ nn.SiLU(),
212
+ conv_nd(dims, 32, 32, 3, padding=1),
213
+ nn.SiLU(),
214
+ conv_nd(dims, 32, 96, 3, padding=1, stride=2),
215
+ nn.SiLU(),
216
+ conv_nd(dims, 96, 96, 3, padding=1),
217
+ nn.SiLU(),
218
+ conv_nd(dims, 96, 256, 3, padding=1, stride=2),
219
+ nn.SiLU(),
220
+ zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
221
+ )
222
+
223
+ self._feature_size = model_channels
224
+ input_block_chans = [model_channels]
225
+ ch = model_channels
226
+ ds = 1
227
+ for level, mult in enumerate(channel_mult):
228
+ for nr in range(self.num_res_blocks[level]):
229
+ layers = [
230
+ ResBlock(
231
+ ch,
232
+ time_embed_dim,
233
+ dropout,
234
+ out_channels=mult * model_channels,
235
+ dims=dims,
236
+ use_checkpoint=use_checkpoint,
237
+ use_scale_shift_norm=use_scale_shift_norm,
238
+ )
239
+ ]
240
+ ch = mult * model_channels
241
+ if ds in attention_resolutions:
242
+ if num_head_channels == -1:
243
+ dim_head = ch // num_heads
244
+ else:
245
+ num_heads = ch // num_head_channels
246
+ dim_head = num_head_channels
247
+ if legacy:
248
+ #num_heads = 1
249
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
250
+ if exists(disable_self_attentions):
251
+ disabled_sa = disable_self_attentions[level]
252
+ else:
253
+ disabled_sa = False
254
+
255
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
256
+ layers.append(
257
+ AttentionBlock(
258
+ ch,
259
+ use_checkpoint=use_checkpoint,
260
+ num_heads=num_heads,
261
+ num_head_channels=dim_head,
262
+ use_new_attention_order=use_new_attention_order,
263
+ ) if not use_spatial_transformer else SpatialTransformer(
264
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
265
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
266
+ use_checkpoint=use_checkpoint
267
+ )
268
+ )
269
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
270
+ self.zero_convs.append(self.make_zero_conv(ch))
271
+ self._feature_size += ch
272
+ input_block_chans.append(ch)
273
+ if level != len(channel_mult) - 1:
274
+ out_ch = ch
275
+ self.input_blocks.append(
276
+ TimestepEmbedSequential(
277
+ ResBlock(
278
+ ch,
279
+ time_embed_dim,
280
+ dropout,
281
+ out_channels=out_ch,
282
+ dims=dims,
283
+ use_checkpoint=use_checkpoint,
284
+ use_scale_shift_norm=use_scale_shift_norm,
285
+ down=True,
286
+ )
287
+ if resblock_updown
288
+ else Downsample(
289
+ ch, conv_resample, dims=dims, out_channels=out_ch
290
+ )
291
+ )
292
+ )
293
+ ch = out_ch
294
+ input_block_chans.append(ch)
295
+ self.zero_convs.append(self.make_zero_conv(ch))
296
+ ds *= 2
297
+ self._feature_size += ch
298
+
299
+ if num_head_channels == -1:
300
+ dim_head = ch // num_heads
301
+ else:
302
+ num_heads = ch // num_head_channels
303
+ dim_head = num_head_channels
304
+ if legacy:
305
+ #num_heads = 1
306
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
307
+ self.middle_block = TimestepEmbedSequential(
308
+ ResBlock(
309
+ ch,
310
+ time_embed_dim,
311
+ dropout,
312
+ dims=dims,
313
+ use_checkpoint=use_checkpoint,
314
+ use_scale_shift_norm=use_scale_shift_norm,
315
+ ),
316
+ AttentionBlock(
317
+ ch,
318
+ use_checkpoint=use_checkpoint,
319
+ num_heads=num_heads,
320
+ num_head_channels=dim_head,
321
+ use_new_attention_order=use_new_attention_order,
322
+ # always uses a self-attn
323
+ ) if not use_spatial_transformer else SpatialTransformer(
324
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
325
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
326
+ use_checkpoint=use_checkpoint
327
+ ),
328
+ ResBlock(
329
+ ch,
330
+ time_embed_dim,
331
+ dropout,
332
+ dims=dims,
333
+ use_checkpoint=use_checkpoint,
334
+ use_scale_shift_norm=use_scale_shift_norm,
335
+ ),
336
+ )
337
+ self.middle_block_out = self.make_zero_conv(ch)
338
+ self._feature_size += ch
339
+
340
+ def make_zero_conv(self, channels):
341
+ return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
342
+
343
+ def align(self, hint, h, w):
344
+ b, c, h1, w1 = hint.shape
345
+ if h != h1 or w != w1:
346
+ return align(hint, (h, w))
347
+ return hint
348
+
349
+ def forward(self, x, hint, timesteps, context, **kwargs):
350
+ t_emb = cond_cast_unet(timestep_embedding(timesteps, self.model_channels, repeat_only=False))
351
+ emb = self.time_embed(t_emb)
352
+
353
+ guided_hint = self.input_hint_block(cond_cast_unet(hint), emb, context)
354
+ outs = []
355
+
356
+ h1, w1 = x.shape[-2:]
357
+ guided_hint = self.align(guided_hint, h1, w1)
358
+
359
+ h = x.type(self.dtype)
360
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
361
+ if guided_hint is not None:
362
+ h = module(h, emb, context)
363
+ h += guided_hint
364
+ guided_hint = None
365
+ else:
366
+ h = module(h, emb, context)
367
+ outs.append(zero_conv(h, emb, context))
368
+
369
+ h = self.middle_block(h, emb, context)
370
+ outs.append(self.middle_block_out(h, emb, context))
371
+
372
+ return outs
extensions/microsoftexcel-controlnet/scripts/controlnet.py ADDED
@@ -0,0 +1,920 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import os
3
+ from collections import OrderedDict
4
+ from copy import copy
5
+ from typing import Dict, Optional
6
+ import importlib
7
+ import modules.scripts as scripts
8
+ from modules import shared, devices, script_callbacks, processing, masking, images
9
+ import gradio as gr
10
+
11
+ from einops import rearrange
12
+ from scripts import global_state, hook, external_code, processor, batch_hijack, controlnet_version, utils
13
+ importlib.reload(processor)
14
+ importlib.reload(utils)
15
+ importlib.reload(global_state)
16
+ importlib.reload(hook)
17
+ importlib.reload(external_code)
18
+ importlib.reload(batch_hijack)
19
+ from scripts.cldm import PlugableControlModel
20
+ from scripts.processor import *
21
+ from scripts.adapter import PlugableAdapter
22
+ from scripts.utils import load_state_dict
23
+ from scripts.hook import ControlParams, UnetHook, ControlModelType
24
+ from scripts.ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
25
+ from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img
26
+ from modules.images import save_image
27
+
28
+ import cv2
29
+ import numpy as np
30
+ import torch
31
+
32
+ from pathlib import Path
33
+ from PIL import Image, ImageFilter, ImageOps
34
+ from scripts.lvminthin import lvmin_thin, nake_nms
35
+ from scripts.processor import model_free_preprocessors
36
+
37
+ gradio_compat = True
38
+ try:
39
+ from distutils.version import LooseVersion
40
+ from importlib_metadata import version
41
+ if LooseVersion(version("gradio")) < LooseVersion("3.10"):
42
+ gradio_compat = False
43
+ except ImportError:
44
+ pass
45
+
46
+ def find_closest_lora_model_name(search: str):
47
+ if not search:
48
+ return None
49
+ if search in global_state.cn_models:
50
+ return search
51
+ search = search.lower()
52
+ if search in global_state.cn_models_names:
53
+ return global_state.cn_models_names.get(search)
54
+ applicable = [name for name in global_state.cn_models_names.keys()
55
+ if search in name.lower()]
56
+ if not applicable:
57
+ return None
58
+ applicable = sorted(applicable, key=lambda name: len(name))
59
+ return global_state.cn_models_names[applicable[0]]
60
+
61
+
62
+ def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
63
+ p.__class__ = processing.StableDiffusionProcessingTxt2Img
64
+ dummy = processing.StableDiffusionProcessingTxt2Img()
65
+ for k,v in dummy.__dict__.items():
66
+ if hasattr(p, k):
67
+ continue
68
+ setattr(p, k, v)
69
+
70
+
71
+ global_state.update_cn_models()
72
+
73
+
74
+ def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
75
+ if image is None:
76
+ return None
77
+
78
+ if isinstance(image, (tuple, list)):
79
+ image = {'image': image[0], 'mask': image[1]}
80
+ elif not isinstance(image, dict):
81
+ image = {'image': image, 'mask': None}
82
+ else: # type(image) is dict
83
+ # copy to enable modifying the dict and prevent response serialization error
84
+ image = dict(image)
85
+
86
+ if isinstance(image['image'], str):
87
+ if os.path.exists(image['image']):
88
+ image['image'] = np.array(Image.open(image['image'])).astype('uint8')
89
+ elif image['image']:
90
+ image['image'] = external_code.to_base64_nparray(image['image'])
91
+ else:
92
+ image['image'] = None
93
+
94
+ # If there is no image, return image with None image and None mask
95
+ if image['image'] is None:
96
+ image['mask'] = None
97
+ return image
98
+
99
+ if isinstance(image['mask'], str):
100
+ if os.path.exists(image['mask']):
101
+ image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
102
+ elif image['mask']:
103
+ image['mask'] = external_code.to_base64_nparray(image['mask'])
104
+ else:
105
+ image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
106
+ elif image['mask'] is None:
107
+ image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
108
+
109
+ return image
110
+
111
+
112
+ class Script(scripts.Script):
113
+ model_cache = OrderedDict()
114
+
115
+ def __init__(self) -> None:
116
+ super().__init__()
117
+ self.latest_network = None
118
+ self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
119
+ self.unloadable = global_state.cn_preprocessor_unloadable
120
+ self.input_image = None
121
+ self.latest_model_hash = ""
122
+ self.enabled_units = []
123
+ self.detected_map = []
124
+ self.post_processors = []
125
+ batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
126
+ batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
127
+ batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
128
+ batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)
129
+
130
+ def title(self):
131
+ return "ControlNet"
132
+
133
+ def show(self, is_img2img):
134
+ return scripts.AlwaysVisible
135
+
136
+ def get_threshold_block(self, proc):
137
+ pass
138
+
139
+ def get_default_ui_unit(self, is_ui=True):
140
+ cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
141
+ return cls(
142
+ enabled=False,
143
+ module="none",
144
+ model="None"
145
+ )
146
+
147
+ def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str):
148
+ group = ControlNetUiGroup(
149
+ gradio_compat,
150
+ self.infotext_fields,
151
+ self.get_default_ui_unit(),
152
+ self.preprocessor,
153
+ )
154
+ group.render(tabname, elem_id_tabname)
155
+ group.register_callbacks(is_img2img)
156
+ return group.render_and_register_unit(tabname, is_img2img)
157
+
158
+ def ui(self, is_img2img):
159
+ """this function should create gradio UI elements. See https://gradio.app/docs/#components
160
+ The return value should be an array of all components that are used in processing.
161
+ Values of those returned components will be passed to run() and process() functions.
162
+ """
163
+ self.infotext_fields = []
164
+ self.paste_field_names = []
165
+ controls = ()
166
+ max_models = shared.opts.data.get("control_net_max_models_num", 1)
167
+ elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
168
+ with gr.Group(elem_id=elem_id_tabname):
169
+ with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
170
+ if max_models > 1:
171
+ with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
172
+ for i in range(max_models):
173
+ with gr.Tab(f"ControlNet Unit {i}"):
174
+ controls += (self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname),)
175
+ else:
176
+ with gr.Column():
177
+ controls += (self.uigroup(f"ControlNet", is_img2img, elem_id_tabname),)
178
+
179
+ if shared.opts.data.get("control_net_sync_field_args", False):
180
+ for _, field_name in self.infotext_fields:
181
+ self.paste_field_names.append(field_name)
182
+
183
+ return controls
184
+
185
+ def clear_control_model_cache(self):
186
+ Script.model_cache.clear()
187
+ gc.collect()
188
+ devices.torch_gc()
189
+
190
+ def load_control_model(self, p, unet, model, lowvram):
191
+ if model in Script.model_cache:
192
+ print(f"Loading model from cache: {model}")
193
+ return Script.model_cache[model]
194
+
195
+ # Remove model from cache to clear space before building another model
196
+ if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
197
+ Script.model_cache.popitem(last=False)
198
+ gc.collect()
199
+ devices.torch_gc()
200
+
201
+ model_net = self.build_control_model(p, unet, model, lowvram)
202
+
203
+ if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
204
+ Script.model_cache[model] = model_net
205
+
206
+ return model_net
207
+
208
+ def build_control_model(self, p, unet, model, lowvram):
209
+ if model is None or model == 'None':
210
+ raise RuntimeError(f"You have not selected any ControlNet Model.")
211
+
212
+ model_path = global_state.cn_models.get(model, None)
213
+ if model_path is None:
214
+ model = find_closest_lora_model_name(model)
215
+ model_path = global_state.cn_models.get(model, None)
216
+
217
+ if model_path is None:
218
+ raise RuntimeError(f"model not found: {model}")
219
+
220
+ # trim '"' at start/end
221
+ if model_path.startswith("\"") and model_path.endswith("\""):
222
+ model_path = model_path[1:-1]
223
+
224
+ if not os.path.exists(model_path):
225
+ raise ValueError(f"file not found: {model_path}")
226
+
227
+ print(f"Loading model: {model}")
228
+ state_dict = load_state_dict(model_path)
229
+ network_module = PlugableControlModel
230
+ network_config = shared.opts.data.get("control_net_model_config", global_state.default_conf)
231
+ if not os.path.isabs(network_config):
232
+ network_config = os.path.join(global_state.script_dir, network_config)
233
+
234
+ if any([k.startswith("body.") or k == 'style_embedding' for k, v in state_dict.items()]):
235
+ # adapter model
236
+ network_module = PlugableAdapter
237
+ network_config = shared.opts.data.get("control_net_model_adapter_config", global_state.default_conf_adapter)
238
+ if not os.path.isabs(network_config):
239
+ network_config = os.path.join(global_state.script_dir, network_config)
240
+
241
+ model_path = os.path.abspath(model_path)
242
+ model_stem = Path(model_path).stem
243
+ model_dir_name = os.path.dirname(model_path)
244
+
245
+ possible_config_filenames = [
246
+ os.path.join(model_dir_name, model_stem + ".yaml"),
247
+ os.path.join(global_state.script_dir, 'models', model_stem + ".yaml"),
248
+ os.path.join(model_dir_name, model_stem.replace('_fp16', '') + ".yaml"),
249
+ os.path.join(global_state.script_dir, 'models', model_stem.replace('_fp16', '') + ".yaml"),
250
+ os.path.join(model_dir_name, model_stem.replace('_diff', '') + ".yaml"),
251
+ os.path.join(global_state.script_dir, 'models', model_stem.replace('_diff', '') + ".yaml"),
252
+ os.path.join(model_dir_name, model_stem.replace('-fp16', '') + ".yaml"),
253
+ os.path.join(global_state.script_dir, 'models', model_stem.replace('-fp16', '') + ".yaml"),
254
+ os.path.join(model_dir_name, model_stem.replace('-diff', '') + ".yaml"),
255
+ os.path.join(global_state.script_dir, 'models', model_stem.replace('-diff', '') + ".yaml")
256
+ ]
257
+
258
+ override_config = possible_config_filenames[0]
259
+
260
+ for possible_config_filename in possible_config_filenames:
261
+ if os.path.exists(possible_config_filename):
262
+ override_config = possible_config_filename
263
+ break
264
+
265
+ if 'v11' in model_stem.lower() or 'shuffle' in model_stem.lower():
266
+ assert os.path.exists(override_config), f'Error: The model config {override_config} is missing. ControlNet 1.1 must have configs.'
267
+
268
+ if os.path.exists(override_config):
269
+ network_config = override_config
270
+ else:
271
+ print(f'ERROR: ControlNet cannot find model config [{override_config}] \n'
272
+ f'ERROR: ControlNet will use a WRONG config [{network_config}] to load your model. \n'
273
+ f'ERROR: The WRONG config may not match your model. The generated results can be bad. \n'
274
+ f'ERROR: You are using a ControlNet model [{model_stem}] without correct YAML config file. \n'
275
+ f'ERROR: The performance of this model may be worse than your expectation. \n'
276
+ f'ERROR: If this model cannot get good results, the reason is that you do not have a YAML file for the model. \n'
277
+ f'Solution: Please download YAML file, or ask your model provider to provide [{override_config}] for you to download.\n'
278
+ f'Hint: You can take a look at [{os.path.join(global_state.script_dir, "models")}] to find many existing YAML files.\n')
279
+
280
+ print(f"Loading config: {network_config}")
281
+ network = network_module(
282
+ state_dict=state_dict,
283
+ config_path=network_config,
284
+ lowvram=lowvram,
285
+ base_model=unet,
286
+ )
287
+ network.to(p.sd_model.device, dtype=p.sd_model.dtype)
288
+ print(f"ControlNet model {model} loaded.")
289
+ return network
290
+
291
+ @staticmethod
292
+ def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
293
+ if not force and not shared.opts.data.get("control_net_allow_script_control", False):
294
+ return default
295
+
296
+ def get_element(obj, strict=False):
297
+ if not isinstance(obj, list):
298
+ return obj if not strict or idx == 0 else None
299
+ elif idx < len(obj):
300
+ return obj[idx]
301
+ else:
302
+ return None
303
+
304
+ attribute_value = get_element(getattr(p, attribute, None), strict)
305
+ default_value = get_element(default)
306
+ return attribute_value if attribute_value is not None else default_value
307
+
308
+ def parse_remote_call(self, p, unit: external_code.ControlNetUnit, idx):
309
+ selector = self.get_remote_call
310
+
311
+ unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
312
+ unit.module = selector(p, "control_net_module", unit.module, idx)
313
+ unit.model = selector(p, "control_net_model", unit.model, idx)
314
+ unit.weight = selector(p, "control_net_weight", unit.weight, idx)
315
+ unit.image = selector(p, "control_net_image", unit.image, idx)
316
+ unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
317
+ unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
318
+ unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
319
+ unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
320
+ unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
321
+ unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
322
+ unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
323
+ unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
324
+ unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
325
+ unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)
326
+
327
+ return unit
328
+
329
+ def detectmap_proc(self, detected_map, module, resize_mode, h, w):
330
+
331
+ if 'inpaint' in module:
332
+ detected_map = detected_map.astype(np.float32)
333
+ else:
334
+ detected_map = HWC3(detected_map)
335
+
336
+ def safe_numpy(x):
337
+ # A very safe method to make sure that Apple/Mac works
338
+ y = x
339
+
340
+ # below is very boring but do not change these. If you change these Apple or Mac may fail.
341
+ y = y.copy()
342
+ y = np.ascontiguousarray(y)
343
+ y = y.copy()
344
+ return y
345
+
346
+ def get_pytorch_control(x):
347
+ # A very safe method to make sure that Apple/Mac works
348
+ y = x
349
+
350
+ # below is very boring but do not change these. If you change these Apple or Mac may fail.
351
+ y = torch.from_numpy(y)
352
+ y = y.float() / 255.0
353
+ y = rearrange(y, 'h w c -> 1 c h w')
354
+ y = y.clone()
355
+ y = y.to(devices.get_device_for("controlnet"))
356
+ y = y.clone()
357
+ return y
358
+
359
+ def high_quality_resize(x, size):
360
+ # Written by lvmin
361
+ # Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
362
+
363
+ inpaint_mask = None
364
+ if x.ndim == 3 and x.shape[2] == 4:
365
+ inpaint_mask = x[:, :, 3]
366
+ x = x[:, :, 0:3]
367
+
368
+ new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
369
+ new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
370
+ unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
371
+ is_one_pixel_edge = False
372
+ is_binary = False
373
+ if unique_color_count == 2:
374
+ is_binary = np.min(x) < 16 and np.max(x) > 240
375
+ if is_binary:
376
+ xc = x
377
+ xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
378
+ xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
379
+ one_pixel_edge_count = np.where(xc < x)[0].shape[0]
380
+ all_edge_count = np.where(x > 127)[0].shape[0]
381
+ is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
382
+
383
+ if 2 < unique_color_count < 200:
384
+ interpolation = cv2.INTER_NEAREST
385
+ elif new_size_is_smaller:
386
+ interpolation = cv2.INTER_AREA
387
+ else:
388
+ interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
389
+
390
+ y = cv2.resize(x, size, interpolation=interpolation)
391
+ if inpaint_mask is not None:
392
+ inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
393
+
394
+ if is_binary:
395
+ y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
396
+ if is_one_pixel_edge:
397
+ y = nake_nms(y)
398
+ _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
399
+ y = lvmin_thin(y, prunings=new_size_is_bigger)
400
+ else:
401
+ _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
402
+ y = np.stack([y] * 3, axis=2)
403
+
404
+ if inpaint_mask is not None:
405
+ inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
406
+ inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
407
+ y = np.concatenate([y, inpaint_mask], axis=2)
408
+
409
+ return y
410
+
411
+ if resize_mode == external_code.ResizeMode.RESIZE:
412
+ detected_map = high_quality_resize(detected_map, (w, h))
413
+ detected_map = safe_numpy(detected_map)
414
+ return get_pytorch_control(detected_map), detected_map
415
+
416
+ old_h, old_w, _ = detected_map.shape
417
+ old_w = float(old_w)
418
+ old_h = float(old_h)
419
+ k0 = float(h) / old_h
420
+ k1 = float(w) / old_w
421
+
422
+ safeint = lambda x: int(np.round(x))
423
+
424
+ if resize_mode == external_code.ResizeMode.OUTER_FIT:
425
+ k = min(k0, k1)
426
+ borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
427
+ high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
428
+ if len(high_quality_border_color) == 4:
429
+ # Inpaint hijack
430
+ high_quality_border_color[3] = 255
431
+ high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
432
+ detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
433
+ new_h, new_w, _ = detected_map.shape
434
+ pad_h = max(0, (h - new_h) // 2)
435
+ pad_w = max(0, (w - new_w) // 2)
436
+ high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
437
+ detected_map = high_quality_background
438
+ detected_map = safe_numpy(detected_map)
439
+ return get_pytorch_control(detected_map), detected_map
440
+ else:
441
+ k = max(k0, k1)
442
+ detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
443
+ new_h, new_w, _ = detected_map.shape
444
+ pad_h = max(0, (new_h - h) // 2)
445
+ pad_w = max(0, (new_w - w) // 2)
446
+ detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
447
+ detected_map = safe_numpy(detected_map)
448
+ return get_pytorch_control(detected_map), detected_map
449
+
450
+ def get_enabled_units(self, p):
451
+ units = external_code.get_all_units_in_processing(p)
452
+ enabled_units = []
453
+
454
+ if len(units) == 0:
455
+ # fill a null group
456
+ remote_unit = self.parse_remote_call(p, self.get_default_ui_unit(), 0)
457
+ if remote_unit.enabled:
458
+ units.append(remote_unit)
459
+
460
+ for idx, unit in enumerate(units):
461
+ unit = self.parse_remote_call(p, unit, idx)
462
+ if not unit.enabled:
463
+ continue
464
+
465
+ enabled_units.append(copy(unit))
466
+ if len(units) != 1:
467
+ log_key = f"ControlNet {idx}"
468
+ else:
469
+ log_key = "ControlNet"
470
+
471
+ log_value = {
472
+ "preprocessor": unit.module,
473
+ "model": unit.model,
474
+ "weight": unit.weight,
475
+ "starting/ending": str((unit.guidance_start, unit.guidance_end)),
476
+ "resize mode": str(unit.resize_mode),
477
+ "pixel perfect": str(unit.pixel_perfect),
478
+ "control mode": str(unit.control_mode),
479
+ "preprocessor params": str((unit.processor_res, unit.threshold_a, unit.threshold_b)),
480
+ }
481
+ log_value = str(log_value).replace('\'', '').replace('{', '').replace('}', '')
482
+
483
+ p.extra_generation_params.update({log_key: log_value})
484
+
485
+ return enabled_units
486
+
487
+ def process(self, p, *args):
488
+ """
489
+ This function is called before processing begins for AlwaysVisible scripts.
490
+ You can modify the processing object (p) here, inject hooks, etc.
491
+ args contains all values returned by components from ui()
492
+ """
493
+
494
+ sd_ldm = p.sd_model
495
+ unet = sd_ldm.model.diffusion_model
496
+
497
+ if self.latest_network is not None:
498
+ # always restore (~0.05s)
499
+ self.latest_network.restore(unet)
500
+
501
+ if not batch_hijack.instance.is_batch:
502
+ self.enabled_units = self.get_enabled_units(p)
503
+
504
+ if len(self.enabled_units) == 0:
505
+ self.latest_network = None
506
+ return
507
+
508
+ detected_maps = []
509
+ forward_params = []
510
+ post_processors = []
511
+ hook_lowvram = False
512
+
513
+ # cache stuff
514
+ if self.latest_model_hash != p.sd_model.sd_model_hash:
515
+ self.clear_control_model_cache()
516
+
517
+ # unload unused preproc
518
+ module_list = [unit.module for unit in self.enabled_units]
519
+ for key in self.unloadable:
520
+ if key not in module_list:
521
+ self.unloadable.get(key, lambda:None)()
522
+
523
+ self.latest_model_hash = p.sd_model.sd_model_hash
524
+ for idx, unit in enumerate(self.enabled_units):
525
+ unit.module = global_state.get_module_basename(unit.module)
526
+ p_input_image = self.get_remote_call(p, "control_net_input_image", None, idx)
527
+ image = image_dict_from_any(unit.image)
528
+ if image is not None:
529
+ while len(image['mask'].shape) < 3:
530
+ image['mask'] = image['mask'][..., np.newaxis]
531
+
532
+ resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
533
+ control_mode = external_code.control_mode_from_value(unit.control_mode)
534
+
535
+ if unit.low_vram:
536
+ hook_lowvram = True
537
+
538
+ if unit.module in model_free_preprocessors:
539
+ model_net = None
540
+ else:
541
+ model_net = self.load_control_model(p, unet, unit.model, unit.low_vram)
542
+ model_net.reset()
543
+
544
+ if batch_hijack.instance.is_batch and getattr(p, "image_control", None) is not None:
545
+ input_image = HWC3(np.asarray(p.image_control))
546
+ elif p_input_image is not None:
547
+ if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
548
+ color = HWC3(np.asarray(p_input_image['image']))
549
+ alpha = np.asarray(p_input_image['mask'])[..., None]
550
+ input_image = np.concatenate([color, alpha], axis=2)
551
+ else:
552
+ input_image = HWC3(np.asarray(p_input_image))
553
+ elif image is not None:
554
+ # Need to check the image for API compatibility
555
+ if isinstance(image['image'], str):
556
+ from modules.api.api import decode_base64_to_image
557
+ input_image = HWC3(np.asarray(decode_base64_to_image(image['image'])))
558
+ else:
559
+ input_image = HWC3(image['image'])
560
+
561
+ have_mask = 'mask' in image and not ((image['mask'][:, :, 0] == 0).all() or (image['mask'][:, :, 0] == 255).all())
562
+
563
+ if 'inpaint' in unit.module:
564
+ print("using inpaint as input")
565
+ color = HWC3(image['image'])
566
+ if have_mask:
567
+ alpha = image['mask'][:, :, 0:1]
568
+ else:
569
+ alpha = np.zeros_like(color)[:, :, 0:1]
570
+ input_image = np.concatenate([color, alpha], axis=2)
571
+ else:
572
+ if have_mask:
573
+ print("using mask as input")
574
+ input_image = HWC3(image['mask'][:, :, 0])
575
+ unit.module = 'none' # Always use black bg and white line
576
+ else:
577
+ # use img2img init_image as default
578
+ input_image = getattr(p, "init_images", [None])[0]
579
+ if input_image is None:
580
+ if batch_hijack.instance.is_batch:
581
+ shared.state.interrupted = True
582
+ raise ValueError('controlnet is enabled but no input image is given')
583
+
584
+ input_image = HWC3(np.asarray(input_image))
585
+ a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
586
+ if a1111_i2i_resize_mode is not None:
587
+ if a1111_i2i_resize_mode == 0:
588
+ resize_mode = external_code.ResizeMode.RESIZE
589
+ elif a1111_i2i_resize_mode == 1:
590
+ resize_mode = external_code.ResizeMode.INNER_FIT
591
+ elif a1111_i2i_resize_mode == 2:
592
+ resize_mode = external_code.ResizeMode.OUTER_FIT
593
+
594
+ has_mask = False
595
+ if input_image.ndim == 3:
596
+ if input_image.shape[2] == 4:
597
+ if np.max(input_image[:, :, 3]) > 127:
598
+ has_mask = True
599
+
600
+ a1111_mask = getattr(p, "image_mask", None)
601
+ if 'inpaint' in unit.module and not has_mask and a1111_mask is not None:
602
+ a1111_mask = a1111_mask.convert('L')
603
+ if getattr(p, "inpainting_mask_invert", False):
604
+ a1111_mask = ImageOps.invert(a1111_mask)
605
+ if getattr(p, "mask_blur", 0) > 0:
606
+ a1111_mask = a1111_mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
607
+ a1111_mask = np.asarray(a1111_mask)
608
+ if a1111_mask.ndim == 2:
609
+ if a1111_mask.shape[0] == input_image.shape[0]:
610
+ if a1111_mask.shape[1] == input_image.shape[1]:
611
+ input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
612
+ input_image = np.ascontiguousarray(input_image.copy()).copy()
613
+ a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
614
+ if a1111_i2i_resize_mode is not None:
615
+ if a1111_i2i_resize_mode == 0:
616
+ resize_mode = external_code.ResizeMode.RESIZE
617
+ elif a1111_i2i_resize_mode == 1:
618
+ resize_mode = external_code.ResizeMode.INNER_FIT
619
+ elif a1111_i2i_resize_mode == 2:
620
+ resize_mode = external_code.ResizeMode.OUTER_FIT
621
+
622
+ if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
623
+ and p.inpaint_full_res and p.image_mask is not None:
624
+
625
+ input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
626
+ input_image = [Image.fromarray(x) for x in input_image]
627
+
628
+ mask = p.image_mask.convert('L')
629
+ if p.inpainting_mask_invert:
630
+ mask = ImageOps.invert(mask)
631
+ if p.mask_blur > 0:
632
+ mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
633
+
634
+ crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
635
+ crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
636
+
637
+ if resize_mode == external_code.ResizeMode.INNER_FIT:
638
+ input_image = [images.resize_image(1, i, mask.width, mask.height) for i in input_image]
639
+ elif resize_mode == external_code.ResizeMode.OUTER_FIT:
640
+ input_image = [images.resize_image(2, i, mask.width, mask.height) for i in input_image]
641
+ else:
642
+ input_image = [images.resize_image(0, i, mask.width, mask.height) for i in input_image]
643
+
644
+ input_image = [x.crop(crop_region) for x in input_image]
645
+ input_image = [images.resize_image(2, x, p.width, p.height) for x in input_image]
646
+
647
+ input_image = [np.asarray(x)[:, :, 0] for x in input_image]
648
+ input_image = np.stack(input_image, axis=2)
649
+
650
+ if 'inpaint' in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
651
+ and p.inpainting_fill and p.image_mask is not None:
652
+ print('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
653
+ unit.module = 'inpaint'
654
+
655
+ try:
656
+ tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
657
+ tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
658
+ np.random.seed((tmp_seed + tmp_subseed) & 0xFFFFFFFF)
659
+ except Exception as e:
660
+ print(e)
661
+ print('Warning: Failed to use consistent random seed.')
662
+
663
+ # safe numpy
664
+ input_image = np.ascontiguousarray(input_image.copy()).copy()
665
+
666
+ print(f"Loading preprocessor: {unit.module}")
667
+ preprocessor = self.preprocessor[unit.module]
668
+ h, w, bsz = p.height, p.width, p.batch_size
669
+
670
+ h = (h // 8) * 8
671
+ w = (w // 8) * 8
672
+
673
+ preprocessor_resolution = unit.processor_res
674
+ if unit.pixel_perfect:
675
+ raw_H, raw_W, _ = input_image.shape
676
+ target_H, target_W = h, w
677
+
678
+ k0 = float(target_H) / float(raw_H)
679
+ k1 = float(target_W) / float(raw_W)
680
+
681
+ if resize_mode == external_code.ResizeMode.OUTER_FIT:
682
+ estimation = min(k0, k1) * float(min(raw_H, raw_W))
683
+ else:
684
+ estimation = max(k0, k1) * float(min(raw_H, raw_W))
685
+
686
+ preprocessor_resolution = int(np.round(estimation))
687
+
688
+ print(f'Pixel Perfect Mode Enabled.')
689
+ print(f'resize_mode = {str(resize_mode)}')
690
+ print(f'raw_H = {raw_H}')
691
+ print(f'raw_W = {raw_W}')
692
+ print(f'target_H = {target_H}')
693
+ print(f'target_W = {target_W}')
694
+ print(f'estimation = {estimation}')
695
+
696
+ print(f'preprocessor resolution = {preprocessor_resolution}')
697
+ detected_map, is_image = preprocessor(input_image, res=preprocessor_resolution, thr_a=unit.threshold_a, thr_b=unit.threshold_b)
698
+
699
+ if unit.module == "none" and "style" in unit.model:
700
+ detected_map_bytes = detected_map[:,:,0].tobytes()
701
+ detected_map = np.ndarray((round(input_image.shape[0]/4),input_image.shape[1]),dtype="float32",buffer=detected_map_bytes)
702
+ detected_map = torch.Tensor(detected_map).to(devices.get_device_for("controlnet"))
703
+ is_image = False
704
+
705
+ if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
706
+ if p.hr_resize_x == 0 and p.hr_resize_y == 0:
707
+ hr_y = int(p.height * p.hr_scale)
708
+ hr_x = int(p.width * p.hr_scale)
709
+ else:
710
+ hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
711
+
712
+ hr_y = (hr_y // 8) * 8
713
+ hr_x = (hr_x // 8) * 8
714
+
715
+ if is_image:
716
+ hr_control, hr_detected_map = self.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
717
+ detected_maps.append((hr_detected_map, unit.module))
718
+ else:
719
+ hr_control = detected_map
720
+ else:
721
+ hr_control = None
722
+
723
+ if is_image:
724
+ control, detected_map = self.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
725
+ detected_maps.append((detected_map, unit.module))
726
+ else:
727
+ control = detected_map
728
+ if unit.module == 'clip_vision':
729
+ detected_maps.append((processor.clip_vision_visualization(detected_map), unit.module))
730
+
731
+ control_model_type = ControlModelType.ControlNet
732
+
733
+ if isinstance(model_net, PlugableAdapter):
734
+ control_model_type = ControlModelType.T2I_Adapter
735
+
736
+ if getattr(model_net, "target", None) == "scripts.adapter.StyleAdapter":
737
+ control_model_type = ControlModelType.T2I_StyleAdapter
738
+
739
+ if 'reference' in unit.module:
740
+ control_model_type = ControlModelType.AttentionInjection
741
+
742
+ global_average_pooling = False
743
+
744
+ if model_net is not None:
745
+ if model_net.config.model.params.get("global_average_pooling", False):
746
+ global_average_pooling = True
747
+
748
+ preprocessor_dict = dict(
749
+ name=unit.module,
750
+ preprocessor_resolution=preprocessor_resolution,
751
+ threshold_a=unit.threshold_a,
752
+ threshold_b=unit.threshold_b
753
+ )
754
+
755
+ forward_param = ControlParams(
756
+ control_model=model_net,
757
+ preprocessor=preprocessor_dict,
758
+ hint_cond=control,
759
+ weight=unit.weight,
760
+ guidance_stopped=False,
761
+ start_guidance_percent=unit.guidance_start,
762
+ stop_guidance_percent=unit.guidance_end,
763
+ advanced_weighting=None,
764
+ control_model_type=control_model_type,
765
+ global_average_pooling=global_average_pooling,
766
+ hr_hint_cond=hr_control,
767
+ soft_injection=control_mode != external_code.ControlMode.BALANCED,
768
+ cfg_injection=control_mode == external_code.ControlMode.CONTROL,
769
+ )
770
+ forward_params.append(forward_param)
771
+
772
+ if unit.module == 'inpaint_only':
773
+
774
+ final_inpaint_feed = hr_control if hr_control is not None else control
775
+ final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
776
+ final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
777
+ final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
778
+ final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
779
+ sigma = 7
780
+ final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
781
+ final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
782
+ _, Hmask, Wmask = final_inpaint_mask.shape
783
+ final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
784
+ final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
785
+
786
+ def inpaint_only_post_processing(x):
787
+ _, H, W = x.shape
788
+ if Hmask != H or Wmask != W:
789
+ print('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
790
+ return x
791
+ r = final_inpaint_raw.to(x.dtype).to(x.device)
792
+ m = final_inpaint_mask.to(x.dtype).to(x.device)
793
+ return m * x + (1 - m) * r
794
+
795
+ post_processors.append(inpaint_only_post_processing)
796
+
797
+ del model_net
798
+
799
+ self.latest_network = UnetHook(lowvram=hook_lowvram)
800
+ self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)
801
+ self.detected_map = detected_maps
802
+ self.post_processors = post_processors
803
+
804
+ def postprocess_batch(self, p, *args, **kwargs):
805
+ images = kwargs.get('images', [])
806
+ for post_processor in self.post_processors:
807
+ for i in range(images.shape[0]):
808
+ images[i] = post_processor(images[i])
809
+ return
810
+
811
+ def postprocess(self, p, processed, *args):
812
+ processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower()
813
+
814
+ if not batch_hijack.instance.is_batch:
815
+ self.enabled_units.clear()
816
+
817
+ if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None:
818
+ for detect_map, module in self.detected_map:
819
+ detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module)
820
+ if not os.path.isabs(detectmap_dir):
821
+ detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir)
822
+ if module != "none":
823
+ os.makedirs(detectmap_dir, exist_ok=True)
824
+ img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy())
825
+ save_image(img, detectmap_dir, module)
826
+
827
+ if self.latest_network is None:
828
+ return
829
+
830
+ if not batch_hijack.instance.is_batch:
831
+ if not shared.opts.data.get("control_net_no_detectmap", False):
832
+ if 'sd upscale' not in processor_params_flag:
833
+ if self.detected_map is not None:
834
+ for detect_map, module in self.detected_map:
835
+ if detect_map is None:
836
+ continue
837
+ detect_map = np.ascontiguousarray(detect_map.copy()).copy()
838
+ if detect_map.ndim == 3 and detect_map.shape[2] == 4:
839
+ inpaint_mask = detect_map[:, :, 3]
840
+ detect_map = detect_map[:, :, 0:3]
841
+ detect_map[inpaint_mask > 127] = 0
842
+ processed.images.extend([
843
+ Image.fromarray(
844
+ detect_map.clip(0, 255).astype(np.uint8)
845
+ )
846
+ ])
847
+
848
+ self.input_image = None
849
+ self.latest_network.restore(p.sd_model.model.diffusion_model)
850
+ self.latest_network = None
851
+ self.detected_map.clear()
852
+
853
+ gc.collect()
854
+ devices.torch_gc()
855
+
856
+ def batch_tab_process(self, p, batches, *args, **kwargs):
857
+ self.enabled_units = self.get_enabled_units(p)
858
+ for unit_i, unit in enumerate(self.enabled_units):
859
+ unit.batch_images = iter([batch[unit_i] for batch in batches])
860
+
861
+ def batch_tab_process_each(self, p, *args, **kwargs):
862
+ for unit_i, unit in enumerate(self.enabled_units):
863
+ if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue
864
+
865
+ unit.image = next(unit.batch_images)
866
+
867
+ def batch_tab_postprocess_each(self, p, processed, *args, **kwargs):
868
+ for unit_i, unit in enumerate(self.enabled_units):
869
+ if getattr(unit, 'loopback', False):
870
+ output_images = getattr(processed, 'images', [])[processed.index_of_first_image:]
871
+ if output_images:
872
+ unit.image = np.array(output_images[0])
873
+ else:
874
+ print(f'Warning: No loopback image found for controlnet unit {unit_i}. Using control map from last batch iteration instead')
875
+
876
+ def batch_tab_postprocess(self, p, *args, **kwargs):
877
+ self.enabled_units.clear()
878
+ self.input_image = None
879
+ if self.latest_network is None: return
880
+
881
+ self.latest_network.restore(shared.sd_model.model.diffusion_model)
882
+ self.latest_network = None
883
+ self.detected_map.clear()
884
+
885
+
886
+ def on_ui_settings():
887
+ section = ('control_net', "ControlNet")
888
+ shared.opts.add_option("control_net_model_config", shared.OptionInfo(
889
+ global_state.default_conf, "Config file for Control Net models", section=section))
890
+ shared.opts.add_option("control_net_model_adapter_config", shared.OptionInfo(
891
+ global_state.default_conf_adapter, "Config file for Adapter models", section=section))
892
+ shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
893
+ global_state.default_detectedmap_dir, "Directory for detected maps auto saving", section=section))
894
+ shared.opts.add_option("control_net_models_path", shared.OptionInfo(
895
+ "", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
896
+ shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
897
+ "", "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", section=section))
898
+ shared.opts.add_option("control_net_max_models_num", shared.OptionInfo(
899
+ 1, "Multi ControlNet: Max models amount (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
900
+ shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
901
+ 1, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 5, "step": 1}, section=section))
902
+ shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
903
+ False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
904
+ shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
905
+ False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
906
+ shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
907
+ False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
908
+ shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
909
+ False, "Passing ControlNet parameters with \"Send to img2img\"", gr.Checkbox, {"interactive": True}, section=section))
910
+ shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
911
+ False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
912
+ shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
913
+ False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, section=section))
914
+ shared.opts.add_option("controlnet_disable_control_type", shared.OptionInfo(
915
+ False, "Disable control type selection", gr.Checkbox, {"interactive": True}, section=section))
916
+
917
+
918
+ batch_hijack.instance.do_hijack()
919
+ script_callbacks.on_ui_settings(on_ui_settings)
920
+ script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)
extensions/microsoftexcel-controlnet/scripts/controlnet_version.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ version_flag = 'v1.1.210'
2
+ print(f'ControlNet {version_flag}')
3
+ # A smart trick to know if user has updated as well as if user has restarted terminal.
4
+ # Note that in "controlnet.py" we do NOT use "importlib.reload" to reload this "controlnet_version.py"
5
+ # This means if user did not completely restart terminal, the "version_flag" will be the previous version.
6
+ # Then, if we get a screenshot from user, we will know that if that user has restarted the terminal.
7
+ # And we will also know what version the user is using so that bug track becomes easier.
extensions/microsoftexcel-controlnet/scripts/external_code.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+ from typing import List, Any, Optional, Union, Tuple, Dict
3
+ import numpy as np
4
+ from modules import scripts, processing, shared
5
+ from scripts import global_state
6
+ from scripts.processor import preprocessor_sliders_config, model_free_preprocessors
7
+
8
+ from modules.api import api
9
+
10
+
11
+ def get_api_version() -> int:
12
+ return 2
13
+
14
+
15
+ class ControlMode(Enum):
16
+ """
17
+ The improved guess mode.
18
+ """
19
+
20
+ BALANCED = "Balanced"
21
+ PROMPT = "My prompt is more important"
22
+ CONTROL = "ControlNet is more important"
23
+
24
+
25
+ class ResizeMode(Enum):
26
+ """
27
+ Resize modes for ControlNet input images.
28
+ """
29
+
30
+ RESIZE = "Just Resize"
31
+ INNER_FIT = "Crop and Resize"
32
+ OUTER_FIT = "Resize and Fill"
33
+
34
+
35
+ resize_mode_aliases = {
36
+ 'Inner Fit (Scale to Fit)': 'Crop and Resize',
37
+ 'Outer Fit (Shrink to Fit)': 'Resize and Fill',
38
+ 'Scale to Fit (Inner Fit)': 'Crop and Resize',
39
+ 'Envelope (Outer Fit)': 'Resize and Fill',
40
+ }
41
+
42
+
43
+ def resize_mode_from_value(value: Union[str, int, ResizeMode]) -> ResizeMode:
44
+ if isinstance(value, str):
45
+ return ResizeMode(resize_mode_aliases.get(value, value))
46
+ elif isinstance(value, int):
47
+ return [e for e in ResizeMode][value]
48
+ else:
49
+ return value
50
+
51
+
52
+ def control_mode_from_value(value: Union[str, int, ControlMode]) -> ControlMode:
53
+ if isinstance(value, str):
54
+ return ControlMode(value)
55
+ elif isinstance(value, int):
56
+ return [e for e in ControlMode][value]
57
+ else:
58
+ return value
59
+
60
+
61
+ InputImage = Union[np.ndarray, str]
62
+ InputImage = Union[Dict[str, InputImage], Tuple[InputImage, InputImage], InputImage]
63
+
64
+
65
+ class ControlNetUnit:
66
+ """
67
+ Represents an entire ControlNet processing unit.
68
+ """
69
+
70
+ def __init__(
71
+ self,
72
+ enabled: bool=True,
73
+ module: Optional[str]=None,
74
+ model: Optional[str]=None,
75
+ weight: float=1.0,
76
+ image: Optional[InputImage]=None,
77
+ resize_mode: Union[ResizeMode, int, str] = ResizeMode.INNER_FIT,
78
+ low_vram: bool=False,
79
+ processor_res: int=512,
80
+ threshold_a: float=64,
81
+ threshold_b: float=64,
82
+ guidance_start: float=0.0,
83
+ guidance_end: float=1.0,
84
+ pixel_perfect: bool=False,
85
+ control_mode: Union[ControlMode, int, str] = ControlMode.BALANCED,
86
+ **_kwargs,
87
+ ):
88
+ self.enabled = enabled
89
+ self.module = module
90
+ self.model = model
91
+ self.weight = weight
92
+ self.image = image
93
+ self.resize_mode = resize_mode
94
+ self.low_vram = low_vram
95
+ self.processor_res = processor_res
96
+ self.threshold_a = threshold_a
97
+ self.threshold_b = threshold_b
98
+ self.guidance_start = guidance_start
99
+ self.guidance_end = guidance_end
100
+ self.pixel_perfect = pixel_perfect
101
+ self.control_mode = control_mode
102
+
103
+ def __eq__(self, other):
104
+ if not isinstance(other, ControlNetUnit):
105
+ return False
106
+
107
+ return vars(self) == vars(other)
108
+
109
+
110
+ def to_base64_nparray(encoding: str):
111
+ """
112
+ Convert a base64 image into the image type the extension uses
113
+ """
114
+
115
+ return np.array(api.decode_base64_to_image(encoding)).astype('uint8')
116
+
117
+
118
+ def get_all_units_in_processing(p: processing.StableDiffusionProcessing) -> List[ControlNetUnit]:
119
+ """
120
+ Fetch ControlNet processing units from a StableDiffusionProcessing.
121
+ """
122
+
123
+ return get_all_units(p.scripts, p.script_args)
124
+
125
+
126
+ def get_all_units(script_runner: scripts.ScriptRunner, script_args: List[Any]) -> List[ControlNetUnit]:
127
+ """
128
+ Fetch ControlNet processing units from an existing script runner.
129
+ Use this function to fetch units from the list of all scripts arguments.
130
+ """
131
+
132
+ cn_script = find_cn_script(script_runner)
133
+ if cn_script:
134
+ return get_all_units_from(script_args[cn_script.args_from:cn_script.args_to])
135
+
136
+ return []
137
+
138
+
139
+ def get_all_units_from(script_args: List[Any]) -> List[ControlNetUnit]:
140
+ """
141
+ Fetch ControlNet processing units from ControlNet script arguments.
142
+ Use `external_code.get_all_units` to fetch units from the list of all scripts arguments.
143
+ """
144
+
145
+ units = []
146
+ i = 0
147
+ while i < len(script_args):
148
+ if script_args[i] is not None:
149
+ units.append(to_processing_unit(script_args[i]))
150
+ i += 1
151
+
152
+ return units
153
+
154
+
155
+ def get_single_unit_from(script_args: List[Any], index: int=0) -> Optional[ControlNetUnit]:
156
+ """
157
+ Fetch a single ControlNet processing unit from ControlNet script arguments.
158
+ The list must not contain script positional arguments. It must only contain processing units.
159
+ """
160
+
161
+ i = 0
162
+ while i < len(script_args) and index >= 0:
163
+ if index == 0 and script_args[i] is not None:
164
+ return to_processing_unit(script_args[i])
165
+ i += 1
166
+
167
+ index -= 1
168
+
169
+ return None
170
+
171
+ def get_max_models_num():
172
+ """
173
+ Fetch the maximum number of allowed ControlNet models.
174
+ """
175
+
176
+ max_models_num = shared.opts.data.get("control_net_max_models_num", 1)
177
+ return max_models_num
178
+
179
+ def to_processing_unit(unit: Union[Dict[str, Any], ControlNetUnit]) -> ControlNetUnit:
180
+ """
181
+ Convert different types to processing unit.
182
+ If `unit` is a dict, alternative keys are supported. See `ext_compat_keys` in implementation for details.
183
+ """
184
+
185
+ ext_compat_keys = {
186
+ 'guessmode': 'guess_mode',
187
+ 'guidance': 'guidance_end',
188
+ 'lowvram': 'low_vram',
189
+ 'input_image': 'image'
190
+ }
191
+
192
+ if isinstance(unit, dict):
193
+ unit = {ext_compat_keys.get(k, k): v for k, v in unit.items()}
194
+
195
+ mask = None
196
+ if 'mask' in unit:
197
+ mask = unit['mask']
198
+ del unit['mask']
199
+
200
+ if 'image' in unit and not isinstance(unit['image'], dict):
201
+ unit['image'] = {'image': unit['image'], 'mask': mask} if mask is not None else unit['image'] if unit['image'] else None
202
+
203
+ if 'guess_mode' in unit:
204
+ print('Guess Mode is removed since 1.1.136. Please use Control Mode instead.')
205
+
206
+ unit = ControlNetUnit(**unit)
207
+
208
+ # temporary, check #602
209
+ #assert isinstance(unit, ControlNetUnit), f'bad argument to controlnet extension: {unit}\nexpected Union[dict[str, Any], ControlNetUnit]'
210
+ return unit
211
+
212
+
213
+ def update_cn_script_in_processing(
214
+ p: processing.StableDiffusionProcessing,
215
+ cn_units: List[ControlNetUnit],
216
+ **_kwargs, # for backwards compatibility
217
+ ):
218
+ """
219
+ Update the arguments of the ControlNet script in `p.script_args` in place, reading from `cn_units`.
220
+ `cn_units` and its elements are not modified. You can call this function repeatedly, as many times as you want.
221
+
222
+ Does not update `p.script_args` if any of the folling is true:
223
+ - ControlNet is not present in `p.scripts`
224
+ - `p.script_args` is not filled with script arguments for scripts that are processed before ControlNet
225
+ """
226
+
227
+ cn_units_type = type(cn_units) if type(cn_units) in (list, tuple) else list
228
+ script_args = list(p.script_args)
229
+ update_cn_script_in_place(p.scripts, script_args, cn_units)
230
+ p.script_args = cn_units_type(script_args)
231
+
232
+
233
+ def update_cn_script_in_place(
234
+ script_runner: scripts.ScriptRunner,
235
+ script_args: List[Any],
236
+ cn_units: List[ControlNetUnit],
237
+ **_kwargs, # for backwards compatibility
238
+ ):
239
+ """
240
+ Update the arguments of the ControlNet script in `script_args` in place, reading from `cn_units`.
241
+ `cn_units` and its elements are not modified. You can call this function repeatedly, as many times as you want.
242
+
243
+ Does not update `script_args` if any of the folling is true:
244
+ - ControlNet is not present in `script_runner`
245
+ - `script_args` is not filled with script arguments for scripts that are processed before ControlNet
246
+ """
247
+
248
+ cn_script = find_cn_script(script_runner)
249
+ if cn_script is None or len(script_args) < cn_script.args_from:
250
+ return
251
+
252
+ # fill in remaining parameters to satisfy max models, just in case script needs it.
253
+ max_models = shared.opts.data.get("control_net_max_models_num", 1)
254
+ cn_units = cn_units + [ControlNetUnit(enabled=False)] * max(max_models - len(cn_units), 0)
255
+
256
+ cn_script_args_diff = 0
257
+ for script in script_runner.alwayson_scripts:
258
+ if script is cn_script:
259
+ cn_script_args_diff = len(cn_units) - (cn_script.args_to - cn_script.args_from)
260
+ script_args[script.args_from:script.args_to] = cn_units
261
+ script.args_to = script.args_from + len(cn_units)
262
+ else:
263
+ script.args_from += cn_script_args_diff
264
+ script.args_to += cn_script_args_diff
265
+
266
+
267
+ def get_models(update: bool=False) -> List[str]:
268
+ """
269
+ Fetch the list of available models.
270
+ Each value is a valid candidate of `ControlNetUnit.model`.
271
+
272
+ Keyword arguments:
273
+ update -- Whether to refresh the list from disk. (default False)
274
+ """
275
+
276
+ if update:
277
+ global_state.update_cn_models()
278
+
279
+ return list(global_state.cn_models_names.values())
280
+
281
+
282
+ def get_modules(alias_names: bool = False) -> List[str]:
283
+ """
284
+ Fetch the list of available preprocessors.
285
+ Each value is a valid candidate of `ControlNetUnit.module`.
286
+
287
+ Keyword arguments:
288
+ alias_names -- Whether to get the ui alias names instead of internal keys
289
+ """
290
+
291
+ modules = list(global_state.cn_preprocessor_modules.keys())
292
+
293
+ if alias_names:
294
+ modules = [global_state.preprocessor_aliases.get(module, module) for module in modules]
295
+
296
+ return modules
297
+
298
+
299
+ def get_modules_detail(alias_names: bool = False) -> Dict[str, Any]:
300
+ """
301
+ get the detail of all preprocessors including
302
+ sliders: the slider config in Auto1111 webUI
303
+
304
+ Keyword arguments:
305
+ alias_names -- Whether to get the module detail with alias names instead of internal keys
306
+ """
307
+
308
+ _module_detail = {}
309
+ _module_list = get_modules(False)
310
+ _module_list_alias = get_modules(True)
311
+
312
+ _output_list = _module_list if not alias_names else _module_list_alias
313
+ for index, module in enumerate(_output_list):
314
+ if _module_list[index] in preprocessor_sliders_config:
315
+ _module_detail[module] = {
316
+ "model_free": module in model_free_preprocessors,
317
+ "sliders": preprocessor_sliders_config[_module_list[index]]
318
+ }
319
+ else:
320
+ _module_detail[module] = {
321
+ "model_free": False,
322
+ "sliders": []
323
+ }
324
+
325
+ return _module_detail
326
+
327
+
328
+ def find_cn_script(script_runner: scripts.ScriptRunner) -> Optional[scripts.Script]:
329
+ """
330
+ Find the ControlNet script in `script_runner`. Returns `None` if `script_runner` does not contain a ControlNet script.
331
+ """
332
+
333
+ if script_runner is None:
334
+ return None
335
+
336
+ for script in script_runner.alwayson_scripts:
337
+ if is_cn_script(script):
338
+ return script
339
+
340
+
341
+ def is_cn_script(script: scripts.Script) -> bool:
342
+ """
343
+ Determine whether `script` is a ControlNet script.
344
+ """
345
+
346
+ return script.title().lower() == 'controlnet'
extensions/microsoftexcel-controlnet/scripts/global_state.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os.path
2
+ import stat
3
+ import functools
4
+ from collections import OrderedDict
5
+
6
+ from modules import shared, scripts, sd_models
7
+ from modules.paths import models_path
8
+ from scripts.processor import *
9
+ from scripts.utils import ndarray_lru_cache
10
+
11
+ from typing import Dict, Callable, Optional
12
+
13
+ CN_MODEL_EXTS = [".pt", ".pth", ".ckpt", ".safetensors"]
14
+ cn_models_dir = os.path.join(models_path, "ControlNet")
15
+ cn_models_dir_old = os.path.join(scripts.basedir(), "models")
16
+ cn_models = OrderedDict() # "My_Lora(abcd1234)" -> C:/path/to/model.safetensors
17
+ cn_models_names = {} # "my_lora" -> "My_Lora(abcd1234)"
18
+
19
+ def cache_preprocessors(preprocessor_modules: Dict[str, Callable]) -> Dict[str, Callable]:
20
+ """ We want to share the preprocessor results in a single big cache, instead of a small
21
+ cache for each preprocessor function. """
22
+ CACHE_SIZE = shared.cmd_opts.controlnet_preprocessor_cache_size
23
+
24
+ # Set CACHE_SIZE = 0 will completely remove the caching layer. This can be
25
+ # helpful when debugging preprocessor code.
26
+ if CACHE_SIZE == 0:
27
+ return preprocessor_modules
28
+
29
+ print(f'Create LRU cache (max_size={CACHE_SIZE}) for preprocessor results.')
30
+
31
+ @ndarray_lru_cache(max_size=CACHE_SIZE)
32
+ def unified_preprocessor(preprocessor_name: str, *args, **kwargs):
33
+ # TODO: Make this a debug log?
34
+ print(f'Calling preprocessor {preprocessor_name} outside of cache.')
35
+ return preprocessor_modules[preprocessor_name](*args, **kwargs)
36
+
37
+ # TODO: Introduce a seed parameter for shuffle preprocessor?
38
+ uncacheable_preprocessors = ['shuffle']
39
+
40
+ return {
41
+ k: (
42
+ v if k in uncacheable_preprocessors
43
+ else functools.partial(unified_preprocessor, k)
44
+ )
45
+ for k, v
46
+ in preprocessor_modules.items()
47
+ }
48
+
49
+ cn_preprocessor_modules = {
50
+ "none": lambda x, *args, **kwargs: (x, True),
51
+ "canny": canny,
52
+ "depth": midas,
53
+ "depth_leres": functools.partial(leres, boost=False),
54
+ "depth_leres++": functools.partial(leres, boost=True),
55
+ "hed": hed,
56
+ "hed_safe": hed_safe,
57
+ "mediapipe_face": mediapipe_face,
58
+ "mlsd": mlsd,
59
+ "normal_map": midas_normal,
60
+ "openpose": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=False, include_face=False),
61
+ "openpose_hand": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=True, include_face=False),
62
+ "openpose_face": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=False, include_face=True),
63
+ "openpose_faceonly": functools.partial(g_openpose_model.run_model, include_body=False, include_hand=False, include_face=True),
64
+ "openpose_full": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=True, include_face=True),
65
+ "clip_vision": clip,
66
+ "color": color,
67
+ "pidinet": pidinet,
68
+ "pidinet_safe": pidinet_safe,
69
+ "pidinet_sketch": pidinet_ts,
70
+ "pidinet_scribble": scribble_pidinet,
71
+ "scribble_xdog": scribble_xdog,
72
+ "scribble_hed": scribble_hed,
73
+ "segmentation": uniformer,
74
+ "threshold": threshold,
75
+ "depth_zoe": zoe_depth,
76
+ "normal_bae": normal_bae,
77
+ "oneformer_coco": oneformer_coco,
78
+ "oneformer_ade20k": oneformer_ade20k,
79
+ "lineart": lineart,
80
+ "lineart_coarse": lineart_coarse,
81
+ "lineart_anime": lineart_anime,
82
+ "lineart_standard": lineart_standard,
83
+ "shuffle": shuffle,
84
+ "tile_resample": tile_resample,
85
+ "invert": invert,
86
+ "lineart_anime_denoise": lineart_anime_denoise,
87
+ "reference_only": identity,
88
+ "reference_adain": identity,
89
+ "reference_adain+attn": identity,
90
+ "inpaint": identity,
91
+ "inpaint_only": identity,
92
+ "tile_colorfix": identity,
93
+ "tile_colorfix+sharp": identity,
94
+ }
95
+
96
+ cn_preprocessor_unloadable = {
97
+ "hed": unload_hed,
98
+ "fake_scribble": unload_hed,
99
+ "mlsd": unload_mlsd,
100
+ "clip": unload_clip,
101
+ "depth": unload_midas,
102
+ "depth_leres": unload_leres,
103
+ "normal_map": unload_midas,
104
+ "pidinet": unload_pidinet,
105
+ "openpose": g_openpose_model.unload,
106
+ "openpose_hand": g_openpose_model.unload,
107
+ "openpose_face": g_openpose_model.unload,
108
+ "openpose_full": g_openpose_model.unload,
109
+ "segmentation": unload_uniformer,
110
+ "depth_zoe": unload_zoe_depth,
111
+ "normal_bae": unload_normal_bae,
112
+ "oneformer_coco": unload_oneformer_coco,
113
+ "oneformer_ade20k": unload_oneformer_ade20k,
114
+ "lineart": unload_lineart,
115
+ "lineart_coarse": unload_lineart_coarse,
116
+ "lineart_anime": unload_lineart_anime,
117
+ "lineart_anime_denoise": unload_lineart_anime_denoise
118
+ }
119
+
120
+ preprocessor_aliases = {
121
+ "invert": "invert (from white bg & black line)",
122
+ "lineart_standard": "lineart_standard (from white bg & black line)",
123
+ "lineart": "lineart_realistic",
124
+ "color": "t2ia_color_grid",
125
+ "clip_vision": "t2ia_style_clipvision",
126
+ "pidinet_sketch": "t2ia_sketch_pidi",
127
+ "depth": "depth_midas",
128
+ "normal_map": "normal_midas",
129
+ "hed": "softedge_hed",
130
+ "hed_safe": "softedge_hedsafe",
131
+ "pidinet": "softedge_pidinet",
132
+ "pidinet_safe": "softedge_pidisafe",
133
+ "segmentation": "seg_ufade20k",
134
+ "oneformer_coco": "seg_ofcoco",
135
+ "oneformer_ade20k": "seg_ofade20k",
136
+ "pidinet_scribble": "scribble_pidinet",
137
+ "inpaint": "inpaint_global_harmonious",
138
+ }
139
+
140
+ ui_preprocessor_keys = ['none', preprocessor_aliases['invert']]
141
+ ui_preprocessor_keys += sorted([preprocessor_aliases.get(k, k)
142
+ for k in cn_preprocessor_modules.keys()
143
+ if preprocessor_aliases.get(k, k) not in ui_preprocessor_keys])
144
+
145
+ reverse_preprocessor_aliases = {preprocessor_aliases[k]: k for k in preprocessor_aliases.keys()}
146
+
147
+ def get_module_basename(module: Optional[str]) -> str:
148
+ if module is None:
149
+ module = 'none'
150
+ return reverse_preprocessor_aliases.get(module, module)
151
+
152
+ default_conf = os.path.join("models", "cldm_v15.yaml")
153
+ default_conf_adapter = os.path.join("models", "t2iadapter_sketch_sd14v1.yaml")
154
+ cn_detectedmap_dir = os.path.join("detected_maps")
155
+ default_detectedmap_dir = cn_detectedmap_dir
156
+ script_dir = scripts.basedir()
157
+
158
+ os.makedirs(cn_models_dir, exist_ok=True)
159
+ os.makedirs(cn_detectedmap_dir, exist_ok=True)
160
+
161
+
162
+ def traverse_all_files(curr_path, model_list):
163
+ f_list = [(os.path.join(curr_path, entry.name), entry.stat())
164
+ for entry in os.scandir(curr_path)]
165
+ for f_info in f_list:
166
+ fname, fstat = f_info
167
+ if os.path.splitext(fname)[1] in CN_MODEL_EXTS:
168
+ model_list.append(f_info)
169
+ elif stat.S_ISDIR(fstat.st_mode):
170
+ model_list = traverse_all_files(fname, model_list)
171
+ return model_list
172
+
173
+
174
+ def get_all_models(sort_by, filter_by, path):
175
+ res = OrderedDict()
176
+ fileinfos = traverse_all_files(path, [])
177
+ filter_by = filter_by.strip(" ")
178
+ if len(filter_by) != 0:
179
+ fileinfos = [x for x in fileinfos if filter_by.lower()
180
+ in os.path.basename(x[0]).lower()]
181
+ if sort_by == "name":
182
+ fileinfos = sorted(fileinfos, key=lambda x: os.path.basename(x[0]))
183
+ elif sort_by == "date":
184
+ fileinfos = sorted(fileinfos, key=lambda x: -x[1].st_mtime)
185
+ elif sort_by == "path name":
186
+ fileinfos = sorted(fileinfos)
187
+
188
+ for finfo in fileinfos:
189
+ filename = finfo[0]
190
+ name = os.path.splitext(os.path.basename(filename))[0]
191
+ # Prevent a hypothetical "None.pt" from being listed.
192
+ if name != "None":
193
+ res[name + f" [{sd_models.model_hash(filename)}]"] = filename
194
+
195
+ return res
196
+
197
+
198
+ def update_cn_models():
199
+ cn_models.clear()
200
+ ext_dirs = (shared.opts.data.get("control_net_models_path", None), getattr(shared.cmd_opts, 'controlnet_dir', None))
201
+ extra_lora_paths = (extra_lora_path for extra_lora_path in ext_dirs
202
+ if extra_lora_path is not None and os.path.exists(extra_lora_path))
203
+ paths = [cn_models_dir, cn_models_dir_old, *extra_lora_paths]
204
+
205
+ for path in paths:
206
+ sort_by = shared.opts.data.get(
207
+ "control_net_models_sort_models_by", "name")
208
+ filter_by = shared.opts.data.get("control_net_models_name_filter", "")
209
+ found = get_all_models(sort_by, filter_by, path)
210
+ cn_models.update({**found, **cn_models})
211
+
212
+ # insert "None" at the beginning of `cn_models` in-place
213
+ cn_models_copy = OrderedDict(cn_models)
214
+ cn_models.clear()
215
+ cn_models.update({**{"None": None}, **cn_models_copy})
216
+
217
+ cn_models_names.clear()
218
+ for name_and_hash, filename in cn_models.items():
219
+ if filename is None:
220
+ continue
221
+ name = os.path.splitext(os.path.basename(filename))[0].lower()
222
+ cn_models_names[name] = name_and_hash
extensions/microsoftexcel-controlnet/scripts/hook.py ADDED
@@ -0,0 +1,749 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import einops
3
+ import hashlib
4
+ import numpy as np
5
+ import torch.nn as nn
6
+
7
+ from enum import Enum
8
+ from modules import devices, lowvram, shared, scripts
9
+
10
+ cond_cast_unet = getattr(devices, 'cond_cast_unet', lambda x: x)
11
+
12
+ from ldm.modules.diffusionmodules.util import timestep_embedding
13
+ from ldm.modules.diffusionmodules.openaimodel import UNetModel
14
+ from ldm.modules.attention import BasicTransformerBlock
15
+ from ldm.models.diffusion.ddpm import extract_into_tensor
16
+
17
+ from modules.prompt_parser import MulticondLearnedConditioning, ComposableScheduledPromptConditioning, ScheduledPromptConditioning
18
+
19
+
20
+ POSITIVE_MARK_TOKEN = 1024
21
+ NEGATIVE_MARK_TOKEN = - POSITIVE_MARK_TOKEN
22
+ MARK_EPS = 1e-3
23
+
24
+
25
+ def prompt_context_is_marked(x):
26
+ t = x[..., 0, :]
27
+ m = torch.abs(t) - POSITIVE_MARK_TOKEN
28
+ m = torch.mean(torch.abs(m)).detach().cpu().float().numpy()
29
+ return float(m) < MARK_EPS
30
+
31
+
32
+ def mark_prompt_context(x, positive):
33
+ if isinstance(x, list):
34
+ for i in range(len(x)):
35
+ x[i] = mark_prompt_context(x[i], positive)
36
+ return x
37
+ if isinstance(x, MulticondLearnedConditioning):
38
+ x.batch = mark_prompt_context(x.batch, positive)
39
+ return x
40
+ if isinstance(x, ComposableScheduledPromptConditioning):
41
+ x.schedules = mark_prompt_context(x.schedules, positive)
42
+ return x
43
+ if isinstance(x, ScheduledPromptConditioning):
44
+ cond = x.cond
45
+ if prompt_context_is_marked(cond):
46
+ return x
47
+ mark = POSITIVE_MARK_TOKEN if positive else NEGATIVE_MARK_TOKEN
48
+ cond = torch.cat([torch.zeros_like(cond)[:1] + mark, cond], dim=0)
49
+ return ScheduledPromptConditioning(end_at_step=x.end_at_step, cond=cond)
50
+ return x
51
+
52
+
53
+ disable_controlnet_prompt_warning = True
54
+ # You can disable this warning using disable_controlnet_prompt_warning.
55
+
56
+
57
+ def unmark_prompt_context(x):
58
+ if not prompt_context_is_marked(x):
59
+ # ControlNet must know whether a prompt is conditional prompt (positive prompt) or unconditional conditioning prompt (negative prompt).
60
+ # You can use the hook.py's `mark_prompt_context` to mark the prompts that will be seen by ControlNet.
61
+ # Let us say XXX is a MulticondLearnedConditioning or a ComposableScheduledPromptConditioning or a ScheduledPromptConditioning or a list of these components,
62
+ # if XXX is a positive prompt, you should call mark_prompt_context(XXX, positive=True)
63
+ # if XXX is a negative prompt, you should call mark_prompt_context(XXX, positive=False)
64
+ # After you mark the prompts, the ControlNet will know which prompt is cond/uncond and works as expected.
65
+ # After you mark the prompts, the mismatch errors will disappear.
66
+ if not disable_controlnet_prompt_warning:
67
+ print('ControlNet Error: Failed to detect whether an instance is cond or uncond!')
68
+ print('ControlNet Error: This is mainly because other extension(s) blocked A1111\'s \"process.sample()\" and deleted ControlNet\'s sample function.')
69
+ print('ControlNet Error: ControlNet will shift to a backup backend but the results will be worse than expectation.')
70
+ print('Solution (For extension developers): Take a look at ControlNet\' hook.py '
71
+ 'UnetHook.hook.process_sample and manually call mark_prompt_context to mark cond/uncond prompts.')
72
+ mark_batch = torch.ones(size=(x.shape[0], 1, 1, 1), dtype=x.dtype, device=x.device)
73
+ uc_indices = []
74
+ context = x
75
+ return mark_batch, uc_indices, context
76
+ mark = x[:, 0, :]
77
+ context = x[:, 1:, :]
78
+ mark = torch.mean(torch.abs(mark - NEGATIVE_MARK_TOKEN), dim=1)
79
+ mark = (mark > MARK_EPS).float()
80
+ mark_batch = mark[:, None, None, None].to(x.dtype).to(x.device)
81
+ uc_indices = mark.detach().cpu().numpy().tolist()
82
+ uc_indices = [i for i, item in enumerate(uc_indices) if item < 0.5]
83
+ return mark_batch, uc_indices, context
84
+
85
+
86
+ class ControlModelType(Enum):
87
+ """
88
+ The type of Control Models (supported or not).
89
+ """
90
+
91
+ ControlNet = "ControlNet, Lvmin Zhang"
92
+ T2I_Adapter = "T2I_Adapter, Chong Mou"
93
+ T2I_StyleAdapter = "T2I_StyleAdapter, Chong Mou"
94
+ T2I_CoAdapter = "T2I_CoAdapter, Chong Mou"
95
+ MasaCtrl = "MasaCtrl, Mingdeng Cao"
96
+ GLIGEN = "GLIGEN, Yuheng Li"
97
+ AttentionInjection = "AttentionInjection, Lvmin Zhang" # A simple attention injection written by Lvmin
98
+ StableSR = "StableSR, Jianyi Wang"
99
+ PromptDiffusion = "PromptDiffusion, Zhendong Wang"
100
+ ControlLoRA = "ControlLoRA, Wu Hecong"
101
+
102
+
103
+ # Written by Lvmin
104
+ class AutoMachine(Enum):
105
+ """
106
+ Lvmin's algorithm for Attention/AdaIn AutoMachine States.
107
+ """
108
+
109
+ Read = "Read"
110
+ Write = "Write"
111
+
112
+
113
+ class TorchHijackForUnet:
114
+ """
115
+ This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
116
+ this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
117
+ """
118
+
119
+ def __getattr__(self, item):
120
+ if item == 'cat':
121
+ return self.cat
122
+
123
+ if hasattr(torch, item):
124
+ return getattr(torch, item)
125
+
126
+ raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
127
+
128
+ def cat(self, tensors, *args, **kwargs):
129
+ if len(tensors) == 2:
130
+ a, b = tensors
131
+ if a.shape[-2:] != b.shape[-2:]:
132
+ a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
133
+
134
+ tensors = (a, b)
135
+
136
+ return torch.cat(tensors, *args, **kwargs)
137
+
138
+
139
+ th = TorchHijackForUnet()
140
+
141
+
142
+ class ControlParams:
143
+ def __init__(
144
+ self,
145
+ control_model,
146
+ preprocessor,
147
+ hint_cond,
148
+ weight,
149
+ guidance_stopped,
150
+ start_guidance_percent,
151
+ stop_guidance_percent,
152
+ advanced_weighting,
153
+ control_model_type,
154
+ hr_hint_cond,
155
+ global_average_pooling,
156
+ soft_injection,
157
+ cfg_injection,
158
+ **kwargs # To avoid errors
159
+ ):
160
+ self.control_model = control_model
161
+ self.preprocessor = preprocessor
162
+ self._hint_cond = hint_cond
163
+ self.weight = weight
164
+ self.guidance_stopped = guidance_stopped
165
+ self.start_guidance_percent = start_guidance_percent
166
+ self.stop_guidance_percent = stop_guidance_percent
167
+ self.advanced_weighting = advanced_weighting
168
+ self.control_model_type = control_model_type
169
+ self.global_average_pooling = global_average_pooling
170
+ self.hr_hint_cond = hr_hint_cond
171
+ self.used_hint_cond = None
172
+ self.used_hint_cond_latent = None
173
+ self.used_hint_inpaint_hijack = None
174
+ self.soft_injection = soft_injection
175
+ self.cfg_injection = cfg_injection
176
+
177
+ @property
178
+ def hint_cond(self):
179
+ return self._hint_cond
180
+
181
+ # fix for all the extensions that modify hint_cond,
182
+ # by forcing used_hint_cond to update on the next timestep
183
+ # hr_hint_cond can stay the same, since most extensions dont modify the hires pass
184
+ # but if they do, it will cause problems
185
+ @hint_cond.setter
186
+ def hint_cond(self, new_hint_cond):
187
+ self._hint_cond = new_hint_cond
188
+ self.used_hint_cond = None
189
+ self.used_hint_cond_latent = None
190
+ self.used_hint_inpaint_hijack = None
191
+
192
+
193
+ def aligned_adding(base, x, require_channel_alignment):
194
+ if isinstance(x, float):
195
+ if x == 0.0:
196
+ return base
197
+ return base + x
198
+
199
+ if require_channel_alignment:
200
+ zeros = torch.zeros_like(base)
201
+ zeros[:, :x.shape[1], ...] = x
202
+ x = zeros
203
+
204
+ # resize to sample resolution
205
+ base_h, base_w = base.shape[-2:]
206
+ xh, xw = x.shape[-2:]
207
+ if base_h != xh or base_w != xw:
208
+ print('[Warning] ControlNet finds unexpected mis-alignment in tensor shape.')
209
+ x = th.nn.functional.interpolate(x, size=(base_h, base_w), mode="nearest")
210
+
211
+ return base + x
212
+
213
+
214
+ # DFS Search for Torch.nn.Module, Written by Lvmin
215
+ def torch_dfs(model: torch.nn.Module):
216
+ result = [model]
217
+ for child in model.children():
218
+ result += torch_dfs(child)
219
+ return result
220
+
221
+
222
+ def predict_start_from_noise(ldm, x_t, t, noise):
223
+ return extract_into_tensor(ldm.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract_into_tensor(ldm.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
224
+
225
+
226
+ def predict_noise_from_start(ldm, x_t, t, x0):
227
+ return (extract_into_tensor(ldm.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / extract_into_tensor(ldm.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
228
+
229
+
230
+ def blur(x, k):
231
+ y = torch.nn.functional.pad(x, (k, k, k, k), mode='replicate')
232
+ y = torch.nn.functional.avg_pool2d(y, (k*2+1, k*2+1), stride=(1, 1))
233
+ return y
234
+
235
+
236
+ class TorchCache:
237
+ def __init__(self):
238
+ self.cache = {}
239
+
240
+ def hash(self, key):
241
+ v = key.detach().cpu().numpy().astype(np.float32)
242
+ v = (v * 1000.0).astype(np.int32)
243
+ v = np.ascontiguousarray(v.copy())
244
+ sha = hashlib.sha1(v).hexdigest()
245
+ return sha
246
+
247
+ def get(self, key):
248
+ key = self.hash(key)
249
+ return self.cache.get(key, None)
250
+
251
+ def set(self, key, value):
252
+ self.cache[self.hash(key)] = value
253
+
254
+
255
+ class UnetHook(nn.Module):
256
+ def __init__(self, lowvram=False) -> None:
257
+ super().__init__()
258
+ self.lowvram = lowvram
259
+ self.model = None
260
+ self.sd_ldm = None
261
+ self.control_params = None
262
+ self.attention_auto_machine = AutoMachine.Read
263
+ self.attention_auto_machine_weight = 1.0
264
+ self.gn_auto_machine = AutoMachine.Read
265
+ self.gn_auto_machine_weight = 1.0
266
+ self.current_style_fidelity = 0.0
267
+ self.current_uc_indices = None
268
+
269
+ def guidance_schedule_handler(self, x):
270
+ for param in self.control_params:
271
+ current_sampling_percent = (x.sampling_step / x.total_sampling_steps)
272
+ param.guidance_stopped = current_sampling_percent < param.start_guidance_percent or current_sampling_percent > param.stop_guidance_percent
273
+
274
+ def hook(self, model, sd_ldm, control_params, process):
275
+ self.model = model
276
+ self.sd_ldm = sd_ldm
277
+ self.control_params = control_params
278
+
279
+ outer = self
280
+
281
+ def process_sample(*args, **kwargs):
282
+ # ControlNet must know whether a prompt is conditional prompt (positive prompt) or unconditional conditioning prompt (negative prompt).
283
+ # You can use the hook.py's `mark_prompt_context` to mark the prompts that will be seen by ControlNet.
284
+ # Let us say XXX is a MulticondLearnedConditioning or a ComposableScheduledPromptConditioning or a ScheduledPromptConditioning or a list of these components,
285
+ # if XXX is a positive prompt, you should call mark_prompt_context(XXX, positive=True)
286
+ # if XXX is a negative prompt, you should call mark_prompt_context(XXX, positive=False)
287
+ # After you mark the prompts, the ControlNet will know which prompt is cond/uncond and works as expected.
288
+ # After you mark the prompts, the mismatch errors will disappear.
289
+ mark_prompt_context(kwargs.get('conditioning', []), positive=True)
290
+ mark_prompt_context(kwargs.get('unconditional_conditioning', []), positive=False)
291
+ mark_prompt_context(getattr(process, 'hr_c', []), positive=True)
292
+ mark_prompt_context(getattr(process, 'hr_uc', []), positive=False)
293
+ return process.sample_before_CN_hack(*args, **kwargs)
294
+
295
+ def vae_forward(x, batch_size, mask=None):
296
+ try:
297
+ if x.shape[1] > 3:
298
+ x = x[:, 0:3, :, :]
299
+ x = x * 2.0 - 1.0
300
+ if mask is not None:
301
+ x = x * (1.0 - mask)
302
+ x = x.type(devices.dtype_vae)
303
+ vae_output = outer.vae_cache.get(x)
304
+ if vae_output is None:
305
+ with devices.autocast():
306
+ vae_output = outer.sd_ldm.encode_first_stage(x)
307
+ vae_output = outer.sd_ldm.get_first_stage_encoding(vae_output)
308
+ outer.vae_cache.set(x, vae_output)
309
+ print(f'ControlNet used {str(devices.dtype_vae)} VAE to encode {vae_output.shape}.')
310
+ latent = vae_output
311
+ if latent.shape[0] != batch_size:
312
+ latent = torch.cat([latent.clone() for _ in range(batch_size)], dim=0)
313
+ latent = latent.type(devices.dtype_unet)
314
+ return latent
315
+ except Exception as e:
316
+ print(e)
317
+ raise ValueError('ControlNet failed to use VAE. Please try to add `--no-half-vae`, `--no-half` and remove `--precision full` in launch cmd.')
318
+
319
+ def forward(self, x, timesteps=None, context=None, **kwargs):
320
+ total_controlnet_embedding = [0.0] * 13
321
+ total_t2i_adapter_embedding = [0.0] * 4
322
+ require_inpaint_hijack = False
323
+ is_in_high_res_fix = False
324
+ batch_size = int(x.shape[0])
325
+
326
+ # Handle cond-uncond marker
327
+ cond_mark, outer.current_uc_indices, context = unmark_prompt_context(context)
328
+ # print(str(cond_mark[:, 0, 0, 0].detach().cpu().numpy().tolist()) + ' - ' + str(outer.current_uc_indices))
329
+
330
+ # High-res fix
331
+ for param in outer.control_params:
332
+ # select which hint_cond to use
333
+ if param.used_hint_cond is None:
334
+ param.used_hint_cond = param.hint_cond
335
+ param.used_hint_cond_latent = None
336
+ param.used_hint_inpaint_hijack = None
337
+
338
+ # has high-res fix
339
+ if param.hr_hint_cond is not None and x.ndim == 4 and param.hint_cond.ndim == 4 and param.hr_hint_cond.ndim == 4:
340
+ _, _, h_lr, w_lr = param.hint_cond.shape
341
+ _, _, h_hr, w_hr = param.hr_hint_cond.shape
342
+ _, _, h, w = x.shape
343
+ h, w = h * 8, w * 8
344
+ if abs(h - h_lr) < abs(h - h_hr):
345
+ is_in_high_res_fix = False
346
+ if param.used_hint_cond is not param.hint_cond:
347
+ param.used_hint_cond = param.hint_cond
348
+ param.used_hint_cond_latent = None
349
+ param.used_hint_inpaint_hijack = None
350
+ else:
351
+ is_in_high_res_fix = True
352
+ if param.used_hint_cond is not param.hr_hint_cond:
353
+ param.used_hint_cond = param.hr_hint_cond
354
+ param.used_hint_cond_latent = None
355
+ param.used_hint_inpaint_hijack = None
356
+
357
+ # Convert control image to latent
358
+ for param in outer.control_params:
359
+ if param.used_hint_cond_latent is not None:
360
+ continue
361
+ if param.control_model_type not in [ControlModelType.AttentionInjection] \
362
+ and 'colorfix' not in param.preprocessor['name'] \
363
+ and 'inpaint_only' not in param.preprocessor['name']:
364
+ continue
365
+ param.used_hint_cond_latent = vae_forward(param.used_hint_cond, batch_size=batch_size)
366
+
367
+ # handle prompt token control
368
+ for param in outer.control_params:
369
+ if param.guidance_stopped:
370
+ continue
371
+
372
+ if param.control_model_type not in [ControlModelType.T2I_StyleAdapter]:
373
+ continue
374
+
375
+ param.control_model.to(devices.get_device_for("controlnet"))
376
+ control = param.control_model(x=x, hint=param.used_hint_cond, timesteps=timesteps, context=context)
377
+ control = torch.cat([control.clone() for _ in range(batch_size)], dim=0)
378
+ control *= param.weight
379
+ control *= cond_mark[:, :, :, 0]
380
+ context = torch.cat([context, control.clone()], dim=1)
381
+
382
+ # handle ControlNet / T2I_Adapter
383
+ for param in outer.control_params:
384
+ if param.guidance_stopped:
385
+ continue
386
+
387
+ if param.control_model_type not in [ControlModelType.ControlNet, ControlModelType.T2I_Adapter]:
388
+ continue
389
+
390
+ param.control_model.to(devices.get_device_for("controlnet"))
391
+ # inpaint model workaround
392
+ x_in = x
393
+ control_model = param.control_model.control_model
394
+
395
+ if param.control_model_type == ControlModelType.ControlNet:
396
+ if x.shape[1] != control_model.input_blocks[0][0].in_channels and x.shape[1] == 9:
397
+ # inpaint_model: 4 data + 4 downscaled image + 1 mask
398
+ x_in = x[:, :4, ...]
399
+ require_inpaint_hijack = True
400
+
401
+ assert param.used_hint_cond is not None, f"Controlnet is enabled but no input image is given"
402
+
403
+ hint = param.used_hint_cond
404
+
405
+ # ControlNet inpaint protocol
406
+ if hint.shape[1] == 4:
407
+ c = hint[:, 0:3, :, :]
408
+ m = hint[:, 3:4, :, :]
409
+ m = (m > 0.5).float()
410
+ hint = c * (1 - m) - m
411
+
412
+ control = param.control_model(x=x_in, hint=hint, timesteps=timesteps, context=context)
413
+ control_scales = ([param.weight] * 13)
414
+
415
+ if outer.lowvram:
416
+ param.control_model.to("cpu")
417
+
418
+ if param.cfg_injection or param.global_average_pooling:
419
+ if param.control_model_type == ControlModelType.T2I_Adapter:
420
+ control = [torch.cat([c.clone() for _ in range(batch_size)], dim=0) for c in control]
421
+ control = [c * cond_mark for c in control]
422
+
423
+ if param.soft_injection or is_in_high_res_fix:
424
+ # important! use the soft weights with high-res fix can significantly reduce artifacts.
425
+ if param.control_model_type == ControlModelType.T2I_Adapter:
426
+ control_scales = [param.weight * x for x in (0.25, 0.62, 0.825, 1.0)]
427
+ elif param.control_model_type == ControlModelType.ControlNet:
428
+ control_scales = [param.weight * (0.825 ** float(12 - i)) for i in range(13)]
429
+
430
+ if param.advanced_weighting is not None:
431
+ control_scales = param.advanced_weighting
432
+
433
+ control = [c * scale for c, scale in zip(control, control_scales)]
434
+ if param.global_average_pooling:
435
+ control = [torch.mean(c, dim=(2, 3), keepdim=True) for c in control]
436
+
437
+ for idx, item in enumerate(control):
438
+ target = None
439
+ if param.control_model_type == ControlModelType.ControlNet:
440
+ target = total_controlnet_embedding
441
+ if param.control_model_type == ControlModelType.T2I_Adapter:
442
+ target = total_t2i_adapter_embedding
443
+ if target is not None:
444
+ target[idx] = item + target[idx]
445
+
446
+ # Clear attention and AdaIn cache
447
+ for module in outer.attn_module_list:
448
+ module.bank = []
449
+ module.style_cfgs = []
450
+ for module in outer.gn_module_list:
451
+ module.mean_bank = []
452
+ module.var_bank = []
453
+ module.style_cfgs = []
454
+
455
+ # Handle attention and AdaIn control
456
+ for param in outer.control_params:
457
+ if param.guidance_stopped:
458
+ continue
459
+
460
+ if param.used_hint_cond_latent is None:
461
+ continue
462
+
463
+ if param.control_model_type not in [ControlModelType.AttentionInjection]:
464
+ continue
465
+
466
+ ref_xt = outer.sd_ldm.q_sample(param.used_hint_cond_latent, torch.round(timesteps.float()).long())
467
+
468
+ # Inpaint Hijack
469
+ if x.shape[1] == 9:
470
+ ref_xt = torch.cat([
471
+ ref_xt,
472
+ torch.zeros_like(ref_xt)[:, 0:1, :, :],
473
+ param.used_hint_cond_latent
474
+ ], dim=1)
475
+
476
+ outer.current_style_fidelity = float(param.preprocessor['threshold_a'])
477
+ outer.current_style_fidelity = max(0.0, min(1.0, outer.current_style_fidelity))
478
+
479
+ if param.cfg_injection:
480
+ outer.current_style_fidelity = 1.0
481
+ elif param.soft_injection or is_in_high_res_fix:
482
+ outer.current_style_fidelity = 0.0
483
+
484
+ control_name = param.preprocessor['name']
485
+
486
+ if control_name in ['reference_only', 'reference_adain+attn']:
487
+ outer.attention_auto_machine = AutoMachine.Write
488
+ outer.attention_auto_machine_weight = param.weight
489
+
490
+ if control_name in ['reference_adain', 'reference_adain+attn']:
491
+ outer.gn_auto_machine = AutoMachine.Write
492
+ outer.gn_auto_machine_weight = param.weight
493
+
494
+ outer.original_forward(
495
+ x=ref_xt.to(devices.dtype_unet),
496
+ timesteps=timesteps.to(devices.dtype_unet),
497
+ context=context.to(devices.dtype_unet)
498
+ )
499
+
500
+ outer.attention_auto_machine = AutoMachine.Read
501
+ outer.gn_auto_machine = AutoMachine.Read
502
+
503
+ # Replace x_t to support inpaint models
504
+ for param in outer.control_params:
505
+ if param.used_hint_cond.shape[1] != 4:
506
+ continue
507
+ if x.shape[1] != 9:
508
+ continue
509
+ if param.used_hint_inpaint_hijack is None:
510
+ mask_pixel = param.used_hint_cond[:, 3:4, :, :]
511
+ image_pixel = param.used_hint_cond[:, 0:3, :, :]
512
+ mask_pixel = (mask_pixel > 0.5).to(mask_pixel.dtype)
513
+ masked_latent = vae_forward(image_pixel, batch_size, mask=mask_pixel)
514
+ mask_latent = torch.nn.functional.max_pool2d(mask_pixel, (8, 8))
515
+ if mask_latent.shape[0] != batch_size:
516
+ mask_latent = torch.cat([mask_latent.clone() for _ in range(batch_size)], dim=0)
517
+ param.used_hint_inpaint_hijack = torch.cat([mask_latent, masked_latent], dim=1)
518
+ param.used_hint_inpaint_hijack.to(x.dtype).to(x.device)
519
+ x = torch.cat([x[:, :4, :, :], param.used_hint_inpaint_hijack], dim=1)
520
+
521
+ # A1111 fix for medvram.
522
+ if shared.cmd_opts.medvram:
523
+ try:
524
+ # Trigger the register_forward_pre_hook
525
+ outer.sd_ldm.model()
526
+ except:
527
+ pass
528
+
529
+ # U-Net Encoder
530
+ hs = []
531
+ with th.no_grad():
532
+ t_emb = cond_cast_unet(timestep_embedding(timesteps, self.model_channels, repeat_only=False))
533
+ emb = self.time_embed(t_emb)
534
+ h = x.type(self.dtype)
535
+ for i, module in enumerate(self.input_blocks):
536
+ h = module(h, emb, context)
537
+
538
+ if (i + 1) % 3 == 0:
539
+ h = aligned_adding(h, total_t2i_adapter_embedding.pop(0), require_inpaint_hijack)
540
+
541
+ hs.append(h)
542
+ h = self.middle_block(h, emb, context)
543
+
544
+ # U-Net Middle Block
545
+ h = aligned_adding(h, total_controlnet_embedding.pop(), require_inpaint_hijack)
546
+
547
+ # U-Net Decoder
548
+ for i, module in enumerate(self.output_blocks):
549
+ h = th.cat([h, aligned_adding(hs.pop(), total_controlnet_embedding.pop(), require_inpaint_hijack)], dim=1)
550
+ h = module(h, emb, context)
551
+
552
+ # U-Net Output
553
+ h = h.type(x.dtype)
554
+ h = self.out(h)
555
+
556
+ # Post-processing for color fix
557
+ for param in outer.control_params:
558
+ if param.used_hint_cond_latent is None:
559
+ continue
560
+ if 'colorfix' not in param.preprocessor['name']:
561
+ continue
562
+
563
+ k = int(param.preprocessor['threshold_a'])
564
+ if is_in_high_res_fix:
565
+ k *= 2
566
+
567
+ # Inpaint hijack
568
+ xt = x[:, :4, :, :]
569
+
570
+ x0_origin = param.used_hint_cond_latent
571
+ t = torch.round(timesteps.float()).long()
572
+ x0_prd = predict_start_from_noise(outer.sd_ldm, xt, t, h)
573
+ x0 = x0_prd - blur(x0_prd, k) + blur(x0_origin, k)
574
+
575
+ if '+sharp' in param.preprocessor['name']:
576
+ detail_weight = float(param.preprocessor['threshold_b']) * 0.01
577
+ neg = detail_weight * blur(x0, k) + (1 - detail_weight) * x0
578
+ x0 = cond_mark * x0 + (1 - cond_mark) * neg
579
+
580
+ eps_prd = predict_noise_from_start(outer.sd_ldm, xt, t, x0)
581
+
582
+ w = max(0.0, min(1.0, float(param.weight)))
583
+ h = eps_prd * w + h * (1 - w)
584
+
585
+ # Post-processing for restore
586
+ for param in outer.control_params:
587
+ if param.used_hint_cond_latent is None:
588
+ continue
589
+ if 'inpaint_only' not in param.preprocessor['name']:
590
+ continue
591
+ if param.used_hint_cond.shape[1] != 4:
592
+ continue
593
+
594
+ # Inpaint hijack
595
+ xt = x[:, :4, :, :]
596
+
597
+ mask = param.used_hint_cond[:, 3:4, :, :]
598
+ mask = torch.nn.functional.max_pool2d(mask, (10, 10), stride=(8, 8), padding=1)
599
+
600
+ x0_origin = param.used_hint_cond_latent
601
+ t = torch.round(timesteps.float()).long()
602
+ x0_prd = predict_start_from_noise(outer.sd_ldm, xt, t, h)
603
+ x0 = x0_prd * mask + x0_origin * (1 - mask)
604
+ eps_prd = predict_noise_from_start(outer.sd_ldm, xt, t, x0)
605
+
606
+ w = max(0.0, min(1.0, float(param.weight)))
607
+ h = eps_prd * w + h * (1 - w)
608
+
609
+ return h
610
+
611
+ def forward_webui(*args, **kwargs):
612
+ # webui will handle other compoments
613
+ try:
614
+ if shared.cmd_opts.lowvram:
615
+ lowvram.send_everything_to_cpu()
616
+
617
+ return forward(*args, **kwargs)
618
+ finally:
619
+ if self.lowvram:
620
+ for param in self.control_params:
621
+ if isinstance(param.control_model, torch.nn.Module):
622
+ param.control_model.to("cpu")
623
+
624
+ def hacked_basic_transformer_inner_forward(self, x, context=None):
625
+ x_norm1 = self.norm1(x)
626
+ self_attn1 = None
627
+ if self.disable_self_attn:
628
+ # Do not use self-attention
629
+ self_attn1 = self.attn1(x_norm1, context=context)
630
+ else:
631
+ # Use self-attention
632
+ self_attention_context = x_norm1
633
+ if outer.attention_auto_machine == AutoMachine.Write:
634
+ if outer.attention_auto_machine_weight > self.attn_weight:
635
+ self.bank.append(self_attention_context.detach().clone())
636
+ self.style_cfgs.append(outer.current_style_fidelity)
637
+ if outer.attention_auto_machine == AutoMachine.Read:
638
+ if len(self.bank) > 0:
639
+ style_cfg = sum(self.style_cfgs) / float(len(self.style_cfgs))
640
+ self_attn1_uc = self.attn1(x_norm1, context=torch.cat([self_attention_context] + self.bank, dim=1))
641
+ self_attn1_c = self_attn1_uc.clone()
642
+ if len(outer.current_uc_indices) > 0 and style_cfg > 1e-5:
643
+ self_attn1_c[outer.current_uc_indices] = self.attn1(
644
+ x_norm1[outer.current_uc_indices],
645
+ context=self_attention_context[outer.current_uc_indices])
646
+ self_attn1 = style_cfg * self_attn1_c + (1.0 - style_cfg) * self_attn1_uc
647
+ self.bank = []
648
+ self.style_cfgs = []
649
+ if self_attn1 is None:
650
+ self_attn1 = self.attn1(x_norm1, context=self_attention_context)
651
+
652
+ x = self_attn1.to(x.dtype) + x
653
+ x = self.attn2(self.norm2(x), context=context) + x
654
+ x = self.ff(self.norm3(x)) + x
655
+ return x
656
+
657
+ def hacked_group_norm_forward(self, *args, **kwargs):
658
+ eps = 1e-6
659
+ x = self.original_forward(*args, **kwargs)
660
+ y = None
661
+ if outer.gn_auto_machine == AutoMachine.Write:
662
+ if outer.gn_auto_machine_weight > self.gn_weight:
663
+ var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
664
+ self.mean_bank.append(mean)
665
+ self.var_bank.append(var)
666
+ self.style_cfgs.append(outer.current_style_fidelity)
667
+ if outer.gn_auto_machine == AutoMachine.Read:
668
+ if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
669
+ style_cfg = sum(self.style_cfgs) / float(len(self.style_cfgs))
670
+ var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
671
+ std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
672
+ mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
673
+ var_acc = sum(self.var_bank) / float(len(self.var_bank))
674
+ std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
675
+ y_uc = (((x - mean) / std) * std_acc) + mean_acc
676
+ y_c = y_uc.clone()
677
+ if len(outer.current_uc_indices) > 0 and style_cfg > 1e-5:
678
+ y_c[outer.current_uc_indices] = x.to(y_c.dtype)[outer.current_uc_indices]
679
+ y = style_cfg * y_c + (1.0 - style_cfg) * y_uc
680
+ self.mean_bank = []
681
+ self.var_bank = []
682
+ self.style_cfgs = []
683
+ if y is None:
684
+ y = x
685
+ return y.to(x.dtype)
686
+
687
+ if getattr(process, 'sample_before_CN_hack', None) is None:
688
+ process.sample_before_CN_hack = process.sample
689
+ process.sample = process_sample
690
+
691
+ model._original_forward = model.forward
692
+ outer.original_forward = model.forward
693
+ model.forward = forward_webui.__get__(model, UNetModel)
694
+
695
+ outer.vae_cache = TorchCache()
696
+
697
+ all_modules = torch_dfs(model)
698
+
699
+ attn_modules = [module for module in all_modules if isinstance(module, BasicTransformerBlock)]
700
+ attn_modules = sorted(attn_modules, key=lambda x: - x.norm1.normalized_shape[0])
701
+
702
+ for i, module in enumerate(attn_modules):
703
+ if getattr(module, '_original_inner_forward', None) is None:
704
+ module._original_inner_forward = module._forward
705
+ module._forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
706
+ module.bank = []
707
+ module.style_cfgs = []
708
+ module.attn_weight = float(i) / float(len(attn_modules))
709
+
710
+ gn_modules = [model.middle_block]
711
+ model.middle_block.gn_weight = 0
712
+
713
+ input_block_indices = [4, 5, 7, 8, 10, 11]
714
+ for w, i in enumerate(input_block_indices):
715
+ module = model.input_blocks[i]
716
+ module.gn_weight = 1.0 - float(w) / float(len(input_block_indices))
717
+ gn_modules.append(module)
718
+
719
+ output_block_indices = [0, 1, 2, 3, 4, 5, 6, 7]
720
+ for w, i in enumerate(output_block_indices):
721
+ module = model.output_blocks[i]
722
+ module.gn_weight = float(w) / float(len(output_block_indices))
723
+ gn_modules.append(module)
724
+
725
+ for i, module in enumerate(gn_modules):
726
+ if getattr(module, 'original_forward', None) is None:
727
+ module.original_forward = module.forward
728
+ module.forward = hacked_group_norm_forward.__get__(module, torch.nn.Module)
729
+ module.mean_bank = []
730
+ module.var_bank = []
731
+ module.style_cfgs = []
732
+ module.gn_weight *= 2
733
+
734
+ outer.attn_module_list = attn_modules
735
+ outer.gn_module_list = gn_modules
736
+
737
+ scripts.script_callbacks.on_cfg_denoiser(self.guidance_schedule_handler)
738
+
739
+ def restore(self, model):
740
+ scripts.script_callbacks.remove_callbacks_for_function(self.guidance_schedule_handler)
741
+ if hasattr(self, "control_params"):
742
+ del self.control_params
743
+
744
+ if not hasattr(model, "_original_forward"):
745
+ # no such handle, ignore
746
+ return
747
+
748
+ model.forward = model._original_forward
749
+ del model._original_forward
extensions/microsoftexcel-controlnet/scripts/lvminthin.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # High Quality Edge Thinning using Pure Python
2
+ # Written by Lvmin Zhang
3
+ # 2023 April
4
+ # Stanford University
5
+ # If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet.
6
+
7
+
8
+ import cv2
9
+ import numpy as np
10
+
11
+
12
+ lvmin_kernels_raw = [
13
+ np.array([
14
+ [-1, -1, -1],
15
+ [0, 1, 0],
16
+ [1, 1, 1]
17
+ ], dtype=np.int32),
18
+ np.array([
19
+ [0, -1, -1],
20
+ [1, 1, -1],
21
+ [0, 1, 0]
22
+ ], dtype=np.int32)
23
+ ]
24
+
25
+ lvmin_kernels = []
26
+ lvmin_kernels += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_kernels_raw]
27
+ lvmin_kernels += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_kernels_raw]
28
+ lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw]
29
+ lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw]
30
+
31
+ lvmin_prunings_raw = [
32
+ np.array([
33
+ [-1, -1, -1],
34
+ [-1, 1, -1],
35
+ [0, 0, -1]
36
+ ], dtype=np.int32),
37
+ np.array([
38
+ [-1, -1, -1],
39
+ [-1, 1, -1],
40
+ [-1, 0, 0]
41
+ ], dtype=np.int32)
42
+ ]
43
+
44
+ lvmin_prunings = []
45
+ lvmin_prunings += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_prunings_raw]
46
+ lvmin_prunings += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_prunings_raw]
47
+ lvmin_prunings += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_prunings_raw]
48
+ lvmin_prunings += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_prunings_raw]
49
+
50
+
51
+ def remove_pattern(x, kernel):
52
+ objects = cv2.morphologyEx(x, cv2.MORPH_HITMISS, kernel)
53
+ objects = np.where(objects > 127)
54
+ x[objects] = 0
55
+ return x, objects[0].shape[0] > 0
56
+
57
+
58
+ def thin_one_time(x, kernels):
59
+ y = x
60
+ is_done = True
61
+ for k in kernels:
62
+ y, has_update = remove_pattern(y, k)
63
+ if has_update:
64
+ is_done = False
65
+ return y, is_done
66
+
67
+
68
+ def lvmin_thin(x, prunings=True):
69
+ y = x
70
+ for i in range(32):
71
+ y, is_done = thin_one_time(y, lvmin_kernels)
72
+ if is_done:
73
+ break
74
+ if prunings:
75
+ y, _ = thin_one_time(y, lvmin_prunings)
76
+ return y
77
+
78
+
79
+ def nake_nms(x):
80
+ f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
81
+ f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
82
+ f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
83
+ f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
84
+ y = np.zeros_like(x)
85
+ for f in [f1, f2, f3, f4]:
86
+ np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
87
+ return y
88
+
extensions/microsoftexcel-controlnet/scripts/movie2movie.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import os
3
+ import shutil
4
+
5
+ import cv2
6
+ import gradio as gr
7
+ import modules.scripts as scripts
8
+
9
+ from modules import images
10
+ from modules.processing import process_images
11
+ from modules.shared import opts
12
+ from PIL import Image
13
+
14
+ import numpy as np
15
+
16
+ _BASEDIR = "/controlnet-m2m"
17
+ _BASEFILE = "animation"
18
+
19
+ def get_all_frames(video_path):
20
+ if video_path is None:
21
+ return None
22
+ cap = cv2.VideoCapture(video_path)
23
+ frame_list = []
24
+ if not cap.isOpened():
25
+ return
26
+ while True:
27
+ ret, frame = cap.read()
28
+ if ret:
29
+ frame_list.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
30
+ else:
31
+ return frame_list
32
+
33
+ def get_min_frame_num(video_list):
34
+ min_frame_num = -1
35
+ for video in video_list:
36
+ if video is None:
37
+ continue
38
+ else:
39
+ frame_num = len(video)
40
+ print(frame_num)
41
+ if min_frame_num < 0:
42
+ min_frame_num = frame_num
43
+ elif frame_num < min_frame_num:
44
+ min_frame_num = frame_num
45
+ return min_frame_num
46
+
47
+ def pil2cv(image):
48
+ new_image = np.array(image, dtype=np.uint8)
49
+ if new_image.ndim == 2:
50
+ pass
51
+ elif new_image.shape[2] == 3:
52
+ new_image = new_image[:, :, ::-1]
53
+ elif new_image.shape[2] == 4:
54
+ new_image = new_image[:, :, [2, 1, 0, 3]]
55
+ return new_image
56
+
57
+
58
+ def save_gif(path, image_list, name, duration):
59
+ tmp_dir = path + "/tmp/"
60
+ if os.path.isdir(tmp_dir):
61
+ shutil.rmtree(tmp_dir)
62
+ os.mkdir(tmp_dir)
63
+ for i, image in enumerate(image_list):
64
+ images.save_image(image, tmp_dir, f"output_{i}")
65
+
66
+ os.makedirs(f"{path}{_BASEDIR}", exist_ok=True)
67
+
68
+ image_list[0].save(f"{path}{_BASEDIR}/{name}.gif", save_all=True, append_images=image_list[1:], optimize=False, duration=duration, loop=0)
69
+
70
+
71
+ class Script(scripts.Script):
72
+
73
+ def title(self):
74
+ return "controlnet m2m"
75
+
76
+ def show(self, is_img2img):
77
+ return True
78
+
79
+ def ui(self, is_img2img):
80
+ # How the script's is displayed in the UI. See https://gradio.app/docs/#components
81
+ # for the different UI components you can use and how to create them.
82
+ # Most UI components can return a value, such as a boolean for a checkbox.
83
+ # The returned values are passed to the run method as parameters.
84
+
85
+ ctrls_group = ()
86
+ max_models = opts.data.get("control_net_max_models_num", 1)
87
+
88
+ with gr.Group():
89
+ with gr.Accordion("ControlNet-M2M", open = False):
90
+ duration = gr.Slider(label=f"Duration", value=50.0, minimum=10.0, maximum=200.0, step=10, interactive=True, elem_id='controlnet_movie2movie_duration_slider')
91
+ with gr.Tabs():
92
+ for i in range(max_models):
93
+ with gr.Tab(f"ControlNet-{i}"):
94
+ with gr.TabItem("Movie Input"):
95
+ ctrls_group += (gr.Video(format='mp4', source='upload', elem_id = f"video_{i}"), )
96
+ with gr.TabItem("Image Input"):
97
+ ctrls_group += (gr.Image(source='upload', brush_radius=20, mirror_webcam=False, type='numpy', tool='sketch', elem_id=f'image_{i}'), )
98
+ ctrls_group += (gr.Checkbox(label=f"Save preprocessed", value=False, elem_id = f"save_pre_{i}"),)
99
+
100
+ ctrls_group += (duration,)
101
+
102
+ return ctrls_group
103
+
104
+ def run(self, p, *args):
105
+ # This is where the additional processing is implemented. The parameters include
106
+ # self, the model object "p" (a StableDiffusionProcessing class, see
107
+ # processing.py), and the parameters returned by the ui method.
108
+ # Custom functions can be defined here, and additional libraries can be imported
109
+ # to be used in processing. The return value should be a Processed object, which is
110
+ # what is returned by the process_images method.
111
+
112
+ contents_num = opts.data.get("control_net_max_models_num", 1)
113
+ arg_num = 3
114
+ item_list = []
115
+ video_list = []
116
+ for input_set in [tuple(args[:contents_num * arg_num][i:i+3]) for i in range(0, len(args[:contents_num * arg_num]), arg_num)]:
117
+ if input_set[0] is not None:
118
+ item_list.append([get_all_frames(input_set[0]), "video"])
119
+ video_list.append(get_all_frames(input_set[0]))
120
+ if input_set[1] is not None:
121
+ item_list.append([cv2.cvtColor(pil2cv(input_set[1]["image"]), cv2.COLOR_BGRA2RGB), "image"])
122
+
123
+ save_pre = list(args[2:contents_num * arg_num:3])
124
+ item_num = len(item_list)
125
+ video_num = len(video_list)
126
+ duration, = args[contents_num * arg_num:]
127
+
128
+ frame_num = get_min_frame_num(video_list)
129
+ if frame_num > 0:
130
+ output_image_list = []
131
+ pre_output_image_list = []
132
+ for i in range(item_num):
133
+ pre_output_image_list.append([])
134
+
135
+ for frame in range(frame_num):
136
+ copy_p = copy.copy(p)
137
+ copy_p.control_net_input_image = []
138
+ for item in item_list:
139
+ if item[1] == "video":
140
+ copy_p.control_net_input_image.append(item[0][frame])
141
+ elif item[1] == "image":
142
+ copy_p.control_net_input_image.append(item[0])
143
+ else:
144
+ continue
145
+
146
+ proc = process_images(copy_p)
147
+ img = proc.images[0]
148
+ output_image_list.append(img)
149
+
150
+ for i in range(len(save_pre)):
151
+ if save_pre[i]:
152
+ try:
153
+ pre_output_image_list[i].append(proc.images[i + 1])
154
+ except:
155
+ print(f"proc.images[{i} failed")
156
+
157
+ copy_p.close()
158
+
159
+ # filename format is seq-seed-animation.gif seq is 5 places left filled with 0
160
+
161
+ seq = images.get_next_sequence_number(f"{p.outpath_samples}{_BASEDIR}", "")
162
+ filename = f"{seq:05}-{proc.seed}-{_BASEFILE}"
163
+ save_gif(p.outpath_samples, output_image_list, filename, duration)
164
+ proc.images = [f"{p.outpath_samples}{_BASEDIR}/{filename}.gif"]
165
+
166
+
167
+ for i in range(len(save_pre)):
168
+ if save_pre[i]:
169
+ # control files add -controlX.gif where X is the controlnet number
170
+ save_gif(p.outpath_samples, pre_output_image_list[i], f"{filename}-control{i}", duration)
171
+ proc.images.append(f"{p.outpath_samples}{_BASEDIR}/{filename}-control{i}.gif")
172
+
173
+ else:
174
+ proc = process_images(p)
175
+
176
+ return proc
extensions/microsoftexcel-controlnet/scripts/processor.py ADDED
@@ -0,0 +1,871 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ from annotator.util import HWC3
5
+ from typing import Callable, Tuple
6
+
7
+
8
+ def pad64(x):
9
+ return int(np.ceil(float(x) / 64.0) * 64 - x)
10
+
11
+
12
+ def safer_memory(x):
13
+ # Fix many MAC/AMD problems
14
+ return np.ascontiguousarray(x.copy()).copy()
15
+
16
+
17
+ def resize_image_with_pad(input_image, resolution):
18
+ img = HWC3(input_image)
19
+ H_raw, W_raw, _ = img.shape
20
+ k = float(resolution) / float(min(H_raw, W_raw))
21
+ interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
22
+ H_target = int(np.round(float(H_raw) * k))
23
+ W_target = int(np.round(float(W_raw) * k))
24
+ img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
25
+ H_pad, W_pad = pad64(H_target), pad64(W_target)
26
+ img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
27
+
28
+ def remove_pad(x):
29
+ return safer_memory(x[:H_target, :W_target])
30
+
31
+ return safer_memory(img_padded), remove_pad
32
+
33
+
34
+ model_canny = None
35
+
36
+
37
+ def canny(img, res=512, thr_a=100, thr_b=200, **kwargs):
38
+ l, h = thr_a, thr_b
39
+ img, remove_pad = resize_image_with_pad(img, res)
40
+ global model_canny
41
+ if model_canny is None:
42
+ from annotator.canny import apply_canny
43
+ model_canny = apply_canny
44
+ result = model_canny(img, l, h)
45
+ return remove_pad(result), True
46
+
47
+
48
+ def scribble_thr(img, res=512, **kwargs):
49
+ img, remove_pad = resize_image_with_pad(img, res)
50
+ result = np.zeros_like(img, dtype=np.uint8)
51
+ result[np.min(img, axis=2) < 127] = 255
52
+ return remove_pad(result), True
53
+
54
+
55
+ def scribble_xdog(img, res=512, thr_a=32, **kwargs):
56
+ img, remove_pad = resize_image_with_pad(img, res)
57
+ g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
58
+ g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
59
+ dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
60
+ result = np.zeros_like(img, dtype=np.uint8)
61
+ result[2 * (255 - dog) > thr_a] = 255
62
+ return remove_pad(result), True
63
+
64
+
65
+ def tile_resample(img, res=512, thr_a=1.0, **kwargs):
66
+ img = HWC3(img)
67
+ if thr_a < 1.1:
68
+ return img, True
69
+ H, W, C = img.shape
70
+ H = int(float(H) / float(thr_a))
71
+ W = int(float(W) / float(thr_a))
72
+ img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
73
+ return img, True
74
+
75
+
76
+ def threshold(img, res=512, thr_a=127, **kwargs):
77
+ img, remove_pad = resize_image_with_pad(img, res)
78
+ result = np.zeros_like(img, dtype=np.uint8)
79
+ result[np.min(img, axis=2) > thr_a] = 255
80
+ return remove_pad(result), True
81
+
82
+
83
+ def identity(img, **kwargs):
84
+ return img, True
85
+
86
+
87
+ def invert(img, res=512, **kwargs):
88
+ return 255 - HWC3(img), True
89
+
90
+
91
+ model_hed = None
92
+
93
+
94
+ def hed(img, res=512, **kwargs):
95
+ img, remove_pad = resize_image_with_pad(img, res)
96
+ global model_hed
97
+ if model_hed is None:
98
+ from annotator.hed import apply_hed
99
+ model_hed = apply_hed
100
+ result = model_hed(img)
101
+ return remove_pad(result), True
102
+
103
+
104
+ def hed_safe(img, res=512, **kwargs):
105
+ img, remove_pad = resize_image_with_pad(img, res)
106
+ global model_hed
107
+ if model_hed is None:
108
+ from annotator.hed import apply_hed
109
+ model_hed = apply_hed
110
+ result = model_hed(img, is_safe=True)
111
+ return remove_pad(result), True
112
+
113
+
114
+ def unload_hed():
115
+ global model_hed
116
+ if model_hed is not None:
117
+ from annotator.hed import unload_hed_model
118
+ unload_hed_model()
119
+
120
+
121
+ def scribble_hed(img, res=512, **kwargs):
122
+ result, _ = hed(img, res)
123
+ import cv2
124
+ from annotator.util import nms
125
+ result = nms(result, 127, 3.0)
126
+ result = cv2.GaussianBlur(result, (0, 0), 3.0)
127
+ result[result > 4] = 255
128
+ result[result < 255] = 0
129
+ return result, True
130
+
131
+
132
+ model_mediapipe_face = None
133
+
134
+
135
+ def mediapipe_face(img, res=512, thr_a: int = 10, thr_b: float = 0.5, **kwargs):
136
+ max_faces = int(thr_a)
137
+ min_confidence = thr_b
138
+ img, remove_pad = resize_image_with_pad(img, res)
139
+ global model_mediapipe_face
140
+ if model_mediapipe_face is None:
141
+ from annotator.mediapipe_face import apply_mediapipe_face
142
+ model_mediapipe_face = apply_mediapipe_face
143
+ result = model_mediapipe_face(img, max_faces=max_faces, min_confidence=min_confidence)
144
+ return remove_pad(result), True
145
+
146
+
147
+ model_mlsd = None
148
+
149
+
150
+ def mlsd(img, res=512, thr_a=0.1, thr_b=0.1, **kwargs):
151
+ thr_v, thr_d = thr_a, thr_b
152
+ img, remove_pad = resize_image_with_pad(img, res)
153
+ global model_mlsd
154
+ if model_mlsd is None:
155
+ from annotator.mlsd import apply_mlsd
156
+ model_mlsd = apply_mlsd
157
+ result = model_mlsd(img, thr_v, thr_d)
158
+ return remove_pad(result), True
159
+
160
+
161
+ def unload_mlsd():
162
+ global model_mlsd
163
+ if model_mlsd is not None:
164
+ from annotator.mlsd import unload_mlsd_model
165
+ unload_mlsd_model()
166
+
167
+
168
+ model_midas = None
169
+
170
+
171
+ def midas(img, res=512, a=np.pi * 2.0, **kwargs):
172
+ img, remove_pad = resize_image_with_pad(img, res)
173
+ global model_midas
174
+ if model_midas is None:
175
+ from annotator.midas import apply_midas
176
+ model_midas = apply_midas
177
+ result, _ = model_midas(img, a)
178
+ return remove_pad(result), True
179
+
180
+
181
+ def midas_normal(img, res=512, a=np.pi * 2.0, thr_a=0.4, **kwargs): # bg_th -> thr_a
182
+ bg_th = thr_a
183
+ img, remove_pad = resize_image_with_pad(img, res)
184
+ global model_midas
185
+ if model_midas is None:
186
+ from annotator.midas import apply_midas
187
+ model_midas = apply_midas
188
+ _, result = model_midas(img, a, bg_th)
189
+ return remove_pad(result), True
190
+
191
+
192
+ def unload_midas():
193
+ global model_midas
194
+ if model_midas is not None:
195
+ from annotator.midas import unload_midas_model
196
+ unload_midas_model()
197
+
198
+
199
+ model_leres = None
200
+
201
+
202
+ def leres(img, res=512, a=np.pi * 2.0, thr_a=0, thr_b=0, boost=False, **kwargs):
203
+ img, remove_pad = resize_image_with_pad(img, res)
204
+ global model_leres
205
+ if model_leres is None:
206
+ from annotator.leres import apply_leres
207
+ model_leres = apply_leres
208
+ result = model_leres(img, thr_a, thr_b, boost=boost)
209
+ return remove_pad(result), True
210
+
211
+
212
+ def unload_leres():
213
+ global model_leres
214
+ if model_leres is not None:
215
+ from annotator.leres import unload_leres_model
216
+ unload_leres_model()
217
+
218
+
219
+ class OpenposeModel(object):
220
+ def __init__(self) -> None:
221
+ self.model_openpose = None
222
+
223
+ def run_model(
224
+ self,
225
+ img: np.ndarray,
226
+ include_body: bool,
227
+ include_hand: bool,
228
+ include_face: bool,
229
+ json_pose_callback: Callable[[str], None] = None,
230
+ res: int = 512,
231
+ **kwargs # Ignore rest of kwargs
232
+ ) -> Tuple[np.ndarray, bool]:
233
+ """Run the openpose model. Returns a tuple of
234
+ - result image
235
+ - is_image flag
236
+
237
+ The JSON format pose string is passed to `json_pose_callback`.
238
+ """
239
+ if json_pose_callback is None:
240
+ json_pose_callback = lambda x: None
241
+
242
+ img, remove_pad = resize_image_with_pad(img, res)
243
+
244
+ if self.model_openpose is None:
245
+ from annotator.openpose import OpenposeDetector
246
+ self.model_openpose = OpenposeDetector()
247
+
248
+ return remove_pad(self.model_openpose(
249
+ img,
250
+ include_body=include_body,
251
+ include_hand=include_hand,
252
+ include_face=include_face,
253
+ json_pose_callback=json_pose_callback
254
+ )), True
255
+
256
+ def unload(self):
257
+ if self.model_openpose is not None:
258
+ self.model_openpose.unload_model()
259
+
260
+
261
+ g_openpose_model = OpenposeModel()
262
+
263
+ model_uniformer = None
264
+
265
+
266
+ def uniformer(img, res=512, **kwargs):
267
+ img, remove_pad = resize_image_with_pad(img, res)
268
+ global model_uniformer
269
+ if model_uniformer is None:
270
+ from annotator.uniformer import apply_uniformer
271
+ model_uniformer = apply_uniformer
272
+ result = model_uniformer(img)
273
+ return remove_pad(result), True
274
+
275
+
276
+ def unload_uniformer():
277
+ global model_uniformer
278
+ if model_uniformer is not None:
279
+ from annotator.uniformer import unload_uniformer_model
280
+ unload_uniformer_model()
281
+
282
+
283
+ model_pidinet = None
284
+
285
+
286
+ def pidinet(img, res=512, **kwargs):
287
+ img, remove_pad = resize_image_with_pad(img, res)
288
+ global model_pidinet
289
+ if model_pidinet is None:
290
+ from annotator.pidinet import apply_pidinet
291
+ model_pidinet = apply_pidinet
292
+ result = model_pidinet(img)
293
+ return remove_pad(result), True
294
+
295
+
296
+ def pidinet_ts(img, res=512, **kwargs):
297
+ img, remove_pad = resize_image_with_pad(img, res)
298
+ global model_pidinet
299
+ if model_pidinet is None:
300
+ from annotator.pidinet import apply_pidinet
301
+ model_pidinet = apply_pidinet
302
+ result = model_pidinet(img, apply_fliter=True)
303
+ return remove_pad(result), True
304
+
305
+
306
+ def pidinet_safe(img, res=512, **kwargs):
307
+ img, remove_pad = resize_image_with_pad(img, res)
308
+ global model_pidinet
309
+ if model_pidinet is None:
310
+ from annotator.pidinet import apply_pidinet
311
+ model_pidinet = apply_pidinet
312
+ result = model_pidinet(img, is_safe=True)
313
+ return remove_pad(result), True
314
+
315
+
316
+ def scribble_pidinet(img, res=512, **kwargs):
317
+ result, _ = pidinet(img, res)
318
+ import cv2
319
+ from annotator.util import nms
320
+ result = nms(result, 127, 3.0)
321
+ result = cv2.GaussianBlur(result, (0, 0), 3.0)
322
+ result[result > 4] = 255
323
+ result[result < 255] = 0
324
+ return result, True
325
+
326
+
327
+ def unload_pidinet():
328
+ global model_pidinet
329
+ if model_pidinet is not None:
330
+ from annotator.pidinet import unload_pid_model
331
+ unload_pid_model()
332
+
333
+
334
+ clip_encoder = None
335
+
336
+
337
+ def clip(img, res=512, **kwargs):
338
+ img = HWC3(img)
339
+ global clip_encoder
340
+ if clip_encoder is None:
341
+ from annotator.clip import apply_clip
342
+ clip_encoder = apply_clip
343
+ result = clip_encoder(img)
344
+ return result, False
345
+
346
+
347
+ def clip_vision_visualization(x):
348
+ x = x.detach().cpu().numpy()[0]
349
+ x = np.ascontiguousarray(x).copy()
350
+ return np.ndarray((x.shape[0] * 4, x.shape[1]), dtype="uint8", buffer=x.tobytes())
351
+
352
+
353
+ def unload_clip():
354
+ global clip_encoder
355
+ if clip_encoder is not None:
356
+ from annotator.clip import unload_clip_model
357
+ unload_clip_model()
358
+
359
+
360
+ model_color = None
361
+
362
+
363
+ def color(img, res=512, **kwargs):
364
+ img = HWC3(img)
365
+ global model_color
366
+ if model_color is None:
367
+ from annotator.color import apply_color
368
+ model_color = apply_color
369
+ result = model_color(img, res=res)
370
+ return result, True
371
+
372
+
373
+ def lineart_standard(img, res=512, **kwargs):
374
+ img, remove_pad = resize_image_with_pad(img, res)
375
+ x = img.astype(np.float32)
376
+ g = cv2.GaussianBlur(x, (0, 0), 6.0)
377
+ intensity = np.min(g - x, axis=2).clip(0, 255)
378
+ intensity /= max(16, np.median(intensity[intensity > 8]))
379
+ intensity *= 127
380
+ result = intensity.clip(0, 255).astype(np.uint8)
381
+ return remove_pad(result), True
382
+
383
+
384
+ model_lineart = None
385
+
386
+
387
+ def lineart(img, res=512, **kwargs):
388
+ img, remove_pad = resize_image_with_pad(img, res)
389
+ global model_lineart
390
+ if model_lineart is None:
391
+ from annotator.lineart import LineartDetector
392
+ model_lineart = LineartDetector(LineartDetector.model_default)
393
+
394
+ # applied auto inversion
395
+ result = 255 - model_lineart(img)
396
+ return remove_pad(result), True
397
+
398
+
399
+ def unload_lineart():
400
+ global model_lineart
401
+ if model_lineart is not None:
402
+ model_lineart.unload_model()
403
+
404
+
405
+ model_lineart_coarse = None
406
+
407
+
408
+ def lineart_coarse(img, res=512, **kwargs):
409
+ img, remove_pad = resize_image_with_pad(img, res)
410
+ global model_lineart_coarse
411
+ if model_lineart_coarse is None:
412
+ from annotator.lineart import LineartDetector
413
+ model_lineart_coarse = LineartDetector(LineartDetector.model_coarse)
414
+
415
+ # applied auto inversion
416
+ result = 255 - model_lineart_coarse(img)
417
+ return remove_pad(result), True
418
+
419
+
420
+ def unload_lineart_coarse():
421
+ global model_lineart_coarse
422
+ if model_lineart_coarse is not None:
423
+ model_lineart_coarse.unload_model()
424
+
425
+
426
+ model_lineart_anime = None
427
+
428
+
429
+ def lineart_anime(img, res=512, **kwargs):
430
+ img, remove_pad = resize_image_with_pad(img, res)
431
+ global model_lineart_anime
432
+ if model_lineart_anime is None:
433
+ from annotator.lineart_anime import LineartAnimeDetector
434
+ model_lineart_anime = LineartAnimeDetector()
435
+
436
+ # applied auto inversion
437
+ result = 255 - model_lineart_anime(img)
438
+ return remove_pad(result), True
439
+
440
+
441
+ def unload_lineart_anime():
442
+ global model_lineart_anime
443
+ if model_lineart_anime is not None:
444
+ model_lineart_anime.unload_model()
445
+
446
+
447
+ model_manga_line = None
448
+
449
+
450
+ def lineart_anime_denoise(img, res=512, **kwargs):
451
+ img, remove_pad = resize_image_with_pad(img, res)
452
+ global model_manga_line
453
+ if model_manga_line is None:
454
+ from annotator.manga_line import MangaLineExtration
455
+ model_manga_line = MangaLineExtration()
456
+
457
+ # applied auto inversion
458
+ result = model_manga_line(img)
459
+ return remove_pad(result), True
460
+
461
+
462
+ def unload_lineart_anime_denoise():
463
+ global model_manga_line
464
+ if model_manga_line is not None:
465
+ model_manga_line.unload_model()
466
+
467
+
468
+ model_zoe_depth = None
469
+
470
+
471
+ def zoe_depth(img, res=512, **kwargs):
472
+ img, remove_pad = resize_image_with_pad(img, res)
473
+ global model_zoe_depth
474
+ if model_zoe_depth is None:
475
+ from annotator.zoe import ZoeDetector
476
+ model_zoe_depth = ZoeDetector()
477
+ result = model_zoe_depth(img)
478
+ return remove_pad(result), True
479
+
480
+
481
+ def unload_zoe_depth():
482
+ global model_zoe_depth
483
+ if model_zoe_depth is not None:
484
+ model_zoe_depth.unload_model()
485
+
486
+
487
+ model_normal_bae = None
488
+
489
+
490
+ def normal_bae(img, res=512, **kwargs):
491
+ img, remove_pad = resize_image_with_pad(img, res)
492
+ global model_normal_bae
493
+ if model_normal_bae is None:
494
+ from annotator.normalbae import NormalBaeDetector
495
+ model_normal_bae = NormalBaeDetector()
496
+ result = model_normal_bae(img)
497
+ return remove_pad(result), True
498
+
499
+
500
+ def unload_normal_bae():
501
+ global model_normal_bae
502
+ if model_normal_bae is not None:
503
+ model_normal_bae.unload_model()
504
+
505
+
506
+ model_oneformer_coco = None
507
+
508
+
509
+ def oneformer_coco(img, res=512, **kwargs):
510
+ img, remove_pad = resize_image_with_pad(img, res)
511
+ global model_oneformer_coco
512
+ if model_oneformer_coco is None:
513
+ from annotator.oneformer import OneformerDetector
514
+ model_oneformer_coco = OneformerDetector(OneformerDetector.configs["coco"])
515
+ result = model_oneformer_coco(img)
516
+ return remove_pad(result), True
517
+
518
+
519
+ def unload_oneformer_coco():
520
+ global model_oneformer_coco
521
+ if model_oneformer_coco is not None:
522
+ model_oneformer_coco.unload_model()
523
+
524
+
525
+ model_oneformer_ade20k = None
526
+
527
+
528
+ def oneformer_ade20k(img, res=512, **kwargs):
529
+ img, remove_pad = resize_image_with_pad(img, res)
530
+ global model_oneformer_ade20k
531
+ if model_oneformer_ade20k is None:
532
+ from annotator.oneformer import OneformerDetector
533
+ model_oneformer_ade20k = OneformerDetector(OneformerDetector.configs["ade20k"])
534
+ result = model_oneformer_ade20k(img)
535
+ return remove_pad(result), True
536
+
537
+
538
+ def unload_oneformer_ade20k():
539
+ global model_oneformer_ade20k
540
+ if model_oneformer_ade20k is not None:
541
+ model_oneformer_ade20k.unload_model()
542
+
543
+
544
+ model_shuffle = None
545
+
546
+
547
+ def shuffle(img, res=512, **kwargs):
548
+ img, remove_pad = resize_image_with_pad(img, res)
549
+ img = remove_pad(img)
550
+ global model_shuffle
551
+ if model_shuffle is None:
552
+ from annotator.shuffle import ContentShuffleDetector
553
+ model_shuffle = ContentShuffleDetector()
554
+ result = model_shuffle(img)
555
+ return result, True
556
+
557
+
558
+ model_free_preprocessors = [
559
+ "reference_only",
560
+ "reference_adain",
561
+ "reference_adain+attn"
562
+ ]
563
+
564
+ flag_preprocessor_resolution = "Preprocessor Resolution"
565
+ preprocessor_sliders_config = {
566
+ "none": [],
567
+ "inpaint": [],
568
+ "inpaint_only": [],
569
+ "canny": [
570
+ {
571
+ "name": flag_preprocessor_resolution,
572
+ "value": 512,
573
+ "min": 64,
574
+ "max": 2048
575
+ },
576
+ {
577
+ "name": "Canny Low Threshold",
578
+ "value": 100,
579
+ "min": 1,
580
+ "max": 255
581
+ },
582
+ {
583
+ "name": "Canny High Threshold",
584
+ "value": 200,
585
+ "min": 1,
586
+ "max": 255
587
+ },
588
+ ],
589
+ "mlsd": [
590
+ {
591
+ "name": flag_preprocessor_resolution,
592
+ "min": 64,
593
+ "max": 2048,
594
+ "value": 512
595
+ },
596
+ {
597
+ "name": "MLSD Value Threshold",
598
+ "min": 0.01,
599
+ "max": 2.0,
600
+ "value": 0.1,
601
+ "step": 0.01
602
+ },
603
+ {
604
+ "name": "MLSD Distance Threshold",
605
+ "min": 0.01,
606
+ "max": 20.0,
607
+ "value": 0.1,
608
+ "step": 0.01
609
+ }
610
+ ],
611
+ "hed": [
612
+ {
613
+ "name": flag_preprocessor_resolution,
614
+ "min": 64,
615
+ "max": 2048,
616
+ "value": 512
617
+ }
618
+ ],
619
+ "scribble_hed": [
620
+ {
621
+ "name": flag_preprocessor_resolution,
622
+ "min": 64,
623
+ "max": 2048,
624
+ "value": 512
625
+ }
626
+ ],
627
+ "hed_safe": [
628
+ {
629
+ "name": flag_preprocessor_resolution,
630
+ "min": 64,
631
+ "max": 2048,
632
+ "value": 512
633
+ }
634
+ ],
635
+ "openpose": [
636
+ {
637
+ "name": flag_preprocessor_resolution,
638
+ "min": 64,
639
+ "max": 2048,
640
+ "value": 512
641
+ }
642
+ ],
643
+ "openpose_full": [
644
+ {
645
+ "name": flag_preprocessor_resolution,
646
+ "min": 64,
647
+ "max": 2048,
648
+ "value": 512
649
+ }
650
+ ],
651
+ "segmentation": [
652
+ {
653
+ "name": flag_preprocessor_resolution,
654
+ "min": 64,
655
+ "max": 2048,
656
+ "value": 512
657
+ }
658
+ ],
659
+ "depth": [
660
+ {
661
+ "name": flag_preprocessor_resolution,
662
+ "min": 64,
663
+ "max": 2048,
664
+ "value": 512
665
+ }
666
+ ],
667
+ "depth_leres": [
668
+ {
669
+ "name": flag_preprocessor_resolution,
670
+ "min": 64,
671
+ "max": 2048,
672
+ "value": 512
673
+ },
674
+ {
675
+ "name": "Remove Near %",
676
+ "min": 0,
677
+ "max": 100,
678
+ "value": 0,
679
+ "step": 0.1,
680
+ },
681
+ {
682
+ "name": "Remove Background %",
683
+ "min": 0,
684
+ "max": 100,
685
+ "value": 0,
686
+ "step": 0.1,
687
+ }
688
+ ],
689
+ "depth_leres++": [
690
+ {
691
+ "name": flag_preprocessor_resolution,
692
+ "min": 64,
693
+ "max": 2048,
694
+ "value": 512
695
+ },
696
+ {
697
+ "name": "Remove Near %",
698
+ "min": 0,
699
+ "max": 100,
700
+ "value": 0,
701
+ "step": 0.1,
702
+ },
703
+ {
704
+ "name": "Remove Background %",
705
+ "min": 0,
706
+ "max": 100,
707
+ "value": 0,
708
+ "step": 0.1,
709
+ }
710
+ ],
711
+ "normal_map": [
712
+ {
713
+ "name": flag_preprocessor_resolution,
714
+ "min": 64,
715
+ "max": 2048,
716
+ "value": 512
717
+ },
718
+ {
719
+ "name": "Normal Background Threshold",
720
+ "min": 0.0,
721
+ "max": 1.0,
722
+ "value": 0.4,
723
+ "step": 0.01
724
+ }
725
+ ],
726
+ "threshold": [
727
+ {
728
+ "name": flag_preprocessor_resolution,
729
+ "value": 512,
730
+ "min": 64,
731
+ "max": 2048
732
+ },
733
+ {
734
+ "name": "Binarization Threshold",
735
+ "min": 0,
736
+ "max": 255,
737
+ "value": 127
738
+ }
739
+ ],
740
+
741
+ "scribble_xdog": [
742
+ {
743
+ "name": flag_preprocessor_resolution,
744
+ "value": 512,
745
+ "min": 64,
746
+ "max": 2048
747
+ },
748
+ {
749
+ "name": "XDoG Threshold",
750
+ "min": 1,
751
+ "max": 64,
752
+ "value": 32,
753
+ }
754
+ ],
755
+ "tile_resample": [
756
+ None,
757
+ {
758
+ "name": "Down Sampling Rate",
759
+ "value": 1.0,
760
+ "min": 1.0,
761
+ "max": 8.0,
762
+ "step": 0.01
763
+ }
764
+ ],
765
+ "tile_colorfix": [
766
+ None,
767
+ {
768
+ "name": "Variation",
769
+ "value": 8.0,
770
+ "min": 3.0,
771
+ "max": 32.0,
772
+ "step": 1.0
773
+ }
774
+ ],
775
+ "tile_colorfix+sharp": [
776
+ None,
777
+ {
778
+ "name": "Variation",
779
+ "value": 8.0,
780
+ "min": 3.0,
781
+ "max": 32.0,
782
+ "step": 1.0
783
+ },
784
+ {
785
+ "name": "Sharpness",
786
+ "value": 1.0,
787
+ "min": 0.0,
788
+ "max": 2.0,
789
+ "step": 0.01
790
+ }
791
+ ],
792
+ "reference_only": [
793
+ None,
794
+ {
795
+ "name": r'Style Fidelity (only for "Balanced" mode)',
796
+ "value": 0.5,
797
+ "min": 0.0,
798
+ "max": 1.0,
799
+ "step": 0.01
800
+ }
801
+ ],
802
+ "reference_adain": [
803
+ None,
804
+ {
805
+ "name": r'Style Fidelity (only for "Balanced" mode)',
806
+ "value": 0.5,
807
+ "min": 0.0,
808
+ "max": 1.0,
809
+ "step": 0.01
810
+ }
811
+ ],
812
+ "reference_adain+attn": [
813
+ None,
814
+ {
815
+ "name": r'Style Fidelity (only for "Balanced" mode)',
816
+ "value": 0.5,
817
+ "min": 0.0,
818
+ "max": 1.0,
819
+ "step": 0.01
820
+ }
821
+ ],
822
+ "color": [
823
+ {
824
+ "name": flag_preprocessor_resolution,
825
+ "value": 512,
826
+ "min": 64,
827
+ "max": 2048,
828
+ }
829
+ ],
830
+ "mediapipe_face": [
831
+ {
832
+ "name": flag_preprocessor_resolution,
833
+ "value": 512,
834
+ "min": 64,
835
+ "max": 2048,
836
+ },
837
+ {
838
+ "name": "Max Faces",
839
+ "value": 1,
840
+ "min": 1,
841
+ "max": 10,
842
+ "step": 1
843
+ },
844
+ {
845
+ "name": "Min Face Confidence",
846
+ "value": 0.5,
847
+ "min": 0.01,
848
+ "max": 1.0,
849
+ "step": 0.01
850
+ }
851
+ ],
852
+ }
853
+
854
+ preprocessor_filters = {
855
+ "All": "none",
856
+ "Canny": "canny",
857
+ "Depth": "depth_midas",
858
+ "Normal": "normal_bae",
859
+ "OpenPose": "openpose_full",
860
+ "MLSD": "mlsd",
861
+ "Lineart": "lineart_standard (from white bg & black line)",
862
+ "SoftEdge": "softedge_pidinet",
863
+ "Scribble": "scribble_pidinet",
864
+ "Seg": "seg_ofade20k",
865
+ "Shuffle": "shuffle",
866
+ "Tile": "tile_resample",
867
+ "Inpaint": "inpaint_only",
868
+ "IP2P": "none",
869
+ "Reference": "reference_only",
870
+ "T2IA": "none",
871
+ }
extensions/microsoftexcel-controlnet/scripts/ui/__pycache__/controlnet_ui_group.cpython-310.pyc ADDED
Binary file (25.6 kB). View file
 
extensions/microsoftexcel-controlnet/scripts/ui/controlnet_ui_group.py ADDED
@@ -0,0 +1,974 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import functools
3
+ from typing import List, Optional, Union, Dict, Callable
4
+ import numpy as np
5
+ import base64
6
+
7
+ from scripts.utils import svg_preprocess
8
+ from scripts import (
9
+ global_state,
10
+ external_code,
11
+ processor,
12
+ batch_hijack,
13
+ )
14
+ from scripts.processor import (
15
+ preprocessor_sliders_config,
16
+ flag_preprocessor_resolution,
17
+ model_free_preprocessors,
18
+ preprocessor_filters,
19
+ HWC3,
20
+ )
21
+ from modules import shared
22
+ from modules.ui_components import FormRow
23
+
24
+
25
+ class ToolButton(gr.Button, gr.components.FormComponent):
26
+ """Small button with single emoji as text, fits inside gradio forms"""
27
+
28
+ def __init__(self, **kwargs):
29
+ super().__init__(variant="tool", elem_classes=["cnet-toolbutton"], **kwargs)
30
+
31
+ def get_block_name(self):
32
+ return "button"
33
+
34
+
35
+ class UiControlNetUnit(external_code.ControlNetUnit):
36
+ """The data class that stores all states of a ControlNetUnit."""
37
+
38
+ def __init__(
39
+ self,
40
+ input_mode: batch_hijack.InputMode = batch_hijack.InputMode.SIMPLE,
41
+ batch_images: Optional[Union[str, List[external_code.InputImage]]] = None,
42
+ output_dir: str = "",
43
+ loopback: bool = False,
44
+ *args,
45
+ **kwargs,
46
+ ):
47
+ super().__init__(*args, **kwargs)
48
+ self.is_ui = True
49
+ self.input_mode = input_mode
50
+ self.batch_images = batch_images
51
+ self.output_dir = output_dir
52
+ self.loopback = loopback
53
+
54
+
55
+ def update_json_download_link(json_string: str, file_name: str) -> Dict:
56
+ base64_encoded_json = base64.b64encode(json_string.encode("utf-8")).decode("utf-8")
57
+ data_uri = f"data:application/json;base64,{base64_encoded_json}"
58
+ style = """
59
+ position: absolute;
60
+ right: var(--size-2);
61
+ bottom: calc(var(--size-2) * 4);
62
+ font-size: x-small;
63
+ font-weight: bold;
64
+ padding: 2px;
65
+
66
+ box-shadow: var(--shadow-drop);
67
+ border: 1px solid var(--button-secondary-border-color);
68
+ border-radius: var(--radius-sm);
69
+ background: var(--background-fill-primary);
70
+ height: var(--size-5);
71
+ color: var(--block-label-text-color);
72
+ """
73
+ hint = "Download the pose as .json file"
74
+ html = f"""<a href='{data_uri}' download='{file_name}' style="{style}" title="{hint}">
75
+ Json</a>"""
76
+ return gr.update(value=html, visible=(json_string != ""))
77
+
78
+
79
+ class ControlNetUiGroup(object):
80
+ # Note: Change symbol hints mapping in `javascript/hints.js` when you change the symbol values.
81
+ refresh_symbol = "\U0001f504" # 🔄
82
+ switch_values_symbol = "\U000021C5" # ⇅
83
+ camera_symbol = "\U0001F4F7" # 📷
84
+ reverse_symbol = "\U000021C4" # ⇄
85
+ tossup_symbol = "\u2934"
86
+ trigger_symbol = "\U0001F4A5" # 💥
87
+ open_symbol = "\U0001F4DD" # 📝
88
+
89
+ global_batch_input_dir = gr.Textbox(
90
+ label="Controlnet input directory",
91
+ placeholder="Leave empty to use input directory",
92
+ **shared.hide_dirs,
93
+ elem_id="controlnet_batch_input_dir",
94
+ )
95
+ img2img_batch_input_dir = None
96
+ img2img_batch_input_dir_callbacks = []
97
+ img2img_batch_output_dir = None
98
+ img2img_batch_output_dir_callbacks = []
99
+ txt2img_submit_button = None
100
+ img2img_submit_button = None
101
+
102
+ # Slider controls from A1111 WebUI.
103
+ txt2img_w_slider = None
104
+ txt2img_h_slider = None
105
+ img2img_w_slider = None
106
+ img2img_h_slider = None
107
+
108
+ def __init__(
109
+ self,
110
+ gradio_compat: bool,
111
+ infotext_fields: List[str],
112
+ default_unit: external_code.ControlNetUnit,
113
+ preprocessors: List[Callable],
114
+ ):
115
+ self.gradio_compat = gradio_compat
116
+ self.infotext_fields = infotext_fields
117
+ self.default_unit = default_unit
118
+ self.preprocessors = preprocessors
119
+ self.webcam_enabled = False
120
+ self.webcam_mirrored = False
121
+
122
+ # Note: All gradio elements declared in `render` will be defined as member variable.
123
+ self.upload_tab = None
124
+ self.input_image = None
125
+ self.generated_image_group = None
126
+ self.generated_image = None
127
+ self.download_pose_link = None
128
+ self.batch_tab = None
129
+ self.batch_image_dir = None
130
+ self.create_canvas = None
131
+ self.canvas_width = None
132
+ self.canvas_height = None
133
+ self.canvas_create_button = None
134
+ self.canvas_cancel_button = None
135
+ self.open_new_canvas_button = None
136
+ self.webcam_enable = None
137
+ self.webcam_mirror = None
138
+ self.send_dimen_button = None
139
+ self.enabled = None
140
+ self.lowvram = None
141
+ self.pixel_perfect = None
142
+ self.preprocessor_preview = None
143
+ self.type_filter = None
144
+ self.module = None
145
+ self.trigger_preprocessor = None
146
+ self.model = None
147
+ self.refresh_models = None
148
+ self.weight = None
149
+ self.guidance_start = None
150
+ self.guidance_end = None
151
+ self.advanced = None
152
+ self.processor_res = None
153
+ self.threshold_a = None
154
+ self.threshold_b = None
155
+ self.control_mode = None
156
+ self.resize_mode = None
157
+ self.loopback = None
158
+
159
+ def render(self, tabname: str, elem_id_tabname: str) -> None:
160
+ """The pure HTML structure of a single ControlNetUnit. Calling this
161
+ function will populate `self` with all gradio element declared
162
+ in local scope.
163
+
164
+ Args:
165
+ tabname:
166
+ elem_id_tabname:
167
+
168
+ Returns:
169
+ None
170
+ """
171
+ with gr.Tabs():
172
+ with gr.Tab(label="Single Image") as self.upload_tab:
173
+ with gr.Row().style(equal_height=True):
174
+ self.input_image = gr.Image(
175
+ source="upload",
176
+ brush_radius=20,
177
+ mirror_webcam=False,
178
+ type="numpy",
179
+ tool="sketch",
180
+ elem_id=f"{elem_id_tabname}_{tabname}_input_image",
181
+ )
182
+ with gr.Group(visible=False) as self.generated_image_group:
183
+ self.generated_image = gr.Image(
184
+ label="Preprocessor Preview",
185
+ elem_id=f"{elem_id_tabname}_{tabname}_generated_image",
186
+ ).style(
187
+ height=242
188
+ ) # Gradio's magic number. Only 242 works.
189
+ self.download_pose_link = gr.HTML(value="", visible=False)
190
+ preview_close_button_style = """
191
+ position: absolute;
192
+ right: var(--size-2);
193
+ bottom: var(--size-2);
194
+ font-size: x-small;
195
+ font-weight: bold;
196
+ padding: 2px;
197
+ cursor: pointer;
198
+
199
+ box-shadow: var(--shadow-drop);
200
+ border: 1px solid var(--button-secondary-border-color);
201
+ border-radius: var(--radius-sm);
202
+ background: var(--background-fill-primary);
203
+ height: var(--size-5);
204
+ color: var(--block-label-text-color);
205
+ """
206
+ preview_check_elem_id = f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_preview_checkbox"
207
+ preview_close_button_js = f"document.querySelector('#{preview_check_elem_id} input[type=\\'checkbox\\']').click();"
208
+ gr.HTML(
209
+ value=f"""<a style="{preview_close_button_style}" title="Close Preview" onclick="{preview_close_button_js}">Close</a>""",
210
+ visible=True,
211
+ )
212
+
213
+ with gr.Tab(label="Batch") as self.batch_tab:
214
+ self.batch_image_dir = gr.Textbox(
215
+ label="Input Directory",
216
+ placeholder="Leave empty to use img2img batch controlnet input directory",
217
+ elem_id=f"{elem_id_tabname}_{tabname}_batch_image_dir",
218
+ )
219
+
220
+ with gr.Accordion(label="Open New Canvas", visible=False) as self.create_canvas:
221
+ self.canvas_width = gr.Slider(
222
+ label="New Canvas Width",
223
+ minimum=256,
224
+ maximum=1024,
225
+ value=512,
226
+ step=64,
227
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_width",
228
+ )
229
+ self.canvas_height = gr.Slider(
230
+ label="New Canvas Height",
231
+ minimum=256,
232
+ maximum=1024,
233
+ value=512,
234
+ step=64,
235
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_height",
236
+ )
237
+ with gr.Row():
238
+ self.canvas_create_button = gr.Button(
239
+ value="Create New Canvas",
240
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_create_button",
241
+ )
242
+ self.canvas_cancel_button = gr.Button(
243
+ value="Cancel",
244
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_cancel_button",
245
+ )
246
+
247
+ with gr.Row(elem_classes="controlnet_image_controls"):
248
+ gr.HTML(
249
+ value="<p>Set the preprocessor to [invert] If your image has white background and black lines.</p>",
250
+ elem_classes="controlnet_invert_warning",
251
+ )
252
+ self.open_new_canvas_button = ToolButton(
253
+ value=ControlNetUiGroup.open_symbol,
254
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_open_new_canvas_button",
255
+ )
256
+ self.webcam_enable = ToolButton(
257
+ value=ControlNetUiGroup.camera_symbol,
258
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_webcam_enable",
259
+ )
260
+ self.webcam_mirror = ToolButton(
261
+ value=ControlNetUiGroup.reverse_symbol,
262
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_webcam_mirror",
263
+ )
264
+ self.send_dimen_button = ToolButton(
265
+ value=ControlNetUiGroup.tossup_symbol,
266
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_send_dimen_button",
267
+ )
268
+
269
+ with FormRow(
270
+ elem_classes=["checkboxes-row", "controlnet_main_options"],
271
+ variant="compact",
272
+ ):
273
+ self.enabled = gr.Checkbox(
274
+ label="Enable",
275
+ value=self.default_unit.enabled,
276
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_enable_checkbox",
277
+ )
278
+ self.lowvram = gr.Checkbox(
279
+ label="Low VRAM",
280
+ value=self.default_unit.low_vram,
281
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_low_vram_checkbox",
282
+ )
283
+ self.pixel_perfect = gr.Checkbox(
284
+ label="Pixel Perfect",
285
+ value=self.default_unit.pixel_perfect,
286
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_pixel_perfect_checkbox",
287
+ )
288
+ self.preprocessor_preview = gr.Checkbox(
289
+ label="Allow Preview", value=False, elem_id=preview_check_elem_id
290
+ )
291
+
292
+ if not shared.opts.data.get("controlnet_disable_control_type", False):
293
+ with gr.Row(elem_classes="controlnet_control_type"):
294
+ self.type_filter = gr.Radio(
295
+ list(preprocessor_filters.keys()),
296
+ label=f"Control Type",
297
+ value="All",
298
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_type_filter_radio",
299
+ elem_classes="controlnet_control_type_filter_group",
300
+ )
301
+
302
+ with gr.Row(elem_classes="controlnet_preprocessor_model"):
303
+ self.module = gr.Dropdown(
304
+ global_state.ui_preprocessor_keys,
305
+ label=f"Preprocessor",
306
+ value=self.default_unit.module,
307
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_dropdown",
308
+ )
309
+ self.trigger_preprocessor = ToolButton(
310
+ value=ControlNetUiGroup.trigger_symbol,
311
+ visible=True,
312
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_trigger_preprocessor",
313
+ )
314
+ self.model = gr.Dropdown(
315
+ list(global_state.cn_models.keys()),
316
+ label=f"Model",
317
+ value=self.default_unit.model,
318
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_model_dropdown",
319
+ )
320
+ self.refresh_models = ToolButton(
321
+ value=ControlNetUiGroup.refresh_symbol,
322
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_refresh_models",
323
+ )
324
+
325
+ with gr.Row(elem_classes="controlnet_weight_steps"):
326
+ self.weight = gr.Slider(
327
+ label=f"Control Weight",
328
+ value=self.default_unit.weight,
329
+ minimum=0.0,
330
+ maximum=2.0,
331
+ step=0.05,
332
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_control_weight_slider",
333
+ elem_classes="controlnet_control_weight_slider",
334
+ )
335
+ self.guidance_start = gr.Slider(
336
+ label="Starting Control Step",
337
+ value=self.default_unit.guidance_start,
338
+ minimum=0.0,
339
+ maximum=1.0,
340
+ interactive=True,
341
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_start_control_step_slider",
342
+ elem_classes="controlnet_start_control_step_slider",
343
+ )
344
+ self.guidance_end = gr.Slider(
345
+ label="Ending Control Step",
346
+ value=self.default_unit.guidance_end,
347
+ minimum=0.0,
348
+ maximum=1.0,
349
+ interactive=True,
350
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_ending_control_step_slider",
351
+ elem_classes="controlnet_ending_control_step_slider",
352
+ )
353
+
354
+ # advanced options
355
+ with gr.Column(visible=False) as self.advanced:
356
+ self.processor_res = gr.Slider(
357
+ label="Preprocessor resolution",
358
+ value=self.default_unit.processor_res,
359
+ minimum=64,
360
+ maximum=2048,
361
+ visible=False,
362
+ interactive=False,
363
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_resolution_slider",
364
+ )
365
+ self.threshold_a = gr.Slider(
366
+ label="Threshold A",
367
+ value=self.default_unit.threshold_a,
368
+ minimum=64,
369
+ maximum=1024,
370
+ visible=False,
371
+ interactive=False,
372
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_threshold_A_slider",
373
+ )
374
+ self.threshold_b = gr.Slider(
375
+ label="Threshold B",
376
+ value=self.default_unit.threshold_b,
377
+ minimum=64,
378
+ maximum=1024,
379
+ visible=False,
380
+ interactive=False,
381
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_threshold_B_slider",
382
+ )
383
+
384
+ self.control_mode = gr.Radio(
385
+ choices=[e.value for e in external_code.ControlMode],
386
+ value=self.default_unit.control_mode.value,
387
+ label="Control Mode",
388
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_control_mode_radio",
389
+ elem_classes="controlnet_control_mode_radio",
390
+ )
391
+
392
+ self.resize_mode = gr.Radio(
393
+ choices=[e.value for e in external_code.ResizeMode],
394
+ value=self.default_unit.resize_mode.value,
395
+ label="Resize Mode",
396
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_resize_mode_radio",
397
+ elem_classes="controlnet_resize_mode_radio",
398
+ )
399
+
400
+ self.loopback = gr.Checkbox(
401
+ label="[Loopback] Automatically send generated images to this ControlNet unit",
402
+ value=self.default_unit.loopback,
403
+ elem_id=f"{elem_id_tabname}_{tabname}_controlnet_automatically_send_generated_images_checkbox",
404
+ elem_classes="controlnet_loopback_checkbox",
405
+ )
406
+
407
+ def register_send_dimensions(self, is_img2img: bool):
408
+ """Register event handler for send dimension button."""
409
+
410
+ def send_dimensions(image):
411
+ def closesteight(num):
412
+ rem = num % 8
413
+ if rem <= 4:
414
+ return round(num - rem)
415
+ else:
416
+ return round(num + (8 - rem))
417
+
418
+ if image:
419
+ interm = np.asarray(image.get("image"))
420
+ return closesteight(interm.shape[1]), closesteight(interm.shape[0])
421
+ else:
422
+ return gr.Slider.update(), gr.Slider.update()
423
+
424
+ outputs = (
425
+ [
426
+ ControlNetUiGroup.img2img_w_slider,
427
+ ControlNetUiGroup.img2img_h_slider,
428
+ ]
429
+ if is_img2img
430
+ else [
431
+ ControlNetUiGroup.txt2img_w_slider,
432
+ ControlNetUiGroup.txt2img_h_slider,
433
+ ]
434
+ )
435
+ self.send_dimen_button.click(
436
+ fn=send_dimensions,
437
+ inputs=[self.input_image],
438
+ outputs=outputs,
439
+ )
440
+
441
+ def register_webcam_toggle(self):
442
+ def webcam_toggle():
443
+ self.webcam_enabled = not self.webcam_enabled
444
+ return {
445
+ "value": None,
446
+ "source": "webcam" if self.webcam_enabled else "upload",
447
+ "__type__": "update",
448
+ }
449
+
450
+ self.webcam_enable.click(webcam_toggle, inputs=None, outputs=self.input_image)
451
+
452
+ def register_webcam_mirror_toggle(self):
453
+ def webcam_mirror_toggle():
454
+ self.webcam_mirrored = not self.webcam_mirrored
455
+ return {"mirror_webcam": self.webcam_mirrored, "__type__": "update"}
456
+
457
+ self.webcam_mirror.click(
458
+ webcam_mirror_toggle, inputs=None, outputs=self.input_image
459
+ )
460
+
461
+ def register_refresh_all_models(self):
462
+ def refresh_all_models(*inputs):
463
+ global_state.update_cn_models()
464
+
465
+ dd = inputs[0]
466
+ selected = dd if dd in global_state.cn_models else "None"
467
+ return gr.Dropdown.update(
468
+ value=selected, choices=list(global_state.cn_models.keys())
469
+ )
470
+
471
+ self.refresh_models.click(refresh_all_models, self.model, self.model)
472
+
473
+ def register_build_sliders(self):
474
+ if not self.gradio_compat:
475
+ return
476
+
477
+ def build_sliders(module, pp):
478
+ grs = []
479
+ module = global_state.get_module_basename(module)
480
+ if module not in preprocessor_sliders_config:
481
+ grs += [
482
+ gr.update(
483
+ label=flag_preprocessor_resolution,
484
+ value=512,
485
+ minimum=64,
486
+ maximum=2048,
487
+ step=1,
488
+ visible=not pp,
489
+ interactive=not pp,
490
+ ),
491
+ gr.update(visible=False, interactive=False),
492
+ gr.update(visible=False, interactive=False),
493
+ gr.update(visible=True),
494
+ ]
495
+ else:
496
+ for slider_config in preprocessor_sliders_config[module]:
497
+ if isinstance(slider_config, dict):
498
+ visible = True
499
+ if slider_config["name"] == flag_preprocessor_resolution:
500
+ visible = not pp
501
+ grs.append(
502
+ gr.update(
503
+ label=slider_config["name"],
504
+ value=slider_config["value"],
505
+ minimum=slider_config["min"],
506
+ maximum=slider_config["max"],
507
+ step=slider_config["step"]
508
+ if "step" in slider_config
509
+ else 1,
510
+ visible=visible,
511
+ interactive=visible,
512
+ )
513
+ )
514
+ else:
515
+ grs.append(gr.update(visible=False, interactive=False))
516
+ while len(grs) < 3:
517
+ grs.append(gr.update(visible=False, interactive=False))
518
+ grs.append(gr.update(visible=True))
519
+ if module in model_free_preprocessors:
520
+ grs += [
521
+ gr.update(visible=False, value="None"),
522
+ gr.update(visible=False),
523
+ ]
524
+ else:
525
+ grs += [gr.update(visible=True), gr.update(visible=True)]
526
+ return grs
527
+
528
+ inputs = [self.module, self.pixel_perfect]
529
+ outputs = [
530
+ self.processor_res,
531
+ self.threshold_a,
532
+ self.threshold_b,
533
+ self.advanced,
534
+ self.model,
535
+ self.refresh_models,
536
+ ]
537
+ self.module.change(build_sliders, inputs=inputs, outputs=outputs)
538
+ self.pixel_perfect.change(build_sliders, inputs=inputs, outputs=outputs)
539
+
540
+ if self.type_filter is not None:
541
+
542
+ def filter_selected(k, pp):
543
+ default_option = preprocessor_filters[k]
544
+ pattern = k.lower()
545
+ preprocessor_list = global_state.ui_preprocessor_keys
546
+ model_list = list(global_state.cn_models.keys())
547
+ if pattern == "all":
548
+ return [
549
+ gr.Dropdown.update(value="none", choices=preprocessor_list),
550
+ gr.Dropdown.update(value="None", choices=model_list),
551
+ ] + build_sliders("none", pp)
552
+ filtered_preprocessor_list = [
553
+ x
554
+ for x in preprocessor_list
555
+ if pattern in x.lower() or x.lower() == "none"
556
+ ]
557
+ if pattern in ["canny", "lineart", "scribble", "mlsd"]:
558
+ filtered_preprocessor_list += [
559
+ x for x in preprocessor_list if "invert" in x.lower()
560
+ ]
561
+ filtered_model_list = [
562
+ x for x in model_list if pattern in x.lower() or x.lower() == "none"
563
+ ]
564
+ if default_option not in filtered_preprocessor_list:
565
+ default_option = filtered_preprocessor_list[0]
566
+ if len(filtered_model_list) == 1:
567
+ default_model = "None"
568
+ filtered_model_list = model_list
569
+ else:
570
+ default_model = filtered_model_list[1]
571
+ for x in filtered_model_list:
572
+ if "11" in x.split("[")[0]:
573
+ default_model = x
574
+ break
575
+ return [
576
+ gr.Dropdown.update(
577
+ value=default_option, choices=filtered_preprocessor_list
578
+ ),
579
+ gr.Dropdown.update(
580
+ value=default_model, choices=filtered_model_list
581
+ ),
582
+ ] + build_sliders(default_option, pp)
583
+
584
+ self.type_filter.change(
585
+ filter_selected,
586
+ inputs=[self.type_filter, self.pixel_perfect],
587
+ outputs=[self.module, self.model, *outputs],
588
+ )
589
+
590
+ def register_run_annotator(self, is_img2img: bool):
591
+ def run_annotator(image, module, pres, pthr_a, pthr_b, t2i_w, t2i_h, pp, rm):
592
+ if image is None:
593
+ return gr.update(value=None, visible=True), gr.update(), gr.update()
594
+
595
+ img = HWC3(image["image"])
596
+ if not (
597
+ (image["mask"][:, :, 0] == 0).all()
598
+ or (image["mask"][:, :, 0] == 255).all()
599
+ ):
600
+ img = HWC3(image["mask"][:, :, 0])
601
+
602
+ if "inpaint" in module:
603
+ color = HWC3(image["image"])
604
+ alpha = image["mask"][:, :, 0:1]
605
+ img = np.concatenate([color, alpha], axis=2)
606
+
607
+ module = global_state.get_module_basename(module)
608
+ preprocessor = self.preprocessors[module]
609
+
610
+ if pp:
611
+ raw_H, raw_W, _ = img.shape
612
+ target_H, target_W = t2i_h, t2i_w
613
+ rm = str(rm)
614
+
615
+ k0 = float(target_H) / float(raw_H)
616
+ k1 = float(target_W) / float(raw_W)
617
+
618
+ if rm == external_code.ResizeMode.OUTER_FIT.value:
619
+ estimation = min(k0, k1) * float(min(raw_H, raw_W))
620
+ else:
621
+ estimation = max(k0, k1) * float(min(raw_H, raw_W))
622
+
623
+ pres = int(np.round(estimation))
624
+ print(f"Pixel Perfect Mode Enabled In Preview.")
625
+ print(f"resize_mode = {rm}")
626
+ print(f"raw_H = {raw_H}")
627
+ print(f"raw_W = {raw_W}")
628
+ print(f"target_H = {target_H}")
629
+ print(f"target_W = {target_W}")
630
+ print(f"estimation = {estimation}")
631
+
632
+ class JsonAcceptor:
633
+ def __init__(self) -> None:
634
+ self.value = ""
635
+
636
+ def accept(self, json_string: str) -> None:
637
+ self.value = json_string
638
+
639
+ json_acceptor = JsonAcceptor()
640
+
641
+ print(f"Preview Resolution = {pres}")
642
+
643
+ def is_openpose(module: str):
644
+ return "openpose" in module
645
+
646
+ # Only openpose preprocessor returns a JSON output, pass json_acceptor
647
+ # only when a JSON output is expected. This will make preprocessor cache
648
+ # work for all other preprocessors other than openpose ones. JSON acceptor
649
+ # instance are different every call, which means cache will never take
650
+ # effect.
651
+ # TODO: Maybe we should let `preprocessor` return a Dict to alleviate this issue?
652
+ # This requires changing all callsites though.
653
+ result, is_image = preprocessor(
654
+ img,
655
+ res=pres,
656
+ thr_a=pthr_a,
657
+ thr_b=pthr_b,
658
+ json_pose_callback=json_acceptor.accept
659
+ if is_openpose(module)
660
+ else None,
661
+ )
662
+
663
+ if "clip" in module:
664
+ result = processor.clip_vision_visualization(result)
665
+ is_image = True
666
+
667
+ if is_image:
668
+ if result.ndim == 3 and result.shape[2] == 4:
669
+ inpaint_mask = result[:, :, 3]
670
+ result = result[:, :, 0:3]
671
+ result[inpaint_mask > 127] = 0
672
+ return (
673
+ # Update to `generated_image`
674
+ gr.update(value=result, visible=True, interactive=False),
675
+ # Update to `download_pose_link`
676
+ update_json_download_link(json_acceptor.value, "pose.json"),
677
+ # preprocessor_preview
678
+ gr.update(value=True),
679
+ )
680
+
681
+ return (
682
+ # Update to `generated_image`
683
+ gr.update(value=None, visible=True),
684
+ # Update to `download_pose_link`
685
+ update_json_download_link(json_acceptor.value, "pose.json"),
686
+ # preprocessor_preview
687
+ gr.update(value=True),
688
+ )
689
+
690
+ self.trigger_preprocessor.click(
691
+ fn=run_annotator,
692
+ inputs=[
693
+ self.input_image,
694
+ self.module,
695
+ self.processor_res,
696
+ self.threshold_a,
697
+ self.threshold_b,
698
+ ControlNetUiGroup.img2img_w_slider
699
+ if is_img2img
700
+ else ControlNetUiGroup.txt2img_w_slider,
701
+ ControlNetUiGroup.img2img_h_slider
702
+ if is_img2img
703
+ else ControlNetUiGroup.txt2img_h_slider,
704
+ self.pixel_perfect,
705
+ self.resize_mode,
706
+ ],
707
+ outputs=[
708
+ self.generated_image,
709
+ self.download_pose_link,
710
+ self.preprocessor_preview,
711
+ ],
712
+ )
713
+
714
+ def register_shift_preview(self):
715
+ def shift_preview(is_on):
716
+ return (
717
+ # generated_image
718
+ gr.update() if is_on else gr.update(value=None),
719
+ # generated_image_group
720
+ gr.update(visible=is_on),
721
+ # download_pose_link
722
+ gr.update() if is_on else gr.update(value=None),
723
+ )
724
+
725
+ self.preprocessor_preview.change(
726
+ fn=shift_preview,
727
+ inputs=[self.preprocessor_preview],
728
+ outputs=[
729
+ self.generated_image,
730
+ self.generated_image_group,
731
+ self.download_pose_link,
732
+ ],
733
+ )
734
+
735
+ def register_create_canvas(self):
736
+ self.open_new_canvas_button.click(
737
+ lambda: gr.Accordion.update(visible=True),
738
+ inputs=None,
739
+ outputs=self.create_canvas,
740
+ )
741
+ self.canvas_cancel_button.click(
742
+ lambda: gr.Accordion.update(visible=False),
743
+ inputs=None,
744
+ outputs=self.create_canvas,
745
+ )
746
+
747
+ def fn_canvas(h, w):
748
+ return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255, gr.Accordion.update(
749
+ visible=False
750
+ )
751
+
752
+ self.canvas_create_button.click(
753
+ fn=fn_canvas,
754
+ inputs=[self.canvas_height, self.canvas_width],
755
+ outputs=[self.input_image, self.create_canvas],
756
+ )
757
+
758
+ def register_callbacks(self, is_img2img: bool):
759
+ """Register callbacks on the UI elements.
760
+
761
+ Args:
762
+ is_img2img: Whether ControlNet is under img2img. False when in txt2img mode.
763
+
764
+ Returns:
765
+ None
766
+ """
767
+ self.register_send_dimensions(is_img2img)
768
+ self.register_webcam_toggle()
769
+ self.register_webcam_mirror_toggle()
770
+ self.register_refresh_all_models()
771
+ self.register_build_sliders()
772
+ self.register_run_annotator(is_img2img)
773
+ self.register_shift_preview()
774
+ self.register_create_canvas()
775
+
776
+ def register_modules(self, tabname: str, params):
777
+ enabled, module, model, weight = params[4:8]
778
+ guidance_start, guidance_end, pixel_perfect, control_mode = params[-4:]
779
+
780
+ self.infotext_fields.extend(
781
+ [
782
+ (enabled, f"{tabname} Enabled"),
783
+ (module, f"{tabname} Preprocessor"),
784
+ (model, f"{tabname} Model"),
785
+ (weight, f"{tabname} Weight"),
786
+ (guidance_start, f"{tabname} Guidance Start"),
787
+ (guidance_end, f"{tabname} Guidance End"),
788
+ ]
789
+ )
790
+
791
+ def render_and_register_unit(self, tabname: str, is_img2img: bool):
792
+ """Render the invisible states elements for misc persistent
793
+ purposes. Register callbacks on loading/unloading the controlnet
794
+ unit and handle batch processes.
795
+
796
+ Args:
797
+ tabname:
798
+ is_img2img:
799
+
800
+ Returns:
801
+ The data class "ControlNetUnit" representing this ControlNetUnit.
802
+ """
803
+ input_mode = gr.State(batch_hijack.InputMode.SIMPLE)
804
+ batch_image_dir_state = gr.State("")
805
+ output_dir_state = gr.State("")
806
+ unit_args = (
807
+ input_mode,
808
+ batch_image_dir_state,
809
+ output_dir_state,
810
+ self.loopback,
811
+ self.enabled,
812
+ self.module,
813
+ self.model,
814
+ self.weight,
815
+ self.input_image,
816
+ self.resize_mode,
817
+ self.lowvram,
818
+ self.processor_res,
819
+ self.threshold_a,
820
+ self.threshold_b,
821
+ self.guidance_start,
822
+ self.guidance_end,
823
+ self.pixel_perfect,
824
+ self.control_mode,
825
+ )
826
+ self.register_modules(tabname, unit_args)
827
+
828
+ self.input_image.preprocess = functools.partial(
829
+ svg_preprocess, preprocess=self.input_image.preprocess
830
+ )
831
+
832
+ unit = gr.State(self.default_unit)
833
+ for comp in unit_args:
834
+ event_subscribers = []
835
+ if hasattr(comp, "edit"):
836
+ event_subscribers.append(comp.edit)
837
+ elif hasattr(comp, "click"):
838
+ event_subscribers.append(comp.click)
839
+ elif isinstance(comp, gr.Slider) and hasattr(comp, "release"):
840
+ event_subscribers.append(comp.release)
841
+ elif hasattr(comp, "change"):
842
+ event_subscribers.append(comp.change)
843
+
844
+ if hasattr(comp, "clear"):
845
+ event_subscribers.append(comp.clear)
846
+
847
+ for event_subscriber in event_subscribers:
848
+ event_subscriber(
849
+ fn=UiControlNetUnit, inputs=list(unit_args), outputs=unit
850
+ )
851
+
852
+ # keep input_mode in sync
853
+ def ui_controlnet_unit_for_input_mode(input_mode, *args):
854
+ args = list(args)
855
+ args[0] = input_mode
856
+ return input_mode, UiControlNetUnit(*args)
857
+
858
+ for input_tab in (
859
+ (self.upload_tab, batch_hijack.InputMode.SIMPLE),
860
+ (self.batch_tab, batch_hijack.InputMode.BATCH),
861
+ ):
862
+ input_tab[0].select(
863
+ fn=ui_controlnet_unit_for_input_mode,
864
+ inputs=[gr.State(input_tab[1])] + list(unit_args),
865
+ outputs=[input_mode, unit],
866
+ )
867
+
868
+ def determine_batch_dir(batch_dir, fallback_dir, fallback_fallback_dir):
869
+ if batch_dir:
870
+ return batch_dir
871
+ elif fallback_dir:
872
+ return fallback_dir
873
+ else:
874
+ return fallback_fallback_dir
875
+
876
+ # keep batch_dir in sync with global batch input textboxes
877
+ def subscribe_for_batch_dir():
878
+ batch_dirs = [
879
+ self.batch_image_dir,
880
+ ControlNetUiGroup.global_batch_input_dir,
881
+ ControlNetUiGroup.img2img_batch_input_dir,
882
+ ]
883
+ for batch_dir_comp in batch_dirs:
884
+ subscriber = getattr(batch_dir_comp, "blur", None)
885
+ if subscriber is None:
886
+ continue
887
+ subscriber(
888
+ fn=determine_batch_dir,
889
+ inputs=batch_dirs,
890
+ outputs=[batch_image_dir_state],
891
+ queue=False,
892
+ )
893
+
894
+ if ControlNetUiGroup.img2img_batch_input_dir is None:
895
+ # we are too soon, subscribe later when available
896
+ ControlNetUiGroup.img2img_batch_input_dir_callbacks.append(
897
+ subscribe_for_batch_dir
898
+ )
899
+ else:
900
+ subscribe_for_batch_dir()
901
+
902
+ # keep output_dir in sync with global batch output textbox
903
+ def subscribe_for_output_dir():
904
+ ControlNetUiGroup.img2img_batch_output_dir.blur(
905
+ fn=lambda a: a,
906
+ inputs=[ControlNetUiGroup.img2img_batch_output_dir],
907
+ outputs=[output_dir_state],
908
+ queue=False,
909
+ )
910
+
911
+ if ControlNetUiGroup.img2img_batch_input_dir is None:
912
+ # we are too soon, subscribe later when available
913
+ ControlNetUiGroup.img2img_batch_output_dir_callbacks.append(
914
+ subscribe_for_output_dir
915
+ )
916
+ else:
917
+ subscribe_for_output_dir()
918
+
919
+ (
920
+ ControlNetUiGroup.img2img_submit_button
921
+ if is_img2img
922
+ else ControlNetUiGroup.txt2img_submit_button
923
+ ).click(
924
+ fn=UiControlNetUnit,
925
+ inputs=list(unit_args),
926
+ outputs=unit,
927
+ queue=False,
928
+ )
929
+
930
+ return unit
931
+
932
+ @staticmethod
933
+ def on_after_component(component, **_kwargs):
934
+ elem_id = getattr(component, "elem_id", None)
935
+
936
+ if elem_id == "txt2img_generate":
937
+ ControlNetUiGroup.txt2img_submit_button = component
938
+ return
939
+
940
+ if elem_id == "img2img_generate":
941
+ ControlNetUiGroup.img2img_submit_button = component
942
+ return
943
+
944
+ if elem_id == "img2img_batch_input_dir":
945
+ ControlNetUiGroup.img2img_batch_input_dir = component
946
+ for callback in ControlNetUiGroup.img2img_batch_input_dir_callbacks:
947
+ callback()
948
+ return
949
+
950
+ if elem_id == "img2img_batch_output_dir":
951
+ ControlNetUiGroup.img2img_batch_output_dir = component
952
+ for callback in ControlNetUiGroup.img2img_batch_output_dir_callbacks:
953
+ callback()
954
+ return
955
+
956
+ if elem_id == "img2img_batch_inpaint_mask_dir":
957
+ ControlNetUiGroup.global_batch_input_dir.render()
958
+ return
959
+
960
+ if elem_id == "txt2img_width":
961
+ ControlNetUiGroup.txt2img_w_slider = component
962
+ return
963
+
964
+ if elem_id == "txt2img_height":
965
+ ControlNetUiGroup.txt2img_h_slider = component
966
+ return
967
+
968
+ if elem_id == "img2img_width":
969
+ ControlNetUiGroup.img2img_w_slider = component
970
+ return
971
+
972
+ if elem_id == "img2img_height":
973
+ ControlNetUiGroup.img2img_h_slider = component
974
+ return
extensions/microsoftexcel-controlnet/scripts/utils.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import os
3
+ import functools
4
+ import base64
5
+ import numpy as np
6
+ import gradio as gr
7
+
8
+ from typing import Any, Callable, Dict
9
+
10
+
11
+ def load_state_dict(ckpt_path, location="cpu"):
12
+ _, extension = os.path.splitext(ckpt_path)
13
+ if extension.lower() == ".safetensors":
14
+ import safetensors.torch
15
+
16
+ state_dict = safetensors.torch.load_file(ckpt_path, device=location)
17
+ else:
18
+ state_dict = get_state_dict(
19
+ torch.load(ckpt_path, map_location=torch.device(location))
20
+ )
21
+ state_dict = get_state_dict(state_dict)
22
+ print(f"Loaded state_dict from [{ckpt_path}]")
23
+ return state_dict
24
+
25
+
26
+ def get_state_dict(d):
27
+ return d.get("state_dict", d)
28
+
29
+
30
+ def ndarray_lru_cache(max_size: int = 128, typed: bool = False):
31
+ """
32
+ Decorator to enable caching for functions with numpy array arguments.
33
+ Numpy arrays are mutable, and thus not directly usable as hash keys.
34
+
35
+ The idea here is to wrap the incoming arguments with type `np.ndarray`
36
+ as `HashableNpArray` so that `lru_cache` can correctly handles `np.ndarray`
37
+ arguments.
38
+
39
+ `HashableNpArray` functions exactly the same way as `np.ndarray` except
40
+ having `__hash__` and `__eq__` overriden.
41
+ """
42
+
43
+ def decorator(func: Callable):
44
+ """The actual decorator that accept function as input."""
45
+
46
+ class HashableNpArray(np.ndarray):
47
+ def __new__(cls, input_array):
48
+ # Input array is an instance of ndarray.
49
+ # The view makes the input array and returned array share the same data.
50
+ obj = np.asarray(input_array).view(cls)
51
+ return obj
52
+
53
+ def __eq__(self, other) -> bool:
54
+ return np.array_equal(self, other)
55
+
56
+ def __hash__(self):
57
+ # Hash the bytes representing the data of the array.
58
+ return hash(self.tobytes())
59
+
60
+ @functools.lru_cache(maxsize=max_size, typed=typed)
61
+ def cached_func(*args, **kwargs):
62
+ """This function only accepts `HashableNpArray` as input params."""
63
+ return func(*args, **kwargs)
64
+
65
+ # Preserves original function.__name__ and __doc__.
66
+ @functools.wraps(func)
67
+ def decorated_func(*args, **kwargs):
68
+ """The decorated function that delegates the original function."""
69
+
70
+ def convert_item(item: Any):
71
+ return HashableNpArray(item) if isinstance(item, np.ndarray) else item
72
+
73
+ args = [convert_item(arg) for arg in args]
74
+ kwargs = {k: convert_item(arg) for k, arg in kwargs.items()}
75
+ return cached_func(*args, **kwargs)
76
+
77
+ return decorated_func
78
+
79
+ return decorator
80
+
81
+
82
+ # svgsupports
83
+ svgsupport = False
84
+ try:
85
+ import io
86
+ from svglib.svglib import svg2rlg
87
+ from reportlab.graphics import renderPM
88
+
89
+ svgsupport = True
90
+ except ImportError:
91
+ pass
92
+
93
+
94
+ def svg_preprocess(inputs: Dict, preprocess: Callable):
95
+ if not inputs:
96
+ return None
97
+
98
+ if inputs["image"].startswith("data:image/svg+xml;base64,") and svgsupport:
99
+ svg_data = base64.b64decode(
100
+ inputs["image"].replace("data:image/svg+xml;base64,", "")
101
+ )
102
+ drawing = svg2rlg(io.BytesIO(svg_data))
103
+ png_data = renderPM.drawToString(drawing, fmt="PNG")
104
+ encoded_string = base64.b64encode(png_data)
105
+ base64_str = str(encoded_string, "utf-8")
106
+ base64_str = "data:image/png;base64," + base64_str
107
+ inputs["image"] = base64_str
108
+ return preprocess(inputs)
109
+
extensions/microsoftexcel-controlnet/scripts/xyz_grid_support.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import numpy as np
3
+
4
+ from modules import scripts, shared
5
+
6
+ try:
7
+ from scripts.global_state import update_cn_models, cn_models_names, cn_preprocessor_modules
8
+ from scripts.external_code import ResizeMode
9
+ except (ImportError, NameError):
10
+ import_error = True
11
+ else:
12
+ import_error = False
13
+
14
+ DEBUG_MODE = False
15
+
16
+
17
+ def debug_info(func):
18
+ def debug_info_(*args, **kwargs):
19
+ if DEBUG_MODE:
20
+ print(f"Debug info: {func.__name__}, {args}")
21
+ return func(*args, **kwargs)
22
+ return debug_info_
23
+
24
+
25
+ def find_dict(dict_list, keyword, search_key="name", stop=False):
26
+ result = next((d for d in dict_list if d[search_key] == keyword), None)
27
+ if result or not stop:
28
+ return result
29
+ else:
30
+ raise ValueError(f"Dictionary with value '{keyword}' in key '{search_key}' not found.")
31
+
32
+
33
+ def flatten(lst):
34
+ result = []
35
+ for element in lst:
36
+ if isinstance(element, list):
37
+ result.extend(flatten(element))
38
+ else:
39
+ result.append(element)
40
+ return result
41
+
42
+
43
+ def is_all_included(target_list, check_list, allow_blank=False, stop=False):
44
+ for element in flatten(target_list):
45
+ if allow_blank and str(element) in ["None", ""]:
46
+ continue
47
+ elif element not in check_list:
48
+ if not stop:
49
+ return False
50
+ else:
51
+ raise ValueError(f"'{element}' is not included in check list.")
52
+ return True
53
+
54
+
55
+ class ListParser():
56
+ """This class restores a broken list caused by the following process
57
+ in the xyz_grid module.
58
+ -> valslist = [x.strip() for x in chain.from_iterable(
59
+ csv.reader(StringIO(vals)))]
60
+ It also performs type conversion,
61
+ adjusts the number of elements in the list, and other operations.
62
+
63
+ This class directly modifies the received list.
64
+ """
65
+ numeric_pattern = {
66
+ int: {
67
+ "range": r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*",
68
+ "count": r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*"
69
+ },
70
+ float: {
71
+ "range": r"\s*([+-]?\s*\d+(?:\.\d*)?)\s*-\s*([+-]?\s*\d+(?:\.\d*)?)(?:\s*\(([+-]\d+(?:\.\d*)?)\s*\))?\s*",
72
+ "count": r"\s*([+-]?\s*\d+(?:\.\d*)?)\s*-\s*([+-]?\s*\d+(?:\.\d*)?)(?:\s*\[(\d+(?:\.\d*)?)\s*\])?\s*"
73
+ }
74
+ }
75
+
76
+ ################################################
77
+ #
78
+ # Initialization method from here.
79
+ #
80
+ ################################################
81
+
82
+ def __init__(self, my_list, converter=None, allow_blank=True, exclude_list=None, run=True):
83
+ self.my_list = my_list
84
+ self.converter = converter
85
+ self.allow_blank = allow_blank
86
+ self.exclude_list = exclude_list
87
+ self.re_bracket_start = None
88
+ self.re_bracket_start_precheck = None
89
+ self.re_bracket_end = None
90
+ self.re_bracket_end_precheck = None
91
+ self.re_range = None
92
+ self.re_count = None
93
+ self.compile_regex()
94
+ if run:
95
+ self.auto_normalize()
96
+
97
+ def compile_regex(self):
98
+ exclude_pattern = "|".join(self.exclude_list) if self.exclude_list else None
99
+ if exclude_pattern is None:
100
+ self.re_bracket_start = re.compile(r"^\[")
101
+ self.re_bracket_end = re.compile(r"\]$")
102
+ else:
103
+ self.re_bracket_start = re.compile(fr"^\[(?!(?:{exclude_pattern})\])")
104
+ self.re_bracket_end = re.compile(fr"(?<!\[(?:{exclude_pattern}))\]$")
105
+
106
+ if self.converter not in self.numeric_pattern:
107
+ return self
108
+ # If the converter is either int or float.
109
+ self.re_range = re.compile(self.numeric_pattern[self.converter]["range"])
110
+ self.re_count = re.compile(self.numeric_pattern[self.converter]["count"])
111
+ self.re_bracket_start_precheck = None
112
+ self.re_bracket_end_precheck = self.re_count
113
+ return self
114
+
115
+ ################################################
116
+ #
117
+ # Public method from here.
118
+ #
119
+ ################################################
120
+
121
+ ################################################
122
+ # This method is executed at the time of initialization.
123
+ #
124
+ def auto_normalize(self):
125
+ if not self.has_list_notation():
126
+ self.numeric_range_parser()
127
+ self.type_convert()
128
+ return self
129
+ else:
130
+ self.fix_structure()
131
+ self.numeric_range_parser()
132
+ self.type_convert()
133
+ self.fill_to_longest()
134
+ return self
135
+
136
+ def has_list_notation(self):
137
+ return any(self._search_bracket(s) for s in self.my_list)
138
+
139
+ def numeric_range_parser(self, my_list=None, depth=0):
140
+ if self.converter not in self.numeric_pattern:
141
+ return self
142
+
143
+ my_list = self.my_list if my_list is None else my_list
144
+ result = []
145
+ is_matched = False
146
+ for s in my_list:
147
+ if isinstance(s, list):
148
+ result.extend(self.numeric_range_parser(s, depth+1))
149
+ continue
150
+
151
+ match = self._numeric_range_to_list(s)
152
+ if s != match:
153
+ is_matched = True
154
+ result.extend(match if not depth else [match])
155
+ continue
156
+ else:
157
+ result.append(s)
158
+ continue
159
+
160
+ if depth:
161
+ return self._transpose(result) if is_matched else [result]
162
+ else:
163
+ my_list[:] = result
164
+ return self
165
+
166
+ def type_convert(self, my_list=None):
167
+ my_list = self.my_list if my_list is None else my_list
168
+ for i, s in enumerate(my_list):
169
+ if isinstance(s, list):
170
+ self.type_convert(s)
171
+ elif self.allow_blank and (str(s) in ["None", ""]):
172
+ my_list[i] = None
173
+ elif self.converter:
174
+ my_list[i] = self.converter(s)
175
+ else:
176
+ my_list[i] = s
177
+ return self
178
+
179
+ def fix_structure(self):
180
+ def is_same_length(list1, list2):
181
+ return len(list1) == len(list2)
182
+
183
+ start_indices, end_indices = [], []
184
+ for i, s in enumerate(self.my_list):
185
+ if is_same_length(start_indices, end_indices):
186
+ replace_string = self._search_bracket(s, "[", replace="")
187
+ if s != replace_string:
188
+ s = replace_string
189
+ start_indices.append(i)
190
+ if not is_same_length(start_indices, end_indices):
191
+ replace_string = self._search_bracket(s, "]", replace="")
192
+ if s != replace_string:
193
+ s = replace_string
194
+ end_indices.append(i + 1)
195
+ self.my_list[i] = s
196
+ if not is_same_length(start_indices, end_indices):
197
+ raise ValueError(f"Lengths of {start_indices} and {end_indices} are different.")
198
+ # Restore the structure of a list.
199
+ for i, j in zip(reversed(start_indices), reversed(end_indices)):
200
+ self.my_list[i:j] = [self.my_list[i:j]]
201
+ return self
202
+
203
+ def fill_to_longest(self, my_list=None, value=None, index=None):
204
+ my_list = self.my_list if my_list is None else my_list
205
+ if not self.sublist_exists(my_list):
206
+ return self
207
+ max_length = max(len(sub_list) for sub_list in my_list if isinstance(sub_list, list))
208
+ for i, sub_list in enumerate(my_list):
209
+ if isinstance(sub_list, list):
210
+ fill_value = value if index is None else sub_list[index]
211
+ my_list[i] = sub_list + [fill_value] * (max_length-len(sub_list))
212
+ return self
213
+
214
+ def sublist_exists(self, my_list=None):
215
+ my_list = self.my_list if my_list is None else my_list
216
+ return any(isinstance(item, list) for item in my_list)
217
+
218
+ def all_sublists(self, my_list=None): # Unused method
219
+ my_list = self.my_list if my_list is None else my_list
220
+ return all(isinstance(item, list) for item in my_list)
221
+
222
+ def get_list(self): # Unused method
223
+ return self.my_list
224
+
225
+ ################################################
226
+ #
227
+ # Private method from here.
228
+ #
229
+ ################################################
230
+
231
+ def _search_bracket(self, string, bracket="[", replace=None):
232
+ if bracket == "[":
233
+ pattern = self.re_bracket_start
234
+ precheck = self.re_bracket_start_precheck # None
235
+ elif bracket == "]":
236
+ pattern = self.re_bracket_end
237
+ precheck = self.re_bracket_end_precheck
238
+ else:
239
+ raise ValueError(f"Invalid argument provided. (bracket: {bracket})")
240
+
241
+ if precheck and precheck.fullmatch(string):
242
+ return None if replace is None else string
243
+ elif replace is None:
244
+ return pattern.search(string)
245
+ else:
246
+ return pattern.sub(replace, string)
247
+
248
+ def _numeric_range_to_list(self, string):
249
+ match = self.re_range.fullmatch(string)
250
+ if match is not None:
251
+ if self.converter == int:
252
+ start = int(match.group(1))
253
+ end = int(match.group(2)) + 1
254
+ step = int(match.group(3)) if match.group(3) is not None else 1
255
+ return list(range(start, end, step))
256
+ else: # float
257
+ start = float(match.group(1))
258
+ end = float(match.group(2))
259
+ step = float(match.group(3)) if match.group(3) is not None else 1
260
+ return np.arange(start, end + step, step).tolist()
261
+
262
+ match = self.re_count.fullmatch(string)
263
+ if match is not None:
264
+ if self.converter == int:
265
+ start = int(match.group(1))
266
+ end = int(match.group(2))
267
+ num = int(match.group(3)) if match.group(3) is not None else 1
268
+ return [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
269
+ else: # float
270
+ start = float(match.group(1))
271
+ end = float(match.group(2))
272
+ num = int(match.group(3)) if match.group(3) is not None else 1
273
+ return np.linspace(start=start, stop=end, num=num).tolist()
274
+ return string
275
+
276
+ def _transpose(self, my_list=None):
277
+ my_list = self.my_list if my_list is None else my_list
278
+ my_list = [item if isinstance(item, list) else [item] for item in my_list]
279
+ self.fill_to_longest(my_list, index=-1)
280
+ return np.array(my_list, dtype=object).T.tolist()
281
+
282
+ ################################################
283
+ #
284
+ # The methods of ListParser class end here.
285
+ #
286
+ ################################################
287
+
288
+ ################################################################
289
+ ################################################################
290
+ #
291
+ # Starting the main process of this module.
292
+ #
293
+ # functions are executed in this order:
294
+ # find_module
295
+ # add_axis_options
296
+ # identity
297
+ # enable_script_control
298
+ # apply_field
299
+ # confirm
300
+ # bool_
301
+ # choices_for
302
+ # make_excluded_list
303
+ # config lists for AxisOptions:
304
+ # validation_data
305
+ # extra_axis_options
306
+ ################################################################
307
+ ################################################################
308
+
309
+
310
+ def find_module(module_names):
311
+ if isinstance(module_names, str):
312
+ module_names = [s.strip() for s in module_names.split(",")]
313
+ for data in scripts.scripts_data:
314
+ if data.script_class.__module__ in module_names and hasattr(data, "module"):
315
+ return data.module
316
+ return None
317
+
318
+
319
+ def add_axis_options(xyz_grid):
320
+
321
+ ################################################
322
+ #
323
+ # Define a function to pass to the AxisOption class from here.
324
+ #
325
+ ################################################
326
+
327
+ ################################################
328
+ # Set this function as the type attribute of the AxisOption class.
329
+ # To skip the following processing of xyz_grid module.
330
+ # -> valslist = [opt.type(x) for x in valslist]
331
+ # Perform type conversion using the function
332
+ # set to the confirm attribute instead.
333
+ #
334
+ def identity(x):
335
+ return x
336
+
337
+ def enable_script_control():
338
+ shared.opts.data["control_net_allow_script_control"] = True
339
+
340
+ def apply_field(field):
341
+ @debug_info
342
+ def apply_field_(p, x, xs):
343
+ enable_script_control()
344
+ setattr(p, field, x)
345
+
346
+ return apply_field_
347
+
348
+ ################################################
349
+ # The confirm function defined in this module
350
+ # enables list notation and performs type conversion.
351
+ #
352
+ # Example:
353
+ # any = [any, any, any, ...]
354
+ # [any] = [any, None, None, ...]
355
+ # [None, None, any] = [None, None, any]
356
+ # [,,any] = [None, None, any]
357
+ # any, [,any,] = [any, any, any, ...], [None, any, None]
358
+ #
359
+ # Enabled Only:
360
+ # any = [any] = [any, None, None, ...]
361
+ # (any and [any] are considered equivalent)
362
+ #
363
+ def confirm(func_or_str):
364
+ @debug_info
365
+ def confirm_(p, xs):
366
+ if callable(func_or_str): # func_or_str is converter
367
+ ListParser(xs, func_or_str, allow_blank=True)
368
+ return
369
+
370
+ elif isinstance(func_or_str, str): # func_or_str is keyword
371
+ valid_data = find_dict(validation_data, func_or_str, stop=True)
372
+ converter = valid_data["type"]
373
+ exclude_list = valid_data["exclude"]() if valid_data["exclude"] else None
374
+ check_list = valid_data["check"]()
375
+
376
+ ListParser(xs, converter, allow_blank=True, exclude_list=exclude_list)
377
+ is_all_included(xs, check_list, allow_blank=True, stop=True)
378
+ return
379
+
380
+ else:
381
+ raise TypeError(f"Argument must be callable or str, not {type(func_or_str).__name__}.")
382
+
383
+ return confirm_
384
+
385
+ def bool_(string):
386
+ string = str(string)
387
+ if string in ["None", ""]:
388
+ return None
389
+ elif string.lower() in ["true", "1"]:
390
+ return True
391
+ elif string.lower() in ["false", "0"]:
392
+ return False
393
+ else:
394
+ raise ValueError(f"Could not convert string to boolean: {string}")
395
+
396
+ def choices_bool():
397
+ return ["False", "True"]
398
+
399
+ def choices_model():
400
+ update_cn_models()
401
+ return list(cn_models_names.values())
402
+
403
+ def choices_resize_mode():
404
+ return [e.value for e in ResizeMode]
405
+
406
+ def choices_preprocessor():
407
+ return list(cn_preprocessor_modules)
408
+
409
+ def make_excluded_list():
410
+ pattern = re.compile(r"\[(\w+)\]")
411
+ return [match.group(1) for s in choices_model()
412
+ for match in pattern.finditer(s)]
413
+
414
+ validation_data = [
415
+ {"name": "model", "type": str, "check": choices_model, "exclude": make_excluded_list},
416
+ {"name": "resize_mode", "type": str, "check": choices_resize_mode, "exclude": None},
417
+ {"name": "preprocessor", "type": str, "check": choices_preprocessor, "exclude": None},
418
+ ]
419
+
420
+ extra_axis_options = [
421
+ xyz_grid.AxisOption("[ControlNet] Enabled", identity, apply_field("control_net_enabled"), confirm=confirm(bool_), choices=choices_bool),
422
+ xyz_grid.AxisOption("[ControlNet] Model", identity, apply_field("control_net_model"), confirm=confirm("model"), choices=choices_model, cost=0.9),
423
+ xyz_grid.AxisOption("[ControlNet] Weight", identity, apply_field("control_net_weight"), confirm=confirm(float)),
424
+ xyz_grid.AxisOption("[ControlNet] Guidance Start", identity, apply_field("control_net_guidance_start"), confirm=confirm(float)),
425
+ xyz_grid.AxisOption("[ControlNet] Guidance End", identity, apply_field("control_net_guidance_end"), confirm=confirm(float)),
426
+ xyz_grid.AxisOption("[ControlNet] Resize Mode", identity, apply_field("control_net_resize_mode"), confirm=confirm("resize_mode"), choices=choices_resize_mode),
427
+ xyz_grid.AxisOption("[ControlNet] Preprocessor", identity, apply_field("control_net_module"), confirm=confirm("preprocessor"), choices=choices_preprocessor),
428
+ xyz_grid.AxisOption("[ControlNet] Pre Resolution", identity, apply_field("control_net_pres"), confirm=confirm(int)),
429
+ xyz_grid.AxisOption("[ControlNet] Pre Threshold A", identity, apply_field("control_net_pthr_a"), confirm=confirm(float)),
430
+ xyz_grid.AxisOption("[ControlNet] Pre Threshold B", identity, apply_field("control_net_pthr_b"), confirm=confirm(float)),
431
+ ]
432
+
433
+ xyz_grid.axis_options.extend(extra_axis_options)
434
+
435
+
436
+ def run():
437
+ xyz_grid = find_module("xyz_grid.py, xy_grid.py")
438
+ if xyz_grid:
439
+ add_axis_options(xyz_grid)
440
+
441
+
442
+ if not import_error:
443
+ run()
extensions/microsoftexcel-controlnet/tests/annotator_tests/openpose_tests/body_test.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ import numpy as np
3
+
4
+ import importlib
5
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
6
+ utils.setup_test_env()
7
+
8
+ from annotator.openpose.body import Body, Keypoint, BodyResult
9
+
10
+ class TestFormatBodyResult(unittest.TestCase):
11
+ def setUp(self):
12
+ self.candidate = np.array([
13
+ [10, 20, 0.9, 0],
14
+ [30, 40, 0.8, 1],
15
+ [50, 60, 0.7, 2],
16
+ [70, 80, 0.6, 3]
17
+ ])
18
+
19
+ self.subset = np.array([
20
+ [-1, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1.7, 2],
21
+ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 0.6, 1]
22
+ ])
23
+
24
+ def test_format_body_result(self):
25
+ expected_result = [
26
+ BodyResult(
27
+ keypoints=[
28
+ None,
29
+ Keypoint(x=10, y=20, score=0.9, id=0),
30
+ Keypoint(x=30, y=40, score=0.8, id=1),
31
+ None
32
+ ] + [None] * 14,
33
+ total_score=1.7,
34
+ total_parts=2
35
+ ),
36
+ BodyResult(
37
+ keypoints=[None] * 17 + [
38
+ Keypoint(x=70, y=80, score=0.6, id=3)
39
+ ],
40
+ total_score=0.6,
41
+ total_parts=1
42
+ )
43
+ ]
44
+
45
+ result = Body.format_body_result(self.candidate, self.subset)
46
+
47
+ self.assertEqual(result, expected_result)
48
+
49
+ if __name__ == '__main__':
50
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/annotator_tests/openpose_tests/detection_test.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ import numpy as np
3
+
4
+ import importlib
5
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
6
+ utils.setup_test_env()
7
+
8
+ from annotator.openpose.util import faceDetect, handDetect
9
+ from annotator.openpose.body import Keypoint, BodyResult
10
+
11
+ class TestFaceDetect(unittest.TestCase):
12
+ def test_no_faces(self):
13
+ oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
14
+ body = BodyResult([None] * 18, total_score=3, total_parts=0)
15
+ expected_result = None
16
+ result = faceDetect(body, oriImg)
17
+
18
+ self.assertEqual(result, expected_result)
19
+
20
+ def test_single_face(self):
21
+ body = BodyResult([
22
+ Keypoint(50, 50),
23
+ *([None] * 13),
24
+ Keypoint(30, 40),
25
+ Keypoint(70, 40),
26
+ Keypoint(20, 50),
27
+ Keypoint(80, 50),
28
+ ], total_score=2, total_parts=5)
29
+
30
+ oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
31
+
32
+ expected_result = (0, 0, 120)
33
+ result = faceDetect(body, oriImg)
34
+
35
+ self.assertEqual(result, expected_result)
36
+
37
+ class TestHandDetect(unittest.TestCase):
38
+ def test_no_hands(self):
39
+ oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
40
+ body = BodyResult([None] * 18, total_score=3, total_parts=0)
41
+ expected_result = []
42
+ result = handDetect(body, oriImg)
43
+
44
+ self.assertEqual(result, expected_result)
45
+
46
+ def test_single_left_hand(self):
47
+ oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
48
+
49
+ body = BodyResult([
50
+ None, None, None, None, None,
51
+ Keypoint(20, 20),
52
+ Keypoint(40, 30),
53
+ Keypoint(60, 40),
54
+ *([None] * 8),
55
+ Keypoint(20, 60),
56
+ Keypoint(40, 70),
57
+ Keypoint(60, 80)
58
+ ], total_score=3, total_parts=0.5)
59
+
60
+ expected_result = [(49, 26, 33, True)]
61
+ result = handDetect(body, oriImg)
62
+
63
+ self.assertEqual(result, expected_result)
64
+
65
+ def test_single_right_hand(self):
66
+ oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
67
+
68
+ body = BodyResult([
69
+ None, None,
70
+ Keypoint(20, 20),
71
+ Keypoint(40, 30),
72
+ Keypoint(60, 40),
73
+ *([None] * 11),
74
+ Keypoint(20, 60),
75
+ Keypoint(40, 70),
76
+ Keypoint(60, 80)
77
+ ], total_score=3, total_parts=0.5)
78
+
79
+ expected_result = [(49, 26, 33, False)]
80
+ result = handDetect(body, oriImg)
81
+
82
+ self.assertEqual(result, expected_result)
83
+
84
+ def test_multiple_hands(self):
85
+ body = BodyResult([
86
+ Keypoint(20, 20),
87
+ Keypoint(40, 30),
88
+ Keypoint(60, 40),
89
+ Keypoint(20, 60),
90
+ Keypoint(40, 70),
91
+ Keypoint(60, 80),
92
+ Keypoint(10, 10),
93
+ Keypoint(30, 20),
94
+ Keypoint(50, 30),
95
+ Keypoint(10, 50),
96
+ Keypoint(30, 60),
97
+ Keypoint(50, 70),
98
+ *([None] * 6),
99
+ ], total_score=3, total_parts=0.5)
100
+
101
+ oriImg = np.zeros((100, 100, 3), dtype=np.uint8)
102
+
103
+ expected_result = [(0, 0, 100, True), (16, 43, 56, False)]
104
+ result = handDetect(body, oriImg)
105
+ self.assertEqual(result, expected_result)
106
+
107
+
108
+ if __name__ == '__main__':
109
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/annotator_tests/openpose_tests/json_encode_test.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import unittest
3
+ import numpy as np
4
+
5
+ import importlib
6
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
7
+ utils.setup_test_env()
8
+
9
+ from annotator.openpose import encode_poses_as_json, PoseResult, Keypoint
10
+ from annotator.openpose.body import BodyResult
11
+
12
+ class TestEncodePosesAsJson(unittest.TestCase):
13
+ def test_empty_list(self):
14
+ poses = []
15
+ canvas_height = 1080
16
+ canvas_width = 1920
17
+ result = encode_poses_as_json(poses, canvas_height, canvas_width)
18
+ expected = json.dumps({
19
+ 'people': [],
20
+ 'canvas_height': canvas_height,
21
+ 'canvas_width': canvas_width,
22
+ }, indent=4)
23
+ self.assertEqual(result, expected)
24
+
25
+ def test_single_pose_no_keypoints(self):
26
+ poses = [PoseResult(BodyResult(None, 0, 0), None, None, None)]
27
+ canvas_height = 1080
28
+ canvas_width = 1920
29
+ result = encode_poses_as_json(poses, canvas_height, canvas_width)
30
+ expected = json.dumps({
31
+ 'people': [
32
+ {
33
+ 'pose_keypoints_2d': None,
34
+ 'face_keypoints_2d': None,
35
+ 'hand_left_keypoints_2d': None,
36
+ 'hand_right_keypoints_2d': None,
37
+ },
38
+ ],
39
+ 'canvas_height': canvas_height,
40
+ 'canvas_width': canvas_width,
41
+ }, indent=4)
42
+ self.assertEqual(result, expected)
43
+
44
+ def test_single_pose_with_keypoints(self):
45
+ keypoints = [Keypoint(np.float32(0.5), np.float32(0.5)), None, Keypoint(0.6, 0.6)]
46
+ poses = [PoseResult(BodyResult(keypoints, 0, 0), keypoints, keypoints, keypoints)]
47
+ canvas_height = 1080
48
+ canvas_width = 1920
49
+ result = encode_poses_as_json(poses, canvas_height, canvas_width)
50
+ expected = json.dumps({
51
+ 'people': [
52
+ {
53
+ 'pose_keypoints_2d': [
54
+ 0.5, 0.5, 1.0,
55
+ 0.0, 0.0, 0.0,
56
+ 0.6, 0.6, 1.0,
57
+ ],
58
+ 'face_keypoints_2d': [
59
+ 0.5, 0.5, 1.0,
60
+ 0.0, 0.0, 0.0,
61
+ 0.6, 0.6, 1.0,
62
+ ],
63
+ 'hand_left_keypoints_2d': [
64
+ 0.5, 0.5, 1.0,
65
+ 0.0, 0.0, 0.0,
66
+ 0.6, 0.6, 1.0,
67
+ ],
68
+ 'hand_right_keypoints_2d': [
69
+ 0.5, 0.5, 1.0,
70
+ 0.0, 0.0, 0.0,
71
+ 0.6, 0.6, 1.0,
72
+ ],
73
+ },
74
+ ],
75
+ 'canvas_height': canvas_height,
76
+ 'canvas_width': canvas_width,
77
+ }, indent=4)
78
+ self.assertEqual(result, expected)
79
+
80
+ if __name__ == '__main__':
81
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/annotator_tests/openpose_tests/openpose_e2e_test.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ import cv2
3
+ import numpy as np
4
+ from typing import Dict
5
+
6
+
7
+ import importlib
8
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
9
+ utils.setup_test_env()
10
+
11
+ from annotator.openpose import OpenposeDetector
12
+
13
+ class TestOpenposeDetector(unittest.TestCase):
14
+ image_path = './tests/images'
15
+ def setUp(self) -> None:
16
+ self.detector = OpenposeDetector()
17
+ self.detector.load_model()
18
+
19
+ def tearDown(self) -> None:
20
+ self.detector.unload_model()
21
+
22
+ def expect_same_image(self, img1, img2, diff_img_path: str):
23
+ # Calculate the difference between the two images
24
+ diff = cv2.absdiff(img1, img2)
25
+
26
+ # Set a threshold to highlight the different pixels
27
+ threshold = 30
28
+ diff_highlighted = np.where(diff > threshold, 255, 0).astype(np.uint8)
29
+
30
+ # Assert that the two images are similar within a tolerance
31
+ similar = np.allclose(img1, img2, rtol=1e-05, atol=1e-08)
32
+ if not similar:
33
+ # Save the diff_highlighted image to inspect the differences
34
+ cv2.imwrite(diff_img_path, diff_highlighted)
35
+
36
+ self.assertTrue(similar)
37
+
38
+ # Save expectation image as png so that no compression issue happens.
39
+ def template(self, test_image: str, expected_image: str, detector_config: Dict, overwrite_expectation: bool = False):
40
+ oriImg = cv2.imread(test_image)
41
+ canvas = self.detector(oriImg, **detector_config)
42
+
43
+ # Create expectation file
44
+ if overwrite_expectation:
45
+ cv2.imwrite(expected_image, canvas)
46
+ else:
47
+ expected_canvas = cv2.imread(expected_image)
48
+ self.expect_same_image(canvas, expected_canvas, diff_img_path=expected_image.replace('.png', '_diff.png'))
49
+
50
+ def test_body(self):
51
+ self.template(
52
+ test_image = f'{TestOpenposeDetector.image_path}/ski.jpg',
53
+ expected_image = f'{TestOpenposeDetector.image_path}/expected_ski_output.png',
54
+ detector_config=dict(),
55
+ overwrite_expectation=False
56
+ )
57
+
58
+ def test_hand(self):
59
+ self.template(
60
+ test_image = f'{TestOpenposeDetector.image_path}/woman.jpeg',
61
+ expected_image = f'{TestOpenposeDetector.image_path}/expected_woman_hand_output.png',
62
+ detector_config=dict(
63
+ include_body=False,
64
+ include_face=False,
65
+ include_hand=True,
66
+ ),
67
+ overwrite_expectation=False
68
+ )
69
+
70
+ def test_face(self):
71
+ self.template(
72
+ test_image = f'{TestOpenposeDetector.image_path}/woman.jpeg',
73
+ expected_image = f'{TestOpenposeDetector.image_path}/expected_woman_face_output.png',
74
+ detector_config=dict(
75
+ include_body=False,
76
+ include_face=True,
77
+ include_hand=False,
78
+ ),
79
+ overwrite_expectation=False
80
+ )
81
+
82
+ def test_all(self):
83
+ self.template(
84
+ test_image = f'{TestOpenposeDetector.image_path}/woman.jpeg',
85
+ expected_image = f'{TestOpenposeDetector.image_path}/expected_woman_all_output.png',
86
+ detector_config=dict(
87
+ include_body=True,
88
+ include_face=True,
89
+ include_hand=True,
90
+ ),
91
+ overwrite_expectation=False
92
+ )
93
+
94
+ if __name__ == '__main__':
95
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/cn_script/__init__.py ADDED
File without changes
extensions/microsoftexcel-controlnet/tests/cn_script/batch_hijack_test.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest.mock
2
+ import importlib
3
+ from typing import Any
4
+
5
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
6
+ utils.setup_test_env()
7
+
8
+ from modules import processing, scripts, shared
9
+ from scripts import controlnet, external_code, batch_hijack
10
+
11
+
12
+ batch_hijack.instance.undo_hijack()
13
+ original_process_images_inner = processing.process_images_inner
14
+
15
+
16
+ class TestBatchHijack(unittest.TestCase):
17
+ @unittest.mock.patch('modules.script_callbacks.on_script_unloaded')
18
+ def setUp(self, on_script_unloaded_mock):
19
+ self.on_script_unloaded_mock = on_script_unloaded_mock
20
+
21
+ self.batch_hijack_object = batch_hijack.BatchHijack()
22
+ self.batch_hijack_object.do_hijack()
23
+
24
+ def tearDown(self):
25
+ self.batch_hijack_object.undo_hijack()
26
+
27
+ def test_do_hijack__registers_on_script_unloaded(self):
28
+ self.on_script_unloaded_mock.assert_called_once_with(self.batch_hijack_object.undo_hijack)
29
+
30
+ def test_do_hijack__call_once__hijacks_once(self):
31
+ self.assertEqual(getattr(processing, '__controlnet_original_process_images_inner'), original_process_images_inner)
32
+ self.assertEqual(processing.process_images_inner, self.batch_hijack_object.processing_process_images_hijack)
33
+
34
+ @unittest.mock.patch('modules.processing.__controlnet_original_process_images_inner')
35
+ def test_do_hijack__multiple_times__hijacks_once(self, process_images_inner_mock):
36
+ self.batch_hijack_object.do_hijack()
37
+ self.batch_hijack_object.do_hijack()
38
+ self.batch_hijack_object.do_hijack()
39
+ self.assertEqual(process_images_inner_mock, getattr(processing, '__controlnet_original_process_images_inner'))
40
+
41
+
42
+ class TestGetControlNetBatchesWorks(unittest.TestCase):
43
+ def setUp(self):
44
+ self.p = unittest.mock.MagicMock()
45
+ self.p.scripts = scripts.scripts_txt2img
46
+ self.cn_script = controlnet.Script()
47
+ self.p.scripts.alwayson_scripts = [self.cn_script]
48
+ self.p.script_args = []
49
+
50
+ def tearDown(self):
51
+ batch_hijack.instance.dispatch_callbacks(batch_hijack.instance.postprocess_batch_callbacks, self.p)
52
+
53
+ def assert_get_cn_batches_works(self, batch_images_list):
54
+ self.cn_script.args_from = 0
55
+ self.cn_script.args_to = self.cn_script.args_from + len(self.p.script_args)
56
+
57
+ is_cn_batch, batches, output_dir, _ = batch_hijack.get_cn_batches(self.p)
58
+ batch_hijack.instance.dispatch_callbacks(batch_hijack.instance.process_batch_callbacks, self.p, batches, output_dir)
59
+
60
+ batch_units = [unit for unit in self.p.script_args if getattr(unit, 'input_mode', batch_hijack.InputMode.SIMPLE) == batch_hijack.InputMode.BATCH]
61
+ if batch_units:
62
+ self.assertEqual(min(len(unit.batch_images) for unit in batch_units), len(batches))
63
+ else:
64
+ self.assertEqual(1, len(batches))
65
+
66
+ for i, unit in enumerate(self.cn_script.enabled_units):
67
+ self.assertListEqual(batch_images_list[i], list(unit.batch_images))
68
+
69
+ def test_get_cn_batches__empty(self):
70
+ is_batch, batches, _, _ = batch_hijack.get_cn_batches(self.p)
71
+ self.assertEqual(1, len(batches))
72
+ self.assertEqual(is_batch, False)
73
+
74
+ def test_get_cn_batches__1_simple(self):
75
+ self.p.script_args.append(external_code.ControlNetUnit(image=get_dummy_image()))
76
+ self.assert_get_cn_batches_works([
77
+ [self.p.script_args[0].image],
78
+ ])
79
+
80
+ def test_get_cn_batches__2_simples(self):
81
+ self.p.script_args.extend([
82
+ external_code.ControlNetUnit(image=get_dummy_image(0)),
83
+ external_code.ControlNetUnit(image=get_dummy_image(1)),
84
+ ])
85
+ self.assert_get_cn_batches_works([
86
+ [get_dummy_image(0)],
87
+ [get_dummy_image(1)],
88
+ ])
89
+
90
+ def test_get_cn_batches__1_batch(self):
91
+ self.p.script_args.extend([
92
+ controlnet.UiControlNetUnit(
93
+ input_mode=batch_hijack.InputMode.BATCH,
94
+ batch_images=[
95
+ get_dummy_image(0),
96
+ get_dummy_image(1),
97
+ ],
98
+ ),
99
+ ])
100
+ self.assert_get_cn_batches_works([
101
+ [
102
+ get_dummy_image(0),
103
+ get_dummy_image(1),
104
+ ],
105
+ ])
106
+
107
+ def test_get_cn_batches__2_batches(self):
108
+ self.p.script_args.extend([
109
+ controlnet.UiControlNetUnit(
110
+ input_mode=batch_hijack.InputMode.BATCH,
111
+ batch_images=[
112
+ get_dummy_image(0),
113
+ get_dummy_image(1),
114
+ ],
115
+ ),
116
+ controlnet.UiControlNetUnit(
117
+ input_mode=batch_hijack.InputMode.BATCH,
118
+ batch_images=[
119
+ get_dummy_image(2),
120
+ get_dummy_image(3),
121
+ ],
122
+ ),
123
+ ])
124
+ self.assert_get_cn_batches_works([
125
+ [
126
+ get_dummy_image(0),
127
+ get_dummy_image(1),
128
+ ],
129
+ [
130
+ get_dummy_image(2),
131
+ get_dummy_image(3),
132
+ ],
133
+ ])
134
+
135
+ def test_get_cn_batches__2_mixed(self):
136
+ self.p.script_args.extend([
137
+ external_code.ControlNetUnit(image=get_dummy_image(0)),
138
+ controlnet.UiControlNetUnit(
139
+ input_mode=batch_hijack.InputMode.BATCH,
140
+ batch_images=[
141
+ get_dummy_image(1),
142
+ get_dummy_image(2),
143
+ ],
144
+ ),
145
+ ])
146
+ self.assert_get_cn_batches_works([
147
+ [
148
+ get_dummy_image(0),
149
+ get_dummy_image(0),
150
+ ],
151
+ [
152
+ get_dummy_image(1),
153
+ get_dummy_image(2),
154
+ ],
155
+ ])
156
+
157
+ def test_get_cn_batches__3_mixed(self):
158
+ self.p.script_args.extend([
159
+ external_code.ControlNetUnit(image=get_dummy_image(0)),
160
+ controlnet.UiControlNetUnit(
161
+ input_mode=batch_hijack.InputMode.BATCH,
162
+ batch_images=[
163
+ get_dummy_image(1),
164
+ get_dummy_image(2),
165
+ get_dummy_image(3),
166
+ ],
167
+ ),
168
+ controlnet.UiControlNetUnit(
169
+ input_mode=batch_hijack.InputMode.BATCH,
170
+ batch_images=[
171
+ get_dummy_image(4),
172
+ get_dummy_image(5),
173
+ ],
174
+ ),
175
+ ])
176
+ self.assert_get_cn_batches_works([
177
+ [
178
+ get_dummy_image(0),
179
+ get_dummy_image(0),
180
+ ],
181
+ [
182
+ get_dummy_image(1),
183
+ get_dummy_image(2),
184
+ ],
185
+ [
186
+ get_dummy_image(4),
187
+ get_dummy_image(5),
188
+ ],
189
+ ])
190
+
191
+ class TestProcessImagesPatchWorks(unittest.TestCase):
192
+ @unittest.mock.patch('modules.script_callbacks.on_script_unloaded')
193
+ def setUp(self, on_script_unloaded_mock):
194
+ self.on_script_unloaded_mock = on_script_unloaded_mock
195
+ self.p = unittest.mock.MagicMock()
196
+ self.p.scripts = scripts.scripts_txt2img
197
+ self.cn_script = controlnet.Script()
198
+ self.p.scripts.alwayson_scripts = [self.cn_script]
199
+ self.p.script_args = []
200
+ self.p.all_seeds = [0]
201
+ self.p.all_subseeds = [0]
202
+ self.old_model, shared.sd_model = shared.sd_model, unittest.mock.MagicMock()
203
+
204
+ self.batch_hijack_object = batch_hijack.BatchHijack()
205
+ self.callbacks_mock = unittest.mock.MagicMock()
206
+ self.batch_hijack_object.process_batch_callbacks.append(self.callbacks_mock.process)
207
+ self.batch_hijack_object.process_batch_each_callbacks.append(self.callbacks_mock.process_each)
208
+ self.batch_hijack_object.postprocess_batch_each_callbacks.insert(0, self.callbacks_mock.postprocess_each)
209
+ self.batch_hijack_object.postprocess_batch_callbacks.insert(0, self.callbacks_mock.postprocess)
210
+ self.batch_hijack_object.do_hijack()
211
+ shared.state.begin()
212
+
213
+ def tearDown(self):
214
+ shared.state.end()
215
+ self.batch_hijack_object.undo_hijack()
216
+ shared.sd_model = self.old_model
217
+
218
+ @unittest.mock.patch('modules.processing.__controlnet_original_process_images_inner')
219
+ def assert_process_images_hijack_called(self, process_images_mock, batch_count):
220
+ process_images_mock.return_value = processing.Processed(self.p, [get_dummy_image('output')])
221
+ with unittest.mock.patch.dict(shared.opts.data, {
222
+ 'controlnet_show_batch_images_in_ui': True,
223
+ }):
224
+ res = processing.process_images_inner(self.p)
225
+
226
+ self.assertEqual(res, process_images_mock.return_value)
227
+
228
+ if batch_count > 0:
229
+ self.callbacks_mock.process.assert_called()
230
+ self.callbacks_mock.postprocess.assert_called()
231
+ else:
232
+ self.callbacks_mock.process.assert_not_called()
233
+ self.callbacks_mock.postprocess.assert_not_called()
234
+
235
+ self.assertEqual(self.callbacks_mock.process_each.call_count, batch_count)
236
+ self.assertEqual(self.callbacks_mock.postprocess_each.call_count, batch_count)
237
+
238
+ def test_process_images_no_units_forwards(self):
239
+ self.assert_process_images_hijack_called(batch_count=0)
240
+
241
+ def test_process_images__only_simple_units__forwards(self):
242
+ self.p.script_args = [
243
+ external_code.ControlNetUnit(image=get_dummy_image()),
244
+ external_code.ControlNetUnit(image=get_dummy_image()),
245
+ ]
246
+ self.assert_process_images_hijack_called(batch_count=0)
247
+
248
+ def test_process_images__1_batch_1_unit__runs_1_batch(self):
249
+ self.p.script_args = [
250
+ controlnet.UiControlNetUnit(
251
+ input_mode=batch_hijack.InputMode.BATCH,
252
+ batch_images=[
253
+ get_dummy_image(),
254
+ ],
255
+ ),
256
+ ]
257
+ self.assert_process_images_hijack_called(batch_count=1)
258
+
259
+ def test_process_images__2_batches_1_unit__runs_2_batches(self):
260
+ self.p.script_args = [
261
+ controlnet.UiControlNetUnit(
262
+ input_mode=batch_hijack.InputMode.BATCH,
263
+ batch_images=[
264
+ get_dummy_image(0),
265
+ get_dummy_image(1),
266
+ ],
267
+ ),
268
+ ]
269
+ self.assert_process_images_hijack_called(batch_count=2)
270
+
271
+ def test_process_images__8_batches_1_unit__runs_8_batches(self):
272
+ batch_count = 8
273
+ self.p.script_args = [
274
+ controlnet.UiControlNetUnit(
275
+ input_mode=batch_hijack.InputMode.BATCH,
276
+ batch_images=[get_dummy_image(i) for i in range(batch_count)]
277
+ ),
278
+ ]
279
+ self.assert_process_images_hijack_called(batch_count=batch_count)
280
+
281
+ def test_process_images__1_batch_2_units__runs_1_batch(self):
282
+ self.p.script_args = [
283
+ controlnet.UiControlNetUnit(
284
+ input_mode=batch_hijack.InputMode.BATCH,
285
+ batch_images=[get_dummy_image(0)]
286
+ ),
287
+ controlnet.UiControlNetUnit(
288
+ input_mode=batch_hijack.InputMode.BATCH,
289
+ batch_images=[get_dummy_image(1)]
290
+ ),
291
+ ]
292
+ self.assert_process_images_hijack_called(batch_count=1)
293
+
294
+ def test_process_images__2_batches_2_units__runs_2_batches(self):
295
+ self.p.script_args = [
296
+ controlnet.UiControlNetUnit(
297
+ input_mode=batch_hijack.InputMode.BATCH,
298
+ batch_images=[
299
+ get_dummy_image(0),
300
+ get_dummy_image(1),
301
+ ],
302
+ ),
303
+ controlnet.UiControlNetUnit(
304
+ input_mode=batch_hijack.InputMode.BATCH,
305
+ batch_images=[
306
+ get_dummy_image(2),
307
+ get_dummy_image(3),
308
+ ],
309
+ ),
310
+ ]
311
+ self.assert_process_images_hijack_called(batch_count=2)
312
+
313
+ def test_process_images__3_batches_2_mixed_units__runs_3_batches(self):
314
+ self.p.script_args = [
315
+ controlnet.UiControlNetUnit(
316
+ input_mode=batch_hijack.InputMode.BATCH,
317
+ batch_images=[
318
+ get_dummy_image(0),
319
+ get_dummy_image(1),
320
+ get_dummy_image(2),
321
+ ],
322
+ ),
323
+ controlnet.UiControlNetUnit(
324
+ input_mode=batch_hijack.InputMode.SIMPLE,
325
+ image=get_dummy_image(3),
326
+ ),
327
+ ]
328
+ self.assert_process_images_hijack_called(batch_count=3)
329
+
330
+
331
+ def get_dummy_image(name: Any = 0):
332
+ return f'base64#{name}...'
extensions/microsoftexcel-controlnet/tests/cn_script/utils_test.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
3
+ utils.setup_test_env()
4
+
5
+ from scripts.utils import ndarray_lru_cache
6
+
7
+ import unittest
8
+ import numpy as np
9
+
10
+ class TestNumpyLruCache(unittest.TestCase):
11
+
12
+ def setUp(self):
13
+ self.arr1 = np.array([1, 2, 3, 4, 5])
14
+ self.arr2 = np.array([1, 2, 3, 4, 5])
15
+
16
+ @ndarray_lru_cache(max_size=128)
17
+ def add_one(self, arr):
18
+ return arr + 1
19
+
20
+ def test_same_array(self):
21
+ # Test that the decorator works with numpy arrays.
22
+ result1 = self.add_one(self.arr1)
23
+ result2 = self.add_one(self.arr1)
24
+
25
+ # If caching is working correctly, these should be the same object.
26
+ self.assertIs(result1, result2)
27
+
28
+ def test_different_array_same_data(self):
29
+ # Test that the decorator works with different numpy arrays with the same data.
30
+ result1 = self.add_one(self.arr1)
31
+ result2 = self.add_one(self.arr2)
32
+
33
+ # If caching is working correctly, these should be the same object.
34
+ self.assertIs(result1, result2)
35
+
36
+ def test_cache_size(self):
37
+ # Test that the cache size limit is respected.
38
+ arrs = [np.array([i]) for i in range(150)]
39
+
40
+ # Add all arrays to the cache.
41
+
42
+ result1 = self.add_one(arrs[0])
43
+ for arr in arrs[1:]:
44
+ self.add_one(arr)
45
+
46
+ # Check that the first array is no longer in the cache.
47
+ result2 = self.add_one(arrs[0])
48
+
49
+ # If the cache size limit is working correctly, these should not be the same object.
50
+ self.assertIsNot(result1, result2)
51
+
52
+ def test_large_array(self):
53
+ # Create two large arrays with the same elements in the beginning and end, but one different element in the middle.
54
+ arr1 = np.ones(10000)
55
+ arr2 = np.ones(10000)
56
+ arr2[len(arr2)//2] = 0
57
+
58
+ result1 = self.add_one(arr1)
59
+ result2 = self.add_one(arr2)
60
+
61
+ # If hashing is working correctly, these should not be the same object because the input arrays are not equal.
62
+ self.assertIsNot(result1, result2)
63
+
64
+ if __name__ == '__main__':
65
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/external_code_api/__init__.py ADDED
File without changes
extensions/microsoftexcel-controlnet/tests/external_code_api/external_code_test.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ import importlib
3
+
4
+ import numpy as np
5
+
6
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
7
+ utils.setup_test_env()
8
+
9
+ from copy import copy
10
+ from scripts import external_code
11
+ from scripts import controlnet
12
+ from modules import scripts, ui, shared
13
+
14
+
15
+ class TestExternalCodeWorking(unittest.TestCase):
16
+ max_models = 6
17
+ args_offset = 10
18
+
19
+ def setUp(self):
20
+ self.scripts = copy(scripts.scripts_txt2img)
21
+ self.scripts.initialize_scripts(False)
22
+ ui.create_ui()
23
+ self.cn_script = controlnet.Script()
24
+ self.cn_script.args_from = self.args_offset
25
+ self.cn_script.args_to = self.args_offset + self.max_models
26
+ self.scripts.alwayson_scripts = [self.cn_script]
27
+ self.script_args = [None] * self.cn_script.args_from
28
+
29
+ self.initial_max_models = shared.opts.data.get("control_net_max_models_num", 1)
30
+ shared.opts.data.update(control_net_max_models_num=self.max_models)
31
+
32
+ self.extra_models = 0
33
+
34
+ def tearDown(self):
35
+ shared.opts.data.update(control_net_max_models_num=self.initial_max_models)
36
+
37
+ def get_expected_args_to(self):
38
+ args_len = max(self.max_models, len(self.cn_units))
39
+ return self.args_offset + args_len
40
+
41
+ def assert_update_in_place_ok(self):
42
+ external_code.update_cn_script_in_place(self.scripts, self.script_args, self.cn_units)
43
+ self.assertEqual(self.cn_script.args_to, self.get_expected_args_to())
44
+
45
+ def test_empty_resizes_min_args(self):
46
+ self.cn_units = []
47
+ self.assert_update_in_place_ok()
48
+
49
+ def test_empty_resizes_extra_args(self):
50
+ extra_models = 1
51
+ self.cn_units = [external_code.ControlNetUnit()] * (self.max_models + extra_models)
52
+ self.assert_update_in_place_ok()
53
+
54
+
55
+ class TestControlNetUnitConversion(unittest.TestCase):
56
+ def setUp(self):
57
+ self.dummy_image = 'base64...'
58
+ self.input = {}
59
+ self.expected = external_code.ControlNetUnit()
60
+
61
+ def assert_converts_to_expected(self):
62
+ self.assertEqual(vars(external_code.to_processing_unit(self.input)), vars(self.expected))
63
+
64
+ def test_empty_dict_works(self):
65
+ self.assert_converts_to_expected()
66
+
67
+ def test_image_works(self):
68
+ self.input = {
69
+ 'image': self.dummy_image
70
+ }
71
+ self.expected = external_code.ControlNetUnit(image=self.dummy_image)
72
+ self.assert_converts_to_expected()
73
+
74
+ def test_image_alias_works(self):
75
+ self.input = {
76
+ 'input_image': self.dummy_image
77
+ }
78
+ self.expected = external_code.ControlNetUnit(image=self.dummy_image)
79
+ self.assert_converts_to_expected()
80
+
81
+ def test_masked_image_works(self):
82
+ self.input = {
83
+ 'image': self.dummy_image,
84
+ 'mask': self.dummy_image,
85
+ }
86
+ self.expected = external_code.ControlNetUnit(image={'image': self.dummy_image, 'mask': self.dummy_image})
87
+ self.assert_converts_to_expected()
88
+
89
+
90
+ class TestControlNetUnitImageToDict(unittest.TestCase):
91
+ def setUp(self):
92
+ self.dummy_image = utils.readImage("test/test_files/img2img_basic.png")
93
+ self.input = external_code.ControlNetUnit()
94
+ self.expected_image = external_code.to_base64_nparray(self.dummy_image)
95
+ self.expected_mask = external_code.to_base64_nparray(self.dummy_image)
96
+
97
+ def assert_dict_is_valid(self):
98
+ actual_dict = controlnet.image_dict_from_any(self.input.image)
99
+ self.assertEqual(actual_dict['image'].tolist(), self.expected_image.tolist())
100
+ self.assertEqual(actual_dict['mask'].tolist(), self.expected_mask.tolist())
101
+
102
+ def test_none(self):
103
+ self.assertEqual(controlnet.image_dict_from_any(self.input.image), None)
104
+
105
+ def test_image_without_mask(self):
106
+ self.input.image = self.dummy_image
107
+ self.expected_mask = np.zeros_like(self.expected_image, dtype=np.uint8)
108
+ self.assert_dict_is_valid()
109
+
110
+ def test_masked_image_tuple(self):
111
+ self.input.image = (self.dummy_image, self.dummy_image,)
112
+ self.assert_dict_is_valid()
113
+
114
+ def test_masked_image_dict(self):
115
+ self.input.image = {'image': self.dummy_image, 'mask': self.dummy_image}
116
+ self.assert_dict_is_valid()
117
+
118
+
119
+ if __name__ == '__main__':
120
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/external_code_api/script_args_test.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ import importlib
3
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
4
+ utils.setup_test_env()
5
+
6
+ from scripts import external_code
7
+
8
+
9
+ class TestGetAllUnitsFrom(unittest.TestCase):
10
+ def setUp(self):
11
+ self.control_unit = {
12
+ "module": "none",
13
+ "model": utils.get_model(),
14
+ "image": utils.readImage("test/test_files/img2img_basic.png"),
15
+ "resize_mode": 1,
16
+ "low_vram": False,
17
+ "processor_res": 64,
18
+ "control_mode": external_code.ControlMode.BALANCED.value,
19
+ }
20
+ self.object_unit = external_code.ControlNetUnit(**self.control_unit)
21
+
22
+ def test_empty_converts(self):
23
+ script_args = []
24
+ units = external_code.get_all_units_from(script_args)
25
+ self.assertListEqual(units, [])
26
+
27
+ def test_object_forwards(self):
28
+ script_args = [self.object_unit]
29
+ units = external_code.get_all_units_from(script_args)
30
+ self.assertListEqual(units, [self.object_unit])
31
+
32
+
33
+ if __name__ == '__main__':
34
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/images/expected_ski_output.png ADDED
extensions/microsoftexcel-controlnet/tests/images/expected_woman_all_output.png ADDED
extensions/microsoftexcel-controlnet/tests/images/expected_woman_face_output.png ADDED
extensions/microsoftexcel-controlnet/tests/images/expected_woman_hand_output.png ADDED
extensions/microsoftexcel-controlnet/tests/images/ski.jpg ADDED
extensions/microsoftexcel-controlnet/tests/images/woman.jpeg ADDED
extensions/microsoftexcel-controlnet/tests/utils.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import cv2
4
+ from base64 import b64encode
5
+
6
+ import requests
7
+
8
+ BASE_URL = "http://localhost:7860"
9
+
10
+
11
+ def setup_test_env():
12
+ ext_root = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
13
+ if ext_root not in sys.path:
14
+ sys.path.append(ext_root)
15
+
16
+
17
+ def readImage(path):
18
+ img = cv2.imread(path)
19
+ retval, buffer = cv2.imencode('.jpg', img)
20
+ b64img = b64encode(buffer).decode("utf-8")
21
+ return b64img
22
+
23
+
24
+ def get_model():
25
+ r = requests.get(BASE_URL+"/controlnet/model_list")
26
+ result = r.json()
27
+ if "model_list" in result:
28
+ result = result["model_list"]
29
+ for item in result:
30
+ print("Using model: ", item)
31
+ return item
32
+ return "None"
33
+
34
+
35
+ def get_modules():
36
+ return requests.get(f"{BASE_URL}/controlnet/module_list").json()
37
+
38
+
39
+ def detect(json):
40
+ return requests.post(BASE_URL+"/controlnet/detect", json=json)
extensions/microsoftexcel-controlnet/tests/web_api/__init__.py ADDED
File without changes
extensions/microsoftexcel-controlnet/tests/web_api/detect_test.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import unittest
3
+ import importlib
4
+ utils = importlib.import_module(
5
+ 'extensions.sd-webui-controlnet.tests.utils', 'utils')
6
+ utils.setup_test_env()
7
+
8
+
9
+ class TestDetectEndpointWorking(unittest.TestCase):
10
+ def setUp(self):
11
+ self.base_detect_args = {
12
+ "controlnet_module": "canny",
13
+ "controlnet_input_images": [utils.readImage("test/test_files/img2img_basic.png")],
14
+ "controlnet_processor_res": 512,
15
+ "controlnet_threshold_a": 0,
16
+ "controlnet_threshold_b": 0,
17
+ }
18
+
19
+ def test_detect_with_invalid_module_performed(self):
20
+ detect_args = self.base_detect_args.copy()
21
+ detect_args.update({
22
+ "controlnet_module": "INVALID",
23
+ })
24
+ self.assertEqual(utils.detect(detect_args).status_code, 422)
25
+
26
+ def test_detect_with_no_input_images_performed(self):
27
+ detect_args = self.base_detect_args.copy()
28
+ detect_args.update({
29
+ "controlnet_input_images": [],
30
+ })
31
+ self.assertEqual(utils.detect(detect_args).status_code, 422)
32
+
33
+ def test_detect_with_valid_args_performed(self):
34
+ detect_args = self.base_detect_args
35
+ response = utils.detect(detect_args)
36
+
37
+ self.assertEqual(response.status_code, 200)
38
+
39
+
40
+ if __name__ == "__main__":
41
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/web_api/img2img_test.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ import importlib
3
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
4
+ utils.setup_test_env()
5
+ import requests
6
+
7
+
8
+
9
+ class TestImg2ImgWorkingBase(unittest.TestCase):
10
+ def setUp(self):
11
+ controlnet_unit = {
12
+ "module": "none",
13
+ "model": utils.get_model(),
14
+ "weight": 1.0,
15
+ "input_image": utils.readImage("test/test_files/img2img_basic.png"),
16
+ "mask": utils.readImage("test/test_files/img2img_basic.png"),
17
+ "resize_mode": 1,
18
+ "lowvram": False,
19
+ "processor_res": 64,
20
+ "threshold_a": 64,
21
+ "threshold_b": 64,
22
+ "guidance_start": 0.0,
23
+ "guidance_end": 1.0,
24
+ "control_mode": 0,
25
+ }
26
+ setup_args = {"alwayson_scripts":{"ControlNet":{"args": ([controlnet_unit] * getattr(self, 'units_count', 1))}}}
27
+ self.setup_route(setup_args)
28
+
29
+ def setup_route(self, setup_args):
30
+ self.url_img2img = "http://localhost:7860/sdapi/v1/img2img"
31
+ self.simple_img2img = {
32
+ "init_images": [utils.readImage("test/test_files/img2img_basic.png")],
33
+ "resize_mode": 0,
34
+ "denoising_strength": 0.75,
35
+ "image_cfg_scale": 0,
36
+ "mask_blur": 4,
37
+ "inpainting_fill": 0,
38
+ "inpaint_full_res": True,
39
+ "inpaint_full_res_padding": 0,
40
+ "inpainting_mask_invert": 0,
41
+ "initial_noise_multiplier": 0,
42
+ "prompt": "example prompt",
43
+ "styles": [],
44
+ "seed": -1,
45
+ "subseed": -1,
46
+ "subseed_strength": 0,
47
+ "seed_resize_from_h": -1,
48
+ "seed_resize_from_w": -1,
49
+ "sampler_name": "Euler a",
50
+ "batch_size": 1,
51
+ "n_iter": 1,
52
+ "steps": 3,
53
+ "cfg_scale": 7,
54
+ "width": 64,
55
+ "height": 64,
56
+ "restore_faces": False,
57
+ "tiling": False,
58
+ "do_not_save_samples": False,
59
+ "do_not_save_grid": False,
60
+ "negative_prompt": "",
61
+ "eta": 0,
62
+ "s_churn": 0,
63
+ "s_tmax": 0,
64
+ "s_tmin": 0,
65
+ "s_noise": 1,
66
+ "override_settings": {},
67
+ "override_settings_restore_afterwards": True,
68
+ "sampler_index": "Euler a",
69
+ "include_init_images": False,
70
+ "send_images": True,
71
+ "save_images": False,
72
+ "alwayson_scripts": {}
73
+ }
74
+ self.simple_img2img.update(setup_args)
75
+
76
+ def assert_status_ok(self):
77
+ self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
78
+ stderr = ""
79
+ with open('test/stderr.txt') as f:
80
+ stderr = f.read().lower()
81
+ with open('test/stderr.txt', 'w') as f:
82
+ # clear stderr file so we can easily parse the next test
83
+ f.write("")
84
+ self.assertFalse('error' in stderr, "Errors in stderr: \n" + stderr)
85
+
86
+ def test_img2img_simple_performed(self):
87
+ self.assert_status_ok()
88
+
89
+ def test_img2img_alwayson_scripts_default_units(self):
90
+ self.units_count = 0
91
+ self.setUp()
92
+ self.assert_status_ok()
93
+
94
+ def test_img2img_default_params(self):
95
+ self.simple_img2img["alwayson_scripts"]["ControlNet"]["args"] = [{
96
+ "input_image": utils.readImage("test/test_files/img2img_basic.png"),
97
+ "model": utils.get_model(),
98
+ }]
99
+ self.assert_status_ok()
100
+
101
+ if __name__ == "__main__":
102
+ unittest.main()
extensions/microsoftexcel-controlnet/tests/web_api/txt2img_test.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ import importlib
3
+ utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils')
4
+ utils.setup_test_env()
5
+ import requests
6
+
7
+
8
+
9
+ class TestAlwaysonTxt2ImgWorking(unittest.TestCase):
10
+ def setUp(self):
11
+ controlnet_unit = {
12
+ "enabled": True,
13
+ "module": "none",
14
+ "model": utils.get_model(),
15
+ "weight": 1.0,
16
+ "image": utils.readImage("test/test_files/img2img_basic.png"),
17
+ "mask": utils.readImage("test/test_files/img2img_basic.png"),
18
+ "resize_mode": 1,
19
+ "lowvram": False,
20
+ "processor_res": 64,
21
+ "threshold_a": 64,
22
+ "threshold_b": 64,
23
+ "guidance_start": 0.0,
24
+ "guidance_end": 1.0,
25
+ "control_mode": 0,
26
+ "pixel_perfect": False
27
+ }
28
+ setup_args = [controlnet_unit] * getattr(self, 'units_count', 1)
29
+ self.setup_route(setup_args)
30
+
31
+ def setup_route(self, setup_args):
32
+ self.url_txt2img = "http://localhost:7860/sdapi/v1/txt2img"
33
+ self.simple_txt2img = {
34
+ "enable_hr": False,
35
+ "denoising_strength": 0,
36
+ "firstphase_width": 0,
37
+ "firstphase_height": 0,
38
+ "prompt": "example prompt",
39
+ "styles": [],
40
+ "seed": -1,
41
+ "subseed": -1,
42
+ "subseed_strength": 0,
43
+ "seed_resize_from_h": -1,
44
+ "seed_resize_from_w": -1,
45
+ "batch_size": 1,
46
+ "n_iter": 1,
47
+ "steps": 3,
48
+ "cfg_scale": 7,
49
+ "width": 64,
50
+ "height": 64,
51
+ "restore_faces": False,
52
+ "tiling": False,
53
+ "negative_prompt": "",
54
+ "eta": 0,
55
+ "s_churn": 0,
56
+ "s_tmax": 0,
57
+ "s_tmin": 0,
58
+ "s_noise": 1,
59
+ "sampler_index": "Euler a",
60
+ "alwayson_scripts": {}
61
+ }
62
+ self.setup_controlnet_params(setup_args)
63
+
64
+ def setup_controlnet_params(self, setup_args):
65
+ self.simple_txt2img["alwayson_scripts"]["ControlNet"] = {
66
+ "args": setup_args
67
+ }
68
+
69
+ def assert_status_ok(self, msg=None):
70
+ self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200, msg)
71
+ stderr = ""
72
+ with open('test/stderr.txt') as f:
73
+ stderr = f.read().lower()
74
+ with open('test/stderr.txt', 'w') as f:
75
+ # clear stderr file so that we can easily parse the next test
76
+ f.write("")
77
+ self.assertFalse('error' in stderr, "Errors in stderr: \n" + stderr)
78
+
79
+ def test_txt2img_simple_performed(self):
80
+ self.assert_status_ok()
81
+
82
+ def test_txt2img_alwayson_scripts_default_units(self):
83
+ self.units_count = 0
84
+ self.setUp()
85
+ self.assert_status_ok()
86
+
87
+ def test_txt2img_multiple_batches_performed(self):
88
+ self.simple_txt2img["n_iter"] = 2
89
+ self.assert_status_ok()
90
+
91
+ def test_txt2img_batch_performed(self):
92
+ self.simple_txt2img["batch_size"] = 2
93
+ self.assert_status_ok()
94
+
95
+ def test_txt2img_2_units(self):
96
+ self.units_count = 2
97
+ self.setUp()
98
+ self.assert_status_ok()
99
+
100
+ def test_txt2img_8_units(self):
101
+ self.units_count = 8
102
+ self.setUp()
103
+ self.assert_status_ok()
104
+
105
+ def test_txt2img_default_params(self):
106
+ self.simple_txt2img["alwayson_scripts"]["ControlNet"]["args"] = [
107
+ {
108
+ "input_image": utils.readImage("test/test_files/img2img_basic.png"),
109
+ "model": utils.get_model(),
110
+ }
111
+ ]
112
+
113
+ self.assert_status_ok()
114
+
115
+ def test_call_with_preprocessors(self):
116
+ available_modules = utils.get_modules()
117
+ available_modules_list = available_modules.get('module_list', [])
118
+ available_modules_detail = available_modules.get('module_detail', {})
119
+ for module in ['depth', 'openpose_full']:
120
+ assert module in available_modules_list, f'Failed to find {module}.'
121
+ assert module in available_modules_detail, f"Failed to find {module}'s detail."
122
+ with self.subTest(module=module):
123
+ self.simple_txt2img["alwayson_scripts"]["ControlNet"]["args"] = [
124
+ {
125
+ "input_image": utils.readImage("test/test_files/img2img_basic.png"),
126
+ "model": utils.get_model(),
127
+ "module": module
128
+ }
129
+ ]
130
+ self.assert_status_ok(f'Running preprocessor module: {module}')
131
+
132
+
133
+ if __name__ == "__main__":
134
+ unittest.main()
extensions/microsoftexcel-images-browser.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7852a2ee362716b237cddcdc658b58811b3bb1ceebbe81592ef395f22e36c46e
3
+ size 68776
extensions/microsoftexcel-supermerger/.gitignore ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ changelog.m
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # Distribution / packaging
12
+ .Python
13
+ build/
14
+ develop-eggs/
15
+ dist/
16
+ downloads/
17
+ eggs/
18
+ .eggs/
19
+ lib/
20
+ lib64/
21
+ parts/
22
+ sdist/
23
+ var/
24
+ wheels/
25
+ pip-wheel-metadata/
26
+ share/python-wheels/
27
+ *.egg-info/
28
+ .installed.cfg
29
+ *.egg
30
+ MANIFEST
31
+
32
+ # PyInstaller
33
+ # Usually these files are written by a python script from a template
34
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
35
+ *.manifest
36
+ *.spec
37
+
38
+ # Installer logs
39
+ pip-log.txt
40
+ pip-delete-this-directory.txt
41
+
42
+ # Unit test / coverage reports
43
+ htmlcov/
44
+ .tox/
45
+ .nox/
46
+ .coverage
47
+ .coverage.*
48
+ .cache
49
+ nosetests.xml
50
+ coverage.xml
51
+ *.cover
52
+ *.py,cover
53
+ .hypothesis/
54
+ .pytest_cache/
55
+
56
+ # Translations
57
+ *.mo
58
+ *.pot
59
+
60
+ # Django stuff:
61
+ *.log
62
+ local_settings.py
63
+ db.sqlite3
64
+ db.sqlite3-journal
65
+
66
+ # Flask stuff:
67
+ instance/
68
+ .webassets-cache
69
+
70
+ # Scrapy stuff:
71
+ .scrapy
72
+
73
+ # Sphinx documentation
74
+ docs/_build/
75
+
76
+ # PyBuilder
77
+ target/
78
+
79
+ # Jupyter Notebook
80
+ .ipynb_checkpoints
81
+
82
+ # IPython
83
+ profile_default/
84
+ ipython_config.py
85
+
86
+ # pyenv
87
+ .python-version
88
+
89
+ # pipenv
90
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
91
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
92
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
93
+ # install all needed dependencies.
94
+ #Pipfile.lock
95
+
96
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
97
+ __pypackages__/
98
+
99
+ # Celery stuff
100
+ celerybeat-schedule
101
+ celerybeat.pid
102
+
103
+ # SageMath parsed files
104
+ *.sage.py
105
+
106
+ # Environments
107
+ .env
108
+ .venv
109
+ env/
110
+ venv/
111
+ ENV/
112
+ env.bak/
113
+ venv.bak/
114
+
115
+ # Spyder project settings
116
+ .spyderproject
117
+ .spyproject
118
+
119
+ # Rope project settings
120
+ .ropeproject
121
+
122
+ # mkdocs documentation
123
+ /site
124
+
125
+ # mypy
126
+ .mypy_cache/
127
+ .dmypy.json
128
+ dmypy.json
129
+
130
+ # Pyre type checker
131
+ .pyre/
extensions/microsoftexcel-supermerger/LICENSE ADDED
@@ -0,0 +1,663 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (c) 2023 hako-mikan
5
+
6
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
7
+ Everyone is permitted to copy and distribute verbatim copies
8
+ of this license document, but changing it is not allowed.
9
+
10
+ Preamble
11
+
12
+ The GNU Affero General Public License is a free, copyleft license for
13
+ software and other kinds of works, specifically designed to ensure
14
+ cooperation with the community in the case of network server software.
15
+
16
+ The licenses for most software and other practical works are designed
17
+ to take away your freedom to share and change the works. By contrast,
18
+ our General Public Licenses are intended to guarantee your freedom to
19
+ share and change all versions of a program--to make sure it remains free
20
+ software for all its users.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ Developers that use our General Public Licenses protect your rights
30
+ with two steps: (1) assert copyright on the software, and (2) offer
31
+ you this License which gives you legal permission to copy, distribute
32
+ and/or modify the software.
33
+
34
+ A secondary benefit of defending all users' freedom is that
35
+ improvements made in alternate versions of the program, if they
36
+ receive widespread use, become available for other developers to
37
+ incorporate. Many developers of free software are heartened and
38
+ encouraged by the resulting cooperation. However, in the case of
39
+ software used on network servers, this result may fail to come about.
40
+ The GNU General Public License permits making a modified version and
41
+ letting the public access it on a server without ever releasing its
42
+ source code to the public.
43
+
44
+ The GNU Affero General Public License is designed specifically to
45
+ ensure that, in such cases, the modified source code becomes available
46
+ to the community. It requires the operator of a network server to
47
+ provide the source code of the modified version running there to the
48
+ users of that server. Therefore, public use of a modified version, on
49
+ a publicly accessible server, gives the public access to the source
50
+ code of the modified version.
51
+
52
+ An older license, called the Affero General Public License and
53
+ published by Affero, was designed to accomplish similar goals. This is
54
+ a different license, not a version of the Affero GPL, but Affero has
55
+ released a new version of the Affero GPL which permits relicensing under
56
+ this license.
57
+
58
+ The precise terms and conditions for copying, distribution and
59
+ modification follow.
60
+
61
+ TERMS AND CONDITIONS
62
+
63
+ 0. Definitions.
64
+
65
+ "This License" refers to version 3 of the GNU Affero General Public License.
66
+
67
+ "Copyright" also means copyright-like laws that apply to other kinds of
68
+ works, such as semiconductor masks.
69
+
70
+ "The Program" refers to any copyrightable work licensed under this
71
+ License. Each licensee is addressed as "you". "Licensees" and
72
+ "recipients" may be individuals or organizations.
73
+
74
+ To "modify" a work means to copy from or adapt all or part of the work
75
+ in a fashion requiring copyright permission, other than the making of an
76
+ exact copy. The resulting work is called a "modified version" of the
77
+ earlier work or a work "based on" the earlier work.
78
+
79
+ A "covered work" means either the unmodified Program or a work based
80
+ on the Program.
81
+
82
+ To "propagate" a work means to do anything with it that, without
83
+ permission, would make you directly or secondarily liable for
84
+ infringement under applicable copyright law, except executing it on a
85
+ computer or modifying a private copy. Propagation includes copying,
86
+ distribution (with or without modification), making available to the
87
+ public, and in some countries other activities as well.
88
+
89
+ To "convey" a work means any kind of propagation that enables other
90
+ parties to make or receive copies. Mere interaction with a user through
91
+ a computer network, with no transfer of a copy, is not conveying.
92
+
93
+ An interactive user interface displays "Appropriate Legal Notices"
94
+ to the extent that it includes a convenient and prominently visible
95
+ feature that (1) displays an appropriate copyright notice, and (2)
96
+ tells the user that there is no warranty for the work (except to the
97
+ extent that warranties are provided), that licensees may convey the
98
+ work under this License, and how to view a copy of this License. If
99
+ the interface presents a list of user commands or options, such as a
100
+ menu, a prominent item in the list meets this criterion.
101
+
102
+ 1. Source Code.
103
+
104
+ The "source code" for a work means the preferred form of the work
105
+ for making modifications to it. "Object code" means any non-source
106
+ form of a work.
107
+
108
+ A "Standard Interface" means an interface that either is an official
109
+ standard defined by a recognized standards body, or, in the case of
110
+ interfaces specified for a particular programming language, one that
111
+ is widely used among developers working in that language.
112
+
113
+ The "System Libraries" of an executable work include anything, other
114
+ than the work as a whole, that (a) is included in the normal form of
115
+ packaging a Major Component, but which is not part of that Major
116
+ Component, and (b) serves only to enable use of the work with that
117
+ Major Component, or to implement a Standard Interface for which an
118
+ implementation is available to the public in source code form. A
119
+ "Major Component", in this context, means a major essential component
120
+ (kernel, window system, and so on) of the specific operating system
121
+ (if any) on which the executable work runs, or a compiler used to
122
+ produce the work, or an object code interpreter used to run it.
123
+
124
+ The "Corresponding Source" for a work in object code form means all
125
+ the source code needed to generate, install, and (for an executable
126
+ work) run the object code and to modify the work, including scripts to
127
+ control those activities. However, it does not include the work's
128
+ System Libraries, or general-purpose tools or generally available free
129
+ programs which are used unmodified in performing those activities but
130
+ which are not part of the work. For example, Corresponding Source
131
+ includes interface definition files associated with source files for
132
+ the work, and the source code for shared libraries and dynamically
133
+ linked subprograms that the work is specifically designed to require,
134
+ such as by intimate data communication or control flow between those
135
+ subprograms and other parts of the work.
136
+
137
+ The Corresponding Source need not include anything that users
138
+ can regenerate automatically from other parts of the Corresponding
139
+ Source.
140
+
141
+ The Corresponding Source for a work in source code form is that
142
+ same work.
143
+
144
+ 2. Basic Permissions.
145
+
146
+ All rights granted under this License are granted for the term of
147
+ copyright on the Program, and are irrevocable provided the stated
148
+ conditions are met. This License explicitly affirms your unlimited
149
+ permission to run the unmodified Program. The output from running a
150
+ covered work is covered by this License only if the output, given its
151
+ content, constitutes a covered work. This License acknowledges your
152
+ rights of fair use or other equivalent, as provided by copyright law.
153
+
154
+ You may make, run and propagate covered works that you do not
155
+ convey, without conditions so long as your license otherwise remains
156
+ in force. You may convey covered works to others for the sole purpose
157
+ of having them make modifications exclusively for you, or provide you
158
+ with facilities for running those works, provided that you comply with
159
+ the terms of this License in conveying all material for which you do
160
+ not control copyright. Those thus making or running the covered works
161
+ for you must do so exclusively on your behalf, under your direction
162
+ and control, on terms that prohibit them from making any copies of
163
+ your copyrighted material outside their relationship with you.
164
+
165
+ Conveying under any other circumstances is permitted solely under
166
+ the conditions stated below. Sublicensing is not allowed; section 10
167
+ makes it unnecessary.
168
+
169
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
170
+
171
+ No covered work shall be deemed part of an effective technological
172
+ measure under any applicable law fulfilling obligations under article
173
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
174
+ similar laws prohibiting or restricting circumvention of such
175
+ measures.
176
+
177
+ When you convey a covered work, you waive any legal power to forbid
178
+ circumvention of technological measures to the extent such circumvention
179
+ is effected by exercising rights under this License with respect to
180
+ the covered work, and you disclaim any intention to limit operation or
181
+ modification of the work as a means of enforcing, against the work's
182
+ users, your or third parties' legal rights to forbid circumvention of
183
+ technological measures.
184
+
185
+ 4. Conveying Verbatim Copies.
186
+
187
+ You may convey verbatim copies of the Program's source code as you
188
+ receive it, in any medium, provided that you conspicuously and
189
+ appropriately publish on each copy an appropriate copyright notice;
190
+ keep intact all notices stating that this License and any
191
+ non-permissive terms added in accord with section 7 apply to the code;
192
+ keep intact all notices of the absence of any warranty; and give all
193
+ recipients a copy of this License along with the Program.
194
+
195
+ You may charge any price or no price for each copy that you convey,
196
+ and you may offer support or warranty protection for a fee.
197
+
198
+ 5. Conveying Modified Source Versions.
199
+
200
+ You may convey a work based on the Program, or the modifications to
201
+ produce it from the Program, in the form of source code under the
202
+ terms of section 4, provided that you also meet all of these conditions:
203
+
204
+ a) The work must carry prominent notices stating that you modified
205
+ it, and giving a relevant date.
206
+
207
+ b) The work must carry prominent notices stating that it is
208
+ released under this License and any conditions added under section
209
+ 7. This requirement modifies the requirement in section 4 to
210
+ "keep intact all notices".
211
+
212
+ c) You must license the entire work, as a whole, under this
213
+ License to anyone who comes into possession of a copy. This
214
+ License will therefore apply, along with any applicable section 7
215
+ additional terms, to the whole of the work, and all its parts,
216
+ regardless of how they are packaged. This License gives no
217
+ permission to license the work in any other way, but it does not
218
+ invalidate such permission if you have separately received it.
219
+
220
+ d) If the work has interactive user interfaces, each must display
221
+ Appropriate Legal Notices; however, if the Program has interactive
222
+ interfaces that do not display Appropriate Legal Notices, your
223
+ work need not make them do so.
224
+
225
+ A compilation of a covered work with other separate and independent
226
+ works, which are not by their nature extensions of the covered work,
227
+ and which are not combined with it such as to form a larger program,
228
+ in or on a volume of a storage or distribution medium, is called an
229
+ "aggregate" if the compilation and its resulting copyright are not
230
+ used to limit the access or legal rights of the compilation's users
231
+ beyond what the individual works permit. Inclusion of a covered work
232
+ in an aggregate does not cause this License to apply to the other
233
+ parts of the aggregate.
234
+
235
+ 6. Conveying Non-Source Forms.
236
+
237
+ You may convey a covered work in object code form under the terms
238
+ of sections 4 and 5, provided that you also convey the
239
+ machine-readable Corresponding Source under the terms of this License,
240
+ in one of these ways:
241
+
242
+ a) Convey the object code in, or embodied in, a physical product
243
+ (including a physical distribution medium), accompanied by the
244
+ Corresponding Source fixed on a durable physical medium
245
+ customarily used for software interchange.
246
+
247
+ b) Convey the object code in, or embodied in, a physical product
248
+ (including a physical distribution medium), accompanied by a
249
+ written offer, valid for at least three years and valid for as
250
+ long as you offer spare parts or customer support for that product
251
+ model, to give anyone who possesses the object code either (1) a
252
+ copy of the Corresponding Source for all the software in the
253
+ product that is covered by this License, on a durable physical
254
+ medium customarily used for software interchange, for a price no
255
+ more than your reasonable cost of physically performing this
256
+ conveying of source, or (2) access to copy the
257
+ Corresponding Source from a network server at no charge.
258
+
259
+ c) Convey individual copies of the object code with a copy of the
260
+ written offer to provide the Corresponding Source. This
261
+ alternative is allowed only occasionally and noncommercially, and
262
+ only if you received the object code with such an offer, in accord
263
+ with subsection 6b.
264
+
265
+ d) Convey the object code by offering access from a designated
266
+ place (gratis or for a charge), and offer equivalent access to the
267
+ Corresponding Source in the same way through the same place at no
268
+ further charge. You need not require recipients to copy the
269
+ Corresponding Source along with the object code. If the place to
270
+ copy the object code is a network server, the Corresponding Source
271
+ may be on a different server (operated by you or a third party)
272
+ that supports equivalent copying facilities, provided you maintain
273
+ clear directions next to the object code saying where to find the
274
+ Corresponding Source. Regardless of what server hosts the
275
+ Corresponding Source, you remain obligated to ensure that it is
276
+ available for as long as needed to satisfy these requirements.
277
+
278
+ e) Convey the object code using peer-to-peer transmission, provided
279
+ you inform other peers where the object code and Corresponding
280
+ Source of the work are being offered to the general public at no
281
+ charge under subsection 6d.
282
+
283
+ A separable portion of the object code, whose source code is excluded
284
+ from the Corresponding Source as a System Library, need not be
285
+ included in conveying the object code work.
286
+
287
+ A "User Product" is either (1) a "consumer product", which means any
288
+ tangible personal property which is normally used for personal, family,
289
+ or household purposes, or (2) anything designed or sold for incorporation
290
+ into a dwelling. In determining whether a product is a consumer product,
291
+ doubtful cases shall be resolved in favor of coverage. For a particular
292
+ product received by a particular user, "normally used" refers to a
293
+ typical or common use of that class of product, regardless of the status
294
+ of the particular user or of the way in which the particular user
295
+ actually uses, or expects or is expected to use, the product. A product
296
+ is a consumer product regardless of whether the product has substantial
297
+ commercial, industrial or non-consumer uses, unless such uses represent
298
+ the only significant mode of use of the product.
299
+
300
+ "Installation Information" for a User Product means any methods,
301
+ procedures, authorization keys, or other information required to install
302
+ and execute modified versions of a covered work in that User Product from
303
+ a modified version of its Corresponding Source. The information must
304
+ suffice to ensure that the continued functioning of the modified object
305
+ code is in no case prevented or interfered with solely because
306
+ modification has been made.
307
+
308
+ If you convey an object code work under this section in, or with, or
309
+ specifically for use in, a User Product, and the conveying occurs as
310
+ part of a transaction in which the right of possession and use of the
311
+ User Product is transferred to the recipient in perpetuity or for a
312
+ fixed term (regardless of how the transaction is characterized), the
313
+ Corresponding Source conveyed under this section must be accompanied
314
+ by the Installation Information. But this requirement does not apply
315
+ if neither you nor any third party retains the ability to install
316
+ modified object code on the User Product (for example, the work has
317
+ been installed in ROM).
318
+
319
+ The requirement to provide Installation Information does not include a
320
+ requirement to continue to provide support service, warranty, or updates
321
+ for a work that has been modified or installed by the recipient, or for
322
+ the User Product in which it has been modified or installed. Access to a
323
+ network may be denied when the modification itself materially and
324
+ adversely affects the operation of the network or violates the rules and
325
+ protocols for communication across the network.
326
+
327
+ Corresponding Source conveyed, and Installation Information provided,
328
+ in accord with this section must be in a format that is publicly
329
+ documented (and with an implementation available to the public in
330
+ source code form), and must require no special password or key for
331
+ unpacking, reading or copying.
332
+
333
+ 7. Additional Terms.
334
+
335
+ "Additional permissions" are terms that supplement the terms of this
336
+ License by making exceptions from one or more of its conditions.
337
+ Additional permissions that are applicable to the entire Program shall
338
+ be treated as though they were included in this License, to the extent
339
+ that they are valid under applicable law. If additional permissions
340
+ apply only to part of the Program, that part may be used separately
341
+ under those permissions, but the entire Program remains governed by
342
+ this License without regard to the additional permissions.
343
+
344
+ When you convey a copy of a covered work, you may at your option
345
+ remove any additional permissions from that copy, or from any part of
346
+ it. (Additional permissions may be written to require their own
347
+ removal in certain cases when you modify the work.) You may place
348
+ additional permissions on material, added by you to a covered work,
349
+ for which you have or can give appropriate copyright permission.
350
+
351
+ Notwithstanding any other provision of this License, for material you
352
+ add to a covered work, you may (if authorized by the copyright holders of
353
+ that material) supplement the terms of this License with terms:
354
+
355
+ a) Disclaiming warranty or limiting liability differently from the
356
+ terms of sections 15 and 16 of this License; or
357
+
358
+ b) Requiring preservation of specified reasonable legal notices or
359
+ author attributions in that material or in the Appropriate Legal
360
+ Notices displayed by works containing it; or
361
+
362
+ c) Prohibiting misrepresentation of the origin of that material, or
363
+ requiring that modified versions of such material be marked in
364
+ reasonable ways as different from the original version; or
365
+
366
+ d) Limiting the use for publicity purposes of names of licensors or
367
+ authors of the material; or
368
+
369
+ e) Declining to grant rights under trademark law for use of some
370
+ trade names, trademarks, or service marks; or
371
+
372
+ f) Requiring indemnification of licensors and authors of that
373
+ material by anyone who conveys the material (or modified versions of
374
+ it) with contractual assumptions of liability to the recipient, for
375
+ any liability that these contractual assumptions directly impose on
376
+ those licensors and authors.
377
+
378
+ All other non-permissive additional terms are considered "further
379
+ restrictions" within the meaning of section 10. If the Program as you
380
+ received it, or any part of it, contains a notice stating that it is
381
+ governed by this License along with a term that is a further
382
+ restriction, you may remove that term. If a license document contains
383
+ a further restriction but permits relicensing or conveying under this
384
+ License, you may add to a covered work material governed by the terms
385
+ of that license document, provided that the further restriction does
386
+ not survive such relicensing or conveying.
387
+
388
+ If you add terms to a covered work in accord with this section, you
389
+ must place, in the relevant source files, a statement of the
390
+ additional terms that apply to those files, or a notice indicating
391
+ where to find the applicable terms.
392
+
393
+ Additional terms, permissive or non-permissive, may be stated in the
394
+ form of a separately written license, or stated as exceptions;
395
+ the above requirements apply either way.
396
+
397
+ 8. Termination.
398
+
399
+ You may not propagate or modify a covered work except as expressly
400
+ provided under this License. Any attempt otherwise to propagate or
401
+ modify it is void, and will automatically terminate your rights under
402
+ this License (including any patent licenses granted under the third
403
+ paragraph of section 11).
404
+
405
+ However, if you cease all violation of this License, then your
406
+ license from a particular copyright holder is reinstated (a)
407
+ provisionally, unless and until the copyright holder explicitly and
408
+ finally terminates your license, and (b) permanently, if the copyright
409
+ holder fails to notify you of the violation by some reasonable means
410
+ prior to 60 days after the cessation.
411
+
412
+ Moreover, your license from a particular copyright holder is
413
+ reinstated permanently if the copyright holder notifies you of the
414
+ violation by some reasonable means, this is the first time you have
415
+ received notice of violation of this License (for any work) from that
416
+ copyright holder, and you cure the violation prior to 30 days after
417
+ your receipt of the notice.
418
+
419
+ Termination of your rights under this section does not terminate the
420
+ licenses of parties who have received copies or rights from you under
421
+ this License. If your rights have been terminated and not permanently
422
+ reinstated, you do not qualify to receive new licenses for the same
423
+ material under section 10.
424
+
425
+ 9. Acceptance Not Required for Having Copies.
426
+
427
+ You are not required to accept this License in order to receive or
428
+ run a copy of the Program. Ancillary propagation of a covered work
429
+ occurring solely as a consequence of using peer-to-peer transmission
430
+ to receive a copy likewise does not require acceptance. However,
431
+ nothing other than this License grants you permission to propagate or
432
+ modify any covered work. These actions infringe copyright if you do
433
+ not accept this License. Therefore, by modifying or propagating a
434
+ covered work, you indicate your acceptance of this License to do so.
435
+
436
+ 10. Automatic Licensing of Downstream Recipients.
437
+
438
+ Each time you convey a covered work, the recipient automatically
439
+ receives a license from the original licensors, to run, modify and
440
+ propagate that work, subject to this License. You are not responsible
441
+ for enforcing compliance by third parties with this License.
442
+
443
+ An "entity transaction" is a transaction transferring control of an
444
+ organization, or substantially all assets of one, or subdividing an
445
+ organization, or merging organizations. If propagation of a covered
446
+ work results from an entity transaction, each party to that
447
+ transaction who receives a copy of the work also receives whatever
448
+ licenses to the work the party's predecessor in interest had or could
449
+ give under the previous paragraph, plus a right to possession of the
450
+ Corresponding Source of the work from the predecessor in interest, if
451
+ the predecessor has it or can get it with reasonable efforts.
452
+
453
+ You may not impose any further restrictions on the exercise of the
454
+ rights granted or affirmed under this License. For example, you may
455
+ not impose a license fee, royalty, or other charge for exercise of
456
+ rights granted under this License, and you may not initiate litigation
457
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
458
+ any patent claim is infringed by making, using, selling, offering for
459
+ sale, or importing the Program or any portion of it.
460
+
461
+ 11. Patents.
462
+
463
+ A "contributor" is a copyright holder who authorizes use under this
464
+ License of the Program or a work on which the Program is based. The
465
+ work thus licensed is called the contributor's "contributor version".
466
+
467
+ A contributor's "essential patent claims" are all patent claims
468
+ owned or controlled by the contributor, whether already acquired or
469
+ hereafter acquired, that would be infringed by some manner, permitted
470
+ by this License, of making, using, or selling its contributor version,
471
+ but do not include claims that would be infringed only as a
472
+ consequence of further modification of the contributor version. For
473
+ purposes of this definition, "control" includes the right to grant
474
+ patent sublicenses in a manner consistent with the requirements of
475
+ this License.
476
+
477
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
478
+ patent license under the contributor's essential patent claims, to
479
+ make, use, sell, offer for sale, import and otherwise run, modify and
480
+ propagate the contents of its contributor version.
481
+
482
+ In the following three paragraphs, a "patent license" is any express
483
+ agreement or commitment, however denominated, not to enforce a patent
484
+ (such as an express permission to practice a patent or covenant not to
485
+ sue for patent infringement). To "grant" such a patent license to a
486
+ party means to make such an agreement or commitment not to enforce a
487
+ patent against the party.
488
+
489
+ If you convey a covered work, knowingly relying on a patent license,
490
+ and the Corresponding Source of the work is not available for anyone
491
+ to copy, free of charge and under the terms of this License, through a
492
+ publicly available network server or other readily accessible means,
493
+ then you must either (1) cause the Corresponding Source to be so
494
+ available, or (2) arrange to deprive yourself of the benefit of the
495
+ patent license for this particular work, or (3) arrange, in a manner
496
+ consistent with the requirements of this License, to extend the patent
497
+ license to downstream recipients. "Knowingly relying" means you have
498
+ actual knowledge that, but for the patent license, your conveying the
499
+ covered work in a country, or your recipient's use of the covered work
500
+ in a country, would infringe one or more identifiable patents in that
501
+ country that you have reason to believe are valid.
502
+
503
+ If, pursuant to or in connection with a single transaction or
504
+ arrangement, you convey, or propagate by procuring conveyance of, a
505
+ covered work, and grant a patent license to some of the parties
506
+ receiving the covered work authorizing them to use, propagate, modify
507
+ or convey a specific copy of the covered work, then the patent license
508
+ you grant is automatically extended to all recipients of the covered
509
+ work and works based on it.
510
+
511
+ A patent license is "discriminatory" if it does not include within
512
+ the scope of its coverage, prohibits the exercise of, or is
513
+ conditioned on the non-exercise of one or more of the rights that are
514
+ specifically granted under this License. You may not convey a covered
515
+ work if you are a party to an arrangement with a third party that is
516
+ in the business of distributing software, under which you make payment
517
+ to the third party based on the extent of your activity of conveying
518
+ the work, and under which the third party grants, to any of the
519
+ parties who would receive the covered work from you, a discriminatory
520
+ patent license (a) in connection with copies of the covered work
521
+ conveyed by you (or copies made from those copies), or (b) primarily
522
+ for and in connection with specific products or compilations that
523
+ contain the covered work, unless you entered into that arrangement,
524
+ or that patent license was granted, prior to 28 March 2007.
525
+
526
+ Nothing in this License shall be construed as excluding or limiting
527
+ any implied license or other defenses to infringement that may
528
+ otherwise be available to you under applicable patent law.
529
+
530
+ 12. No Surrender of Others' Freedom.
531
+
532
+ If conditions are imposed on you (whether by court order, agreement or
533
+ otherwise) that contradict the conditions of this License, they do not
534
+ excuse you from the conditions of this License. If you cannot convey a
535
+ covered work so as to satisfy simultaneously your obligations under this
536
+ License and any other pertinent obligations, then as a consequence you may
537
+ not convey it at all. For example, if you agree to terms that obligate you
538
+ to collect a royalty for further conveying from those to whom you convey
539
+ the Program, the only way you could satisfy both those terms and this
540
+ License would be to refrain entirely from conveying the Program.
541
+
542
+ 13. Remote Network Interaction; Use with the GNU General Public License.
543
+
544
+ Notwithstanding any other provision of this License, if you modify the
545
+ Program, your modified version must prominently offer all users
546
+ interacting with it remotely through a computer network (if your version
547
+ supports such interaction) an opportunity to receive the Corresponding
548
+ Source of your version by providing access to the Corresponding Source
549
+ from a network server at no charge, through some standard or customary
550
+ means of facilitating copying of software. This Corresponding Source
551
+ shall include the Corresponding Source for any work covered by version 3
552
+ of the GNU General Public License that is incorporated pursuant to the
553
+ following paragraph.
554
+
555
+ Notwithstanding any other provision of this License, you have
556
+ permission to link or combine any covered work with a work licensed
557
+ under version 3 of the GNU General Public License into a single
558
+ combined work, and to convey the resulting work. The terms of this
559
+ License will continue to apply to the part which is the covered work,
560
+ but the work with which it is combined will remain governed by version
561
+ 3 of the GNU General Public License.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU Affero General Public License from time to time. Such new versions
567
+ will be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU Affero General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU Affero General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU Affero General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU Affero General Public License as published
639
+ by the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU Affero General Public License for more details.
646
+
647
+ You should have received a copy of the GNU Affero General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If your software can interact with users remotely through a computer
653
+ network, you should also make sure that it provides a way for users to
654
+ get its source. For example, if your program is a web application, its
655
+ interface could display a "Source" link that leads users to an archive
656
+ of the code. There are many ways you could offer source, and different
657
+ solutions will be better for different programs; see section 13 for the
658
+ specific requirements.
659
+
660
+ You should also get your employer (if you work as a programmer) or school,
661
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
662
+ For more information on this, and how to apply and follow the GNU AGPL, see
663
+ <https://www.gnu.org/licenses/>.
extensions/microsoftexcel-supermerger/README.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SuperMerger
2
+ - Model merge extention for [AUTOMATIC1111's stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
3
+ - Merge models can be loaded directly for generation without saving
4
+
5
+ ### English / 日本語
6
+ 日本語: [![jp](https://img.shields.io/badge/lang-日本語-green.svg)](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/README_ja.md)
7
+
8
+ # Recent Update
9
+ All updates can be found [here](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/changelog.md)
10
+
11
+ update 2023.05.02.1900(JST)
12
+ - bug fix : Resolved conflict with wildcard in dynamic prompt
13
+ - new feature : restore face and tile option added
14
+
15
+ update 2023.04.19.2030(JST)
16
+ - New feature, optimization using cosine similarity method updated [detail here](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/calcmode_en.md#cosine)
17
+ - New feature, tensor merge added [detail here](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/calcmode_en.md#tensor)
18
+ - New XY plot type : calcmode,prompt
19
+
20
+ ## requirement
21
+ diffusers(0.10.2 to 0.14.0),sklearn is required to use some LoRA-related features
22
+
23
+ # overview
24
+ This extension allows merged models to be loaded as models for image generation without saving them.
25
+ This extension can prevent the use of HDD and SSD.
26
+
27
+ ## Usage
28
+
29
+ ### Merge mode
30
+ #### Weight sum
31
+ Normal merge. alpha is used. if MBW is enabled, MBW base is used as alpha.
32
+ #### Add difference
33
+ Add difference, if MBW is enabled, MBW base is used as alpha
34
+ #### Triple sum
35
+ Merge 3 models at the same time. alpha and beta are used. I added this function because there were three model selection windows, but I am not sure if it works effectively.
36
+ #### sum Twice
37
+ Weight sum twice, alpha and beta are used.
38
+
39
+ #### use MBW
40
+ If checked, block-by-block merging is enabled. Use the slider at the bottom of the screen to set the ratio of each block.
41
+
42
+ #### calcmode
43
+ If you select "cosine", the comparison is performed using cosine similarity, centered on the set ratio, and the ratio is calculated to eliminate loss due to merging. See below for more details.
44
+ Thanks to [recoilme](https://github.com/recoilme) for devising the idea and to [SwiftIllusion](https://github.com/SwiftIllusion) for introducing this technique.
45
+ https://github.com/hako-mikan/sd-webui-supermerger/issues/33
46
+ https://github.com/recoilme/losslessmix
47
+
48
+ ### save metadate
49
+ Enable "save metadate" to embed merge conditions as metadata, only in safetensor format. Embedded conditions can be viewed in the Metadata tab.
50
+
51
+ ## Each button
52
+ ### Merge
53
+ After merging, load as a model for generation. **Note that a different model is loaded than the model information in the upper left corner.** It will be reset when you re-select the model in the model selection screen on the top left.
54
+
55
+ ### Gen.
56
+ Image generation is performed using the settings in the text2image tab.
57
+
58
+ ### Merge and Gen
59
+ Merge and Generate image after merging.
60
+
61
+ ### Set from ID
62
+ Read settings from merge log. The log is updated each time a merge is performed, and a sequential ID starting from 1 is assigned. Set on -1 will read the last merged configuration. The merge log is saved in extension/sd-webui-supermerger/mergehistory.csv. You can browse and search in the History tab. You can search and/or by separating with a half-width space.
63
+
64
+ ### Sequential XY Merge and Generation
65
+ Performs sequential merge image generation. Effective in all merge modes.
66
+ #### alpha,beta
67
+ Change alpha and beta.
68
+ #### alpha and beta
69
+ Change alpha and beta at the same time. Separate alpha and beta with a single space, and separate each element with a comma. If only one number is entered, the same value is entered for both alpha and beta.
70
+ Example: 0,0.5 0.1,0.3 0.4,0.5
71
+ #### MBW
72
+ Performs a block-byblock merge. Enter ratios separated by newlines. Presets can be used, but be careful to **separate on a new line**.For Triple and Twice, enter two lines as a set. An odd number of lines will result in an error.
73
+ #### seed
74
+ Changes the seed. Entering -1 will result in a fixed seed in the opposite axis direction.
75
+ #### model_A,B,C
76
+ Changes the model. The model selected in the model selection window is ignored.
77
+ #### pinpoint blocks
78
+ Changes only specific blocks in MBW. Choose alpha or beta for the opposite axis. If you enter a block ID, the alpha (beta) will change only for that block. As with the other types, use commas to separate them. Multiple blocks can be changed at the same time by separating them with a space or hyphen. NOT must be entered first to have any effect.
79
+ ##### Input example
80
+ IN01,OUT10 OUT11, OUT03-OUT06,OUT07-OUT11,NOT M00 OUT03-OUT06
81
+ In this case
82
+ - 1:Only IN01 changes
83
+ - 2:OUT10 and OUT11 change
84
+ - 3:OUT03 to OUT06 change
85
+ - 4:OUT07 to OUT11 change
86
+ - 5:All except for M00 and OUT03 to OUT06 are changed.
87
+
88
+ Please be careful not to forget to input "0".
89
+ ![xy_grid-0006-2934360860 0](https://user-images.githubusercontent.com/122196982/214343111-e82bb20a-799b-4026-8e3c-dd36e26841e3.jpg)
90
+
91
+ Block ID (only upper case letters are valid)
92
+ BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09, OUT10,OUT11
93
+
94
+ #### calcmode
95
+ change calclation mode.
96
+ Note the correspondence between calculation mode and merge mode.
97
+
98
+ #### prompt
99
+ You can change the prompt. The negative prompt does not change. Separate with a new line.
100
+
101
+ ### Reserve XY plot
102
+ The Reserve XY plot button reserves the execution of an XY plot for the setting at the time the button is pressed, instead of immediately executing the plot. The reserved XY plot will be executed after the normal XY plot is completed or by pressing the Start XY plot button on the Reservation tab. Reservations can be made at any time during the execution or non-execution of an XY plot. The reservation list is not automatically updated, so use the Reload button. If an error occurs, the plot is discarded and the next reservation is executed. Images will not be displayed until all reservations are finished, but those that have been marked "Finished" have finished generating the grid and can be viewed in the Image Browser or other applications.
103
+
104
+ It is also possible to move to an appointment at any location by using "|".
105
+ Inputing "0.1,0.2,0.3,0.4,0.5|0.6,0.7,0.8,0.9,1.0"
106
+
107
+ 0.1,0.2,0.3,0.4,0.5
108
+ 0.6,0.7,0.8,0.9,1.0
109
+ The grid is divided into two reservations, "0.1,0.2,0.3,0.4,0.5" and "0.6,0.7,0.8,0.9,1.0" executed. This may be useful when there are too many elements and the grid becomes too large.
110
+
111
+ ### About Cache
112
+ By storing models in memory, continuous merging and other operations can be sped up.
113
+ Cache settings can be configured from web-ui's setting menu.
114
+
115
+ ### unload button
116
+ Deletes the currently loaded model. This is used to free up GPU memory when using kohya-ss GUI. Once the model is deleted, you will not be able to generate images. If you want to generate images, please re-select models.
117
+
118
+ ## LoRA
119
+ LoRA related functions. It is basically the same as kohya-ss scripts, but it supports block-by-block merging. Currently, it does not support V2.X series merging.
120
+
121
+ Note: LyCORIS supports only single merge due to its special structure. Only ratios of 1,0 can be used for single merges. If any other value is used, the result will not match the Block weight LoRA result, even if the value is "SAME TO STRENGTH".
122
+ LoCon will match reasonably well even with non-integers.
123
+
124
+ ### merge to checkpoint
125
+ Merge LoRAs into a model. Multiple LoRAs can be merged at the same time.
126
+ Enter LoRA name1:ratio1:block1,LoRA name2:ratio2:block2,...
127
+ LoRA can also be used alone. The ":block" part can be omitted. The ratio can be any value, including negative values. There is no restriction that the total must sum to 1 (of course, if it greatly exceeds 1, it will break down).
128
+
129
+ ### Make LoRA
130
+ Generates a LoRA from the difference of two models.
131
+ If you specify a demension, it will be created with the specified dimension. If no demension is specified, LoRAs are created with dim 128.
132
+ The blend ratio can be adjusted by alpha and beta. (alpha x Model_A - beta x Model B) alpha, beta = 1 is the normal LoRA creation.
133
+
134
+ #### caution in using google colab
135
+ It has been reported that many errors occur when using with colab. This seems to be caused by multiple reasons.
136
+ First is a memory problem. It is recommended that the fp16 model be used. If the full model is used, at least 8 GB of memory is required. This is the amount used by this script. Also, it seems that the error occurs if different versions of diffusers are installed. version 0.10.2 has been tested.
137
+
138
+ ### merge LoRAs
139
+ Merges one or more LoRAs. kohya-ss's latest script is used, so LoRAs with different dimensions can be merged, but note that the generated images may differ significantly because LoRAs are recalculated when dimensions are converted.
140
+
141
+ The calculate dimention button calculates the dimensions of each LoRA and activates the display and sorting functions. The calculation is rather time-consuming and takes several tens of seconds for a LoRA of about 50. Newly merged LoRAs will not appear in the list, so please press the reload button. Dimension recalculation only calculates the added LoRAs.
142
+
143
+ ### Difference between Normal Merge and SAME TO STRENGTH
144
+ If the same to Strength option is not used, the result is the same as the merge in the script created by kohya-ss. In this case, the result is different from the case where LoRA is applied on Web-ui as shown in the figure below. The reason for this is related to the mathematical formula used to adopt LoRA into U-net. kohya-ss's script multiplies the ratio as it is, but the formula used to apply LoRA squares the ratio, so if the ratio is set to a number other than 1, or to a negative value, the result will differ from Strength (strength when applied). Using the SAME TO STRENGTH option, the square root of the ratio is driven at merge time, so that Strength and the ratio are calculated to have the same meaning at apply time. It is also calculated so that a negative value will have the same effect. If you are not doing additional learning, for example, you may be fine using the SAME TO STRENGTH option, but if you are doing additional learning on the merged LoRA, you may not want to use anyone else's option.
145
+ The following figures show the generated images for each case of normal image generation/same to Strength option/normal merge, using merged LoRAs of figmization and ukiyoE. You can see that in the case of normal merge, even in the negative direction, the image is squared and positive.
146
+ ![xyz_grid-0014-1534704891](https://user-images.githubusercontent.com/122196982/218322034-b7171298-5159-4619-be1d-ac684da92ed9.jpg)
147
+
148
+ For hierarchical merges see
149
+
150
+ https://github.com/bbc-mc/sdweb-merge-block-weighted-gui
151
+
152
+ This script uses some scripts from web-ui, mbw-merge and kohya-ss
extensions/microsoftexcel-supermerger/README_ja.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SuperMerger
2
+ - Model merge extention for [AUTOMATIC1111's stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
3
+ - Merge models can be loaded directly for generation without saving
4
+
5
+ # Recent Update
6
+ すべての更新履歴は[こちら](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/changelog.md)にあります。
7
+ All updates can be found [here](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/changelog.md).
8
+
9
+ ### English / 日本語
10
+ English: [![jp](https://img.shields.io/badge/lang-English-green.svg)](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/README.md)
11
+
12
+ ## Updates
13
+ - 機能更新, コサイン類似度を用いた最適値計算機能を強化しました[詳細](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/calcmode_en.md#cosine)
14
+ - 新機能, 新しいマージ方式tensorを導入しました [詳細](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/calcmode_en.md#tensor)
15
+ - XYプロットに新しい軸タイプを追加しました : calcmode,prompt
16
+
17
+ 一部LoRA関係の機能を使用する場合diffusers(0.10.2以降),sklearnが必要です。
18
+ #
19
+
20
+ # 概要
21
+ このextentionではモデルをマージした際、保存せずに画像生成用のモデルとして読み込むことができます。
22
+ これまでマージしたモデルはいったん保存して気に入らなければ削除するということが必要でしたが、このextentionを使うことでHDDやSSDの消耗を防ぐことができます。
23
+
24
+ # 各種設定
25
+ ## マージモード
26
+ ### Weight sum
27
+ 通常のマージです。alphaが使用されます。α=0の場合Model A, α=1 の時model Bになります。
28
+ ### Add difference
29
+ 差分マージです。
30
+ ### Triple sum
31
+ マージを3モデル同時に行います。alpha,betaが使用されます。モデル選択窓が3つあったので追加した機能ですが、ちゃんと動くようです。MBWでも使えます。それぞれMBWのalpha,betaを入力してください。
32
+ ### sum Twice
33
+ Weight sumを2回行います。alpha,betaが使用されます。MBWモードでも使えます。それぞれMBWのalpha,betaを入力してください。
34
+
35
+ ### use MBW
36
+ チェックするとブロックごとのマージ(階層マージ)が有効になります。各ブロックごとの比率は下部のスライダーかプリセットで設定してください。
37
+
38
+ ### 計算手法(calcmode)
39
+ cosineを選択すると、設定されたマージ比率を中心として、コサイン類似度を用いた比較を行い、マージによるロスをなくすような比率を計算し、その比率を用いてマージを行います。
40
+ 詳しくは下記を参照して下さい(英語です)
41
+ 考案された[recoilme](https://github.com/recoilme)氏とこの手法を紹介し最適化してくれた[SwiftIllusion](https://github.com/SwiftIllusion)氏に感謝します。
42
+ https://github.com/hako-mikan/sd-webui-supermerger/issues/33
43
+ https://github.com/recoilme/losslessmix
44
+
45
+ ### 保存
46
+ save metadataを有効にするとマージ条件をメタデータとして埋め込めます。safetensor形式のみ有効です。埋め込まれた条件はMetadataタブで確認できます。
47
+
48
+ ## 各ボタン
49
+ ### Merge
50
+ マージした後、生成用モデルとして読み込みます。 __左上のモデル情報とは違うモデルがロードされていることに注意してください。__ 左上のモデル選択画面でモデルを選択しなおすとリセットされます
51
+
52
+ ### Gen
53
+ text2imageタブの設定で画像生成を行います
54
+
55
+ ### Merge and Gen
56
+ マージしたのち画像を生成します
57
+
58
+ ### Set from ID
59
+ マージログから設定を読み込みます。ログはマージが行われるたびに更新され、1から始まる連番のIDが付与されます。IDを生成される画像やPNG infoに記載することも可能で、write merged model ID toから設定してください。-1でSetをすると最後にマージした設定を読み出します。マージログはextention/sd-webui-supermerger/mergehistory.csvに保存されます。他アプリで開いた状態だと読み取りエラーを起こすので注意してください。Historyタブで閲覧や検索が可能です。検索は半角スペースで区切ることでand/or検索が可能です。
60
+
61
+ ## Hires-fix,batch size
62
+ Hires-fixを有効化できます。batch sizeを変更できます。batch sizeはXY plotでは無効化されます。
63
+
64
+ ## Elemental merge
65
+ [こちら](https://github.com/hako-mikan/sd-webui-supermerger/blob/main/elemental_ja.md)を参照して下さい。
66
+
67
+ ## Sequential XY Merge and Generation
68
+ 連続マージ画像生成を行います。すべてのマージモードで有効です。
69
+ ### alpha,beta
70
+ アルファ、ベータを変更します。tensorモードでも有効です。
71
+ ### alpha and beta
72
+ アルファ、ベータを同時に変更します。アルファ、ベータの間は半角スペースで区���り、各要素はカンマで区切ってください。数字ひとつの場合はアルファベータ共に同じ値が入力されます。tensorモードでも有効です。
73
+ 例: 0,0.5 0.1,0.3 0.4,0.5
74
+ ### MBW
75
+ 階層マージを行います。改行で区切った比率を入力してください。プリセットも使用可能ですが、**改行で区切る**ことに注意をして下さい。Triple,Twiceの場合は2行で1セットで入力して下さい。奇数行だとエラーになります。
76
+ ### seed
77
+ シードを変更します。-1と入力すると、反対の軸方向には固定されたseedになります。
78
+ ### model_A,B,C
79
+ モデルを変更します。モデル選択窓で選択されたモデルは無視されます。
80
+ ### pinpoint blocks
81
+ MBWにおいて特定のブロックのみを変化させます。反対の軸はalphaまたはbetaを選んでください。ブロックIDを入力すると、そのブロックのみalpha(beta)が変わります。他のタイプと同様にカンマで区切ります。スペースまたはハイフンで区切ることで複数のブロックを同時に変化させることもできます。最初にNOTをつけることで変化対象が反転します。NOT IN09-OUT02とすると、IN09-OUT02以外が変化します。NOTは最初に入力しないと効果がありません。
82
+ #### 入力例
83
+ IN01,OUT10 OUT11, OUT03-OUT06,OUT07-OUT11,NOT M00 OUT03-OUT06
84
+ この場合
85
+ - 1:IN01のみ変化
86
+ - 2:OUT10およびOUT11が変化
87
+ - 3:OUT03からOUT06が変化
88
+ - 4:OUT07からOUT11が変化
89
+ - 5:M00およびOUT03からOUT06以外が変化
90
+
91
+ となります。0の打ち忘れに注意してください。
92
+ ![xy_grid-0006-2934360860 0](https://user-images.githubusercontent.com/122196982/214343111-e82bb20a-799b-4026-8e3c-dd36e26841e3.jpg)
93
+
94
+ ブロックID(大文字のみ有効)
95
+ BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11
96
+
97
+ ### calcmode
98
+ 計算方式を変更します。適用できるマージモードとの対応に注意して下さい。カンマで区切ります
99
+
100
+ ### prompt
101
+ プロンプトを変更できます。txt2imgのプロンプトは無視されます。ネガティブプロンプトは有効です。
102
+ **改行で区切る**ことに注意をして下さい。
103
+
104
+ ### XYプロットの予約
105
+ Reserve XY plotボタンはすぐさまプロットを実行せず、ボタンを押したときの設定のXYプロットの実行を予約します。予約したXYプロットは通常のXYプロットが終了した後か、ReservationタブのStart XY plotボタンを押すと実行が開始されます。予約はXYプロット実行時・未実行時いつでも可能です。予約一覧は自動更新されないのでリロードボタンを使用してください。エラー発生時はそのプロットを破棄して次の予約を実行します。すべての予約が終了するまで画像は表示されませんが、Finishedになったものについてはグリッドの生成は終わっているので、Image Browser等で見ることが可能です。
106
+ 「|」を使用することで任意の場所で予約へ移動することも可能です。
107
+ 0.1,0.2,0.3,0.4,0.5|0.6,0.7,0.8,0.9,1.0とすると
108
+
109
+ 0.1,0.2,0.3,0.4,0.5
110
+ 0.6,0.7,0.8,0.9,1.0
111
+ というふたつの予約に分割され実行されます。これは要素が多すぎてグリッドが大きくなってしまう場合などに有効でしょう。
112
+
113
+ ### キャッシュについて
114
+ モデルをメモリ上に保存することにより連続マージなどを高速化することができます。
115
+ キャッシュの設定はweb-uiのsettingから行ってください。
116
+
117
+ ### unloadボタン
118
+ 現在ロードされているモデルを消去します。これはkohya-ssのGUIを使用するときなどGPUメモリを開放するときに使用します。消去すると画像の生成はできません。生成する場合にはモデルを選び直して下さい。
119
+
120
+ ## LoRA
121
+ LoRA関連の機能です。基本的にはkohya-ssのスクリプトと同じですが、階層マージに対応します。現時点ではV2.X系のマージには対応していません。
122
+
123
+ 注意:LyCORISは構造が特殊なため単独マージのみに対応しています。単独マージの比率は1,0のみ使用可能です。他の値を用いるとsame to Strengthでも階層LoRAの結果と一致しません。
124
+ LoConは整数以外でもそれなりに一致します。
125
+
126
+ ### merge to checkpoint
127
+ モデルにLoRAをマージします。複数のLoRAを同時にマージできます。
128
+ LoRA名1:マージ比率1:階層,LoRA名2:階層,マージ比率2,LoRA名3:マージ比率3・・・
129
+ と入力します。LoRA単独でも使用可能です。「:階層」の部分は無くても問題ありません。比率はマイナスを含めどんな値でも入力できます。合計が1にならないといけないという制約もありません(���ちろん大きく1を越えると破綻します)。
130
+
131
+ ### Make LoRA
132
+ ふたつのモデルの差分からLoRAを生成します。
133
+ demensionを指定すると指定されたdimensionで作製されます。無指定の場合は128で作製します。
134
+ alphaとbetaによって配合比率を調整することができます。(alpha x Model_A - beta x Model B) alpha, beta = 1が通常のLoRA作成となります。
135
+
136
+ #### google colab使用時の問題
137
+ colabで使用する場合に多くのエラーが発生することが報告されています。これは複数の原因によって発生しているようです。
138
+ まずはメモリの問題です。モデルはfp16モデルを使用することを推奨します。フルモデルを使用した場合8GB以上のメモリが必要になります。これはこのスクリプトが使用する量です。また、インストールされているdiffusersのバージョンが異なるとエラーが発生するようです。version 0.10.2で動作確認されています。
139
+
140
+ ### merge LoRAs
141
+ ひとつまたは複数のLoRA同士をマージします。kohya-ss氏の最新のスクリプトを使用しているので、dimensionの異なるLoRA同氏もマージ可能ですが、dimensionの変換の際はLoRAの再計算を行うため、生成される画像が大きく異なる可能性があることに注意してください。
142
+
143
+ calculate dimentionボタンで各LoRAの次元を計算して表示・ソート機能が有効化します。計算にはわりと時間がかかって、50程度のLoRAでも数十秒かかります。新しくマージされたLoRAはリストに表示されないのでリロードボタンを押してください。次元の再計算は追加されたLoRAだけを計算します。
144
+
145
+ ### 通常マージとsame to Strengthの違い
146
+ same to Strengthオプションを使用しない場合は、kohya-ss氏の作製したスクリプトのマージと同じ結果になります。この場合、下図のようにWeb-ui上でLoRAを適用した場合と異なる結果になります。これはLoRAをU-netに組み込む際の数式が関係しています。kohya-ss氏のスクリプトでは比率をそのまま掛けていますが、適用時の数式では比率が2乗されてしまうため、比率を1以外の数値に設定すると、あるいはマイナスに設定するとStrength(適用時の強度)と異なる結果となります。same to Strengthオプションを使用すると、マージ時には比率の平方根を駆けることで、適用時にはStrengthと比率が同じ意味を持つように計算しています。また、マイナスが効果が出るようにも計算しています。追加学習をしない場合などはsame to Strengthオプションを使用しても問題ないと思いますが、マージしたLoRAに対して追加学習をする場合はだれも使用しない方がいいかもしれません。
147
+ 下図は通常適用/same to Strengthオプション/通常マージの各場合の生成画像です。figma化とukiyoE LoRAのマージを使用しています。通常マージの場合はマイナス方向でも2乗されてプラスになっていることが分かります。
148
+ ![xyz_grid-0014-1534704891](https://user-images.githubusercontent.com/122196982/218322034-b7171298-5159-4619-be1d-ac684da92ed9.jpg)
149
+
150
+ 階層別マージについては下記を参照してください
151
+
152
+ https://github.com/bbc-mc/sdweb-merge-block-weighted-gui
153
+
154
+ このスクリプトではweb-ui、mbw-merge、kohya-ssのスクリプトを一部使用しています
extensions/microsoftexcel-supermerger/calcmode_en.md ADDED
The diff for this file is too large to render. See raw diff
 
extensions/microsoftexcel-supermerger/changelog.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Changelog
2
+ ### bug fix 2023.02.19.2330(JST)
3
+ いくつかのバグが修正されました
4
+ - LOWRAMオプション有効時にエラーになる問題
5
+ - Linuxでエラーになる問題
6
+ - XY plotが正常に終了しない問題
7
+ - 未ロードのモデルを設定時にエラーになる問題
8
+
9
+ ### update to version 3 2023.02.17.2020(JST)
10
+ - LoRA関係の機能を追加しました
11
+ - Logを保存し、設定を呼び出せるようになりました
12
+ - safetensors,fp16形式での保存に対応しました
13
+ - weightのプリセットに対応しました
14
+ - XYプロットの予約が可能になりました
15
+
16
+ ### bug fix 2023.02.19.2330(JST)
17
+ Several bugs have been fixed
18
+ - Error when LOWRAM option is enabled
19
+ - Error on Linux
20
+ - XY plot did not finish properly
21
+ - Error when setting unused models
22
+
23
+ ### update to version 3 2023.02.17.2020(JST)
24
+ - Added LoRA related functions
25
+ - Logs can now be saved and settings can be recalled.
26
+ - Save in safetensors and fp16 format is now supported.
27
+ - Weight presets are now supported.
28
+ - Reservation of XY plots is now possible.
29
+
30
+ ### bug fix 2023.01.29.0000(JST)
31
+ pinpoint blocksがX方向で使用できない問題を修正しました。
32
+ pinpoint blocks選択時Triple,Twiceを使用できない問題を解決しました
33
+ XY plot 使用時に一部軸タイプでMBWを使用できない問題を解決しました
34
+ Fixed a problem where pinpoint blocks could not be used in the X axis.
35
+ Fixed a problem in which Triple,Twice could not be used when selecting pinpoint blocks.
36
+ Problem solved where MBW could not be used with some axis types when using XY plot.
37
+
38
+ ### bug fixed 2023.01.28.0100(JST)
39
+ MBWモードでSave current modelボタンが正常に動作しない問題を解決しました
40
+ ファイル名が長すぎて保存時にエラーが出る問題を解決しました
41
+ Problem solved where the "Save current model" button would not work properly in MBW mode
42
+ Problem solved where an error would occur when saving a file with too long a file name
43
+
44
+ ### bug fixed 2023.01.26.2100(JST)
45
+ XY plotにおいてタイプMBWが使用できない不具合を修正しました
46
+ Fixed a bug that type of MBW could work in XY plot
47
+
48
+ ### updated 2023.01.25.0000(JST)
49
+ added several features
50
+ - added new merge mode "Triple sum","sum Twice"
51
+ - added XY plot
52
+ - 新しいマージモードを追加しました "Triple sum","sum Twice"
53
+ - XY plot機能を追加しました
54
+
55
+ ### bug fixed 2023.01.20.2350(JST)
56
+ png infoがうまく保存できない問題を解決しました。
57
+ Problem solved where png info could not be saved properly.