toto10 commited on
Commit
6b84065
·
1 Parent(s): 314982d

07eae2c8a060ad18170f8523a98c20ce4f75351729e2e5d459e54c2763a900fe

Browse files
Files changed (50) hide show
  1. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/necks/multilevel_neck.py +70 -0
  2. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/segmentors/__init__.py +5 -0
  3. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/segmentors/base.py +273 -0
  4. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/segmentors/cascade_encoder_decoder.py +98 -0
  5. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/segmentors/encoder_decoder.py +298 -0
  6. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/__init__.py +13 -0
  7. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/drop.py +31 -0
  8. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/inverted_residual.py +208 -0
  9. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/make_divisible.py +27 -0
  10. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/res_layer.py +94 -0
  11. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/se_layer.py +57 -0
  12. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/self_attention_block.py +159 -0
  13. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/up_conv_block.py +101 -0
  14. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/weight_init.py +62 -0
  15. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/ops/__init__.py +4 -0
  16. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/ops/encoding.py +74 -0
  17. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/ops/wrappers.py +50 -0
  18. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/utils/__init__.py +4 -0
  19. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/utils/collect_env.py +17 -0
  20. extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/utils/logger.py +27 -0
  21. extensions/microsoftexcel-controlnet/annotator/normalbae/LICENSE +21 -0
  22. extensions/microsoftexcel-controlnet/annotator/normalbae/__init__.py +81 -0
  23. extensions/microsoftexcel-controlnet/annotator/normalbae/models/NNET.py +22 -0
  24. extensions/microsoftexcel-controlnet/annotator/normalbae/models/baseline.py +85 -0
  25. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/decoder.py +202 -0
  26. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/.gitignore +109 -0
  27. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/BENCHMARK.md +555 -0
  28. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/LICENSE +201 -0
  29. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/README.md +323 -0
  30. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/caffe2_benchmark.py +65 -0
  31. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/caffe2_validate.py +138 -0
  32. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/__init__.py +5 -0
  33. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/__init__.py +137 -0
  34. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations.py +102 -0
  35. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_jit.py +79 -0
  36. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_me.py +174 -0
  37. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/config.py +123 -0
  38. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/conv2d_layers.py +304 -0
  39. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/efficientnet_builder.py +683 -0
  40. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/gen_efficientnet.py +1450 -0
  41. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/helpers.py +71 -0
  42. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/mobilenetv3.py +364 -0
  43. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/model_factory.py +27 -0
  44. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/version.py +1 -0
  45. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/hubconf.py +84 -0
  46. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/onnx_export.py +120 -0
  47. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/onnx_optimize.py +84 -0
  48. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/onnx_to_caffe.py +27 -0
  49. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/onnx_validate.py +112 -0
  50. extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/requirements.txt +2 -0
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/necks/multilevel_neck.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+ from annotator.mmpkg.mmcv.cnn import ConvModule
4
+
5
+ from ..builder import NECKS
6
+
7
+
8
+ @NECKS.register_module()
9
+ class MultiLevelNeck(nn.Module):
10
+ """MultiLevelNeck.
11
+
12
+ A neck structure connect vit backbone and decoder_heads.
13
+ Args:
14
+ in_channels (List[int]): Number of input channels per scale.
15
+ out_channels (int): Number of output channels (used at each scale).
16
+ scales (List[int]): Scale factors for each input feature map.
17
+ norm_cfg (dict): Config dict for normalization layer. Default: None.
18
+ act_cfg (dict): Config dict for activation layer in ConvModule.
19
+ Default: None.
20
+ """
21
+
22
+ def __init__(self,
23
+ in_channels,
24
+ out_channels,
25
+ scales=[0.5, 1, 2, 4],
26
+ norm_cfg=None,
27
+ act_cfg=None):
28
+ super(MultiLevelNeck, self).__init__()
29
+ assert isinstance(in_channels, list)
30
+ self.in_channels = in_channels
31
+ self.out_channels = out_channels
32
+ self.scales = scales
33
+ self.num_outs = len(scales)
34
+ self.lateral_convs = nn.ModuleList()
35
+ self.convs = nn.ModuleList()
36
+ for in_channel in in_channels:
37
+ self.lateral_convs.append(
38
+ ConvModule(
39
+ in_channel,
40
+ out_channels,
41
+ kernel_size=1,
42
+ norm_cfg=norm_cfg,
43
+ act_cfg=act_cfg))
44
+ for _ in range(self.num_outs):
45
+ self.convs.append(
46
+ ConvModule(
47
+ out_channels,
48
+ out_channels,
49
+ kernel_size=3,
50
+ padding=1,
51
+ stride=1,
52
+ norm_cfg=norm_cfg,
53
+ act_cfg=act_cfg))
54
+
55
+ def forward(self, inputs):
56
+ assert len(inputs) == len(self.in_channels)
57
+ print(inputs[0].shape)
58
+ inputs = [
59
+ lateral_conv(inputs[i])
60
+ for i, lateral_conv in enumerate(self.lateral_convs)
61
+ ]
62
+ # for len(inputs) not equal to self.num_outs
63
+ if len(inputs) == 1:
64
+ inputs = [inputs[0] for _ in range(self.num_outs)]
65
+ outs = []
66
+ for i in range(self.num_outs):
67
+ x_resize = F.interpolate(
68
+ inputs[i], scale_factor=self.scales[i], mode='bilinear')
69
+ outs.append(self.convs[i](x_resize))
70
+ return tuple(outs)
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/segmentors/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .base import BaseSegmentor
2
+ from .cascade_encoder_decoder import CascadeEncoderDecoder
3
+ from .encoder_decoder import EncoderDecoder
4
+
5
+ __all__ = ['BaseSegmentor', 'EncoderDecoder', 'CascadeEncoderDecoder']
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/segmentors/base.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import warnings
3
+ from abc import ABCMeta, abstractmethod
4
+ from collections import OrderedDict
5
+
6
+ import annotator.mmpkg.mmcv as mmcv
7
+ import numpy as np
8
+ import torch
9
+ import torch.distributed as dist
10
+ import torch.nn as nn
11
+ from annotator.mmpkg.mmcv.runner import auto_fp16
12
+
13
+
14
+ class BaseSegmentor(nn.Module):
15
+ """Base class for segmentors."""
16
+
17
+ __metaclass__ = ABCMeta
18
+
19
+ def __init__(self):
20
+ super(BaseSegmentor, self).__init__()
21
+ self.fp16_enabled = False
22
+
23
+ @property
24
+ def with_neck(self):
25
+ """bool: whether the segmentor has neck"""
26
+ return hasattr(self, 'neck') and self.neck is not None
27
+
28
+ @property
29
+ def with_auxiliary_head(self):
30
+ """bool: whether the segmentor has auxiliary head"""
31
+ return hasattr(self,
32
+ 'auxiliary_head') and self.auxiliary_head is not None
33
+
34
+ @property
35
+ def with_decode_head(self):
36
+ """bool: whether the segmentor has decode head"""
37
+ return hasattr(self, 'decode_head') and self.decode_head is not None
38
+
39
+ @abstractmethod
40
+ def extract_feat(self, imgs):
41
+ """Placeholder for extract features from images."""
42
+ pass
43
+
44
+ @abstractmethod
45
+ def encode_decode(self, img, img_metas):
46
+ """Placeholder for encode images with backbone and decode into a
47
+ semantic segmentation map of the same size as input."""
48
+ pass
49
+
50
+ @abstractmethod
51
+ def forward_train(self, imgs, img_metas, **kwargs):
52
+ """Placeholder for Forward function for training."""
53
+ pass
54
+
55
+ @abstractmethod
56
+ def simple_test(self, img, img_meta, **kwargs):
57
+ """Placeholder for single image test."""
58
+ pass
59
+
60
+ @abstractmethod
61
+ def aug_test(self, imgs, img_metas, **kwargs):
62
+ """Placeholder for augmentation test."""
63
+ pass
64
+
65
+ def init_weights(self, pretrained=None):
66
+ """Initialize the weights in segmentor.
67
+
68
+ Args:
69
+ pretrained (str, optional): Path to pre-trained weights.
70
+ Defaults to None.
71
+ """
72
+ if pretrained is not None:
73
+ logger = logging.getLogger()
74
+ logger.info(f'load model from: {pretrained}')
75
+
76
+ def forward_test(self, imgs, img_metas, **kwargs):
77
+ """
78
+ Args:
79
+ imgs (List[Tensor]): the outer list indicates test-time
80
+ augmentations and inner Tensor should have a shape NxCxHxW,
81
+ which contains all images in the batch.
82
+ img_metas (List[List[dict]]): the outer list indicates test-time
83
+ augs (multiscale, flip, etc.) and the inner list indicates
84
+ images in a batch.
85
+ """
86
+ for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:
87
+ if not isinstance(var, list):
88
+ raise TypeError(f'{name} must be a list, but got '
89
+ f'{type(var)}')
90
+
91
+ num_augs = len(imgs)
92
+ if num_augs != len(img_metas):
93
+ raise ValueError(f'num of augmentations ({len(imgs)}) != '
94
+ f'num of image meta ({len(img_metas)})')
95
+ # all images in the same aug batch all of the same ori_shape and pad
96
+ # shape
97
+ for img_meta in img_metas:
98
+ ori_shapes = [_['ori_shape'] for _ in img_meta]
99
+ assert all(shape == ori_shapes[0] for shape in ori_shapes)
100
+ img_shapes = [_['img_shape'] for _ in img_meta]
101
+ assert all(shape == img_shapes[0] for shape in img_shapes)
102
+ pad_shapes = [_['pad_shape'] for _ in img_meta]
103
+ assert all(shape == pad_shapes[0] for shape in pad_shapes)
104
+
105
+ if num_augs == 1:
106
+ return self.simple_test(imgs[0], img_metas[0], **kwargs)
107
+ else:
108
+ return self.aug_test(imgs, img_metas, **kwargs)
109
+
110
+ @auto_fp16(apply_to=('img', ))
111
+ def forward(self, img, img_metas, return_loss=True, **kwargs):
112
+ """Calls either :func:`forward_train` or :func:`forward_test` depending
113
+ on whether ``return_loss`` is ``True``.
114
+
115
+ Note this setting will change the expected inputs. When
116
+ ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor
117
+ and List[dict]), and when ``resturn_loss=False``, img and img_meta
118
+ should be double nested (i.e. List[Tensor], List[List[dict]]), with
119
+ the outer list indicating test time augmentations.
120
+ """
121
+ if return_loss:
122
+ return self.forward_train(img, img_metas, **kwargs)
123
+ else:
124
+ return self.forward_test(img, img_metas, **kwargs)
125
+
126
+ def train_step(self, data_batch, optimizer, **kwargs):
127
+ """The iteration step during training.
128
+
129
+ This method defines an iteration step during training, except for the
130
+ back propagation and optimizer updating, which are done in an optimizer
131
+ hook. Note that in some complicated cases or models, the whole process
132
+ including back propagation and optimizer updating is also defined in
133
+ this method, such as GAN.
134
+
135
+ Args:
136
+ data (dict): The output of dataloader.
137
+ optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of
138
+ runner is passed to ``train_step()``. This argument is unused
139
+ and reserved.
140
+
141
+ Returns:
142
+ dict: It should contain at least 3 keys: ``loss``, ``log_vars``,
143
+ ``num_samples``.
144
+ ``loss`` is a tensor for back propagation, which can be a
145
+ weighted sum of multiple losses.
146
+ ``log_vars`` contains all the variables to be sent to the
147
+ logger.
148
+ ``num_samples`` indicates the batch size (when the model is
149
+ DDP, it means the batch size on each GPU), which is used for
150
+ averaging the logs.
151
+ """
152
+ losses = self(**data_batch)
153
+ loss, log_vars = self._parse_losses(losses)
154
+
155
+ outputs = dict(
156
+ loss=loss,
157
+ log_vars=log_vars,
158
+ num_samples=len(data_batch['img_metas']))
159
+
160
+ return outputs
161
+
162
+ def val_step(self, data_batch, **kwargs):
163
+ """The iteration step during validation.
164
+
165
+ This method shares the same signature as :func:`train_step`, but used
166
+ during val epochs. Note that the evaluation after training epochs is
167
+ not implemented with this method, but an evaluation hook.
168
+ """
169
+ output = self(**data_batch, **kwargs)
170
+ return output
171
+
172
+ @staticmethod
173
+ def _parse_losses(losses):
174
+ """Parse the raw outputs (losses) of the network.
175
+
176
+ Args:
177
+ losses (dict): Raw output of the network, which usually contain
178
+ losses and other necessary information.
179
+
180
+ Returns:
181
+ tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor
182
+ which may be a weighted sum of all losses, log_vars contains
183
+ all the variables to be sent to the logger.
184
+ """
185
+ log_vars = OrderedDict()
186
+ for loss_name, loss_value in losses.items():
187
+ if isinstance(loss_value, torch.Tensor):
188
+ log_vars[loss_name] = loss_value.mean()
189
+ elif isinstance(loss_value, list):
190
+ log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
191
+ else:
192
+ raise TypeError(
193
+ f'{loss_name} is not a tensor or list of tensors')
194
+
195
+ loss = sum(_value for _key, _value in log_vars.items()
196
+ if 'loss' in _key)
197
+
198
+ log_vars['loss'] = loss
199
+ for loss_name, loss_value in log_vars.items():
200
+ # reduce loss when distributed training
201
+ if dist.is_available() and dist.is_initialized():
202
+ loss_value = loss_value.data.clone()
203
+ dist.all_reduce(loss_value.div_(dist.get_world_size()))
204
+ log_vars[loss_name] = loss_value.item()
205
+
206
+ return loss, log_vars
207
+
208
+ def show_result(self,
209
+ img,
210
+ result,
211
+ palette=None,
212
+ win_name='',
213
+ show=False,
214
+ wait_time=0,
215
+ out_file=None,
216
+ opacity=0.5):
217
+ """Draw `result` over `img`.
218
+
219
+ Args:
220
+ img (str or Tensor): The image to be displayed.
221
+ result (Tensor): The semantic segmentation results to draw over
222
+ `img`.
223
+ palette (list[list[int]]] | np.ndarray | None): The palette of
224
+ segmentation map. If None is given, random palette will be
225
+ generated. Default: None
226
+ win_name (str): The window name.
227
+ wait_time (int): Value of waitKey param.
228
+ Default: 0.
229
+ show (bool): Whether to show the image.
230
+ Default: False.
231
+ out_file (str or None): The filename to write the image.
232
+ Default: None.
233
+ opacity(float): Opacity of painted segmentation map.
234
+ Default 0.5.
235
+ Must be in (0, 1] range.
236
+ Returns:
237
+ img (Tensor): Only if not `show` or `out_file`
238
+ """
239
+ img = mmcv.imread(img)
240
+ img = img.copy()
241
+ seg = result[0]
242
+ if palette is None:
243
+ if self.PALETTE is None:
244
+ palette = np.random.randint(
245
+ 0, 255, size=(len(self.CLASSES), 3))
246
+ else:
247
+ palette = self.PALETTE
248
+ palette = np.array(palette)
249
+ assert palette.shape[0] == len(self.CLASSES)
250
+ assert palette.shape[1] == 3
251
+ assert len(palette.shape) == 2
252
+ assert 0 < opacity <= 1.0
253
+ color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
254
+ for label, color in enumerate(palette):
255
+ color_seg[seg == label, :] = color
256
+ # convert to BGR
257
+ color_seg = color_seg[..., ::-1]
258
+
259
+ img = img * (1 - opacity) + color_seg * opacity
260
+ img = img.astype(np.uint8)
261
+ # if out_file specified, do not show image in window
262
+ if out_file is not None:
263
+ show = False
264
+
265
+ if show:
266
+ mmcv.imshow(img, win_name, wait_time)
267
+ if out_file is not None:
268
+ mmcv.imwrite(img, out_file)
269
+
270
+ if not (show or out_file):
271
+ warnings.warn('show==False and out_file is not specified, only '
272
+ 'result image will be returned')
273
+ return img
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/segmentors/cascade_encoder_decoder.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+
3
+ from annotator.mmpkg.mmseg.core import add_prefix
4
+ from annotator.mmpkg.mmseg.ops import resize
5
+ from .. import builder
6
+ from ..builder import SEGMENTORS
7
+ from .encoder_decoder import EncoderDecoder
8
+
9
+
10
+ @SEGMENTORS.register_module()
11
+ class CascadeEncoderDecoder(EncoderDecoder):
12
+ """Cascade Encoder Decoder segmentors.
13
+
14
+ CascadeEncoderDecoder almost the same as EncoderDecoder, while decoders of
15
+ CascadeEncoderDecoder are cascaded. The output of previous decoder_head
16
+ will be the input of next decoder_head.
17
+ """
18
+
19
+ def __init__(self,
20
+ num_stages,
21
+ backbone,
22
+ decode_head,
23
+ neck=None,
24
+ auxiliary_head=None,
25
+ train_cfg=None,
26
+ test_cfg=None,
27
+ pretrained=None):
28
+ self.num_stages = num_stages
29
+ super(CascadeEncoderDecoder, self).__init__(
30
+ backbone=backbone,
31
+ decode_head=decode_head,
32
+ neck=neck,
33
+ auxiliary_head=auxiliary_head,
34
+ train_cfg=train_cfg,
35
+ test_cfg=test_cfg,
36
+ pretrained=pretrained)
37
+
38
+ def _init_decode_head(self, decode_head):
39
+ """Initialize ``decode_head``"""
40
+ assert isinstance(decode_head, list)
41
+ assert len(decode_head) == self.num_stages
42
+ self.decode_head = nn.ModuleList()
43
+ for i in range(self.num_stages):
44
+ self.decode_head.append(builder.build_head(decode_head[i]))
45
+ self.align_corners = self.decode_head[-1].align_corners
46
+ self.num_classes = self.decode_head[-1].num_classes
47
+
48
+ def init_weights(self, pretrained=None):
49
+ """Initialize the weights in backbone and heads.
50
+
51
+ Args:
52
+ pretrained (str, optional): Path to pre-trained weights.
53
+ Defaults to None.
54
+ """
55
+ self.backbone.init_weights(pretrained=pretrained)
56
+ for i in range(self.num_stages):
57
+ self.decode_head[i].init_weights()
58
+ if self.with_auxiliary_head:
59
+ if isinstance(self.auxiliary_head, nn.ModuleList):
60
+ for aux_head in self.auxiliary_head:
61
+ aux_head.init_weights()
62
+ else:
63
+ self.auxiliary_head.init_weights()
64
+
65
+ def encode_decode(self, img, img_metas):
66
+ """Encode images with backbone and decode into a semantic segmentation
67
+ map of the same size as input."""
68
+ x = self.extract_feat(img)
69
+ out = self.decode_head[0].forward_test(x, img_metas, self.test_cfg)
70
+ for i in range(1, self.num_stages):
71
+ out = self.decode_head[i].forward_test(x, out, img_metas,
72
+ self.test_cfg)
73
+ out = resize(
74
+ input=out,
75
+ size=img.shape[2:],
76
+ mode='bilinear',
77
+ align_corners=self.align_corners)
78
+ return out
79
+
80
+ def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg):
81
+ """Run forward function and calculate loss for decode head in
82
+ training."""
83
+ losses = dict()
84
+
85
+ loss_decode = self.decode_head[0].forward_train(
86
+ x, img_metas, gt_semantic_seg, self.train_cfg)
87
+
88
+ losses.update(add_prefix(loss_decode, 'decode_0'))
89
+
90
+ for i in range(1, self.num_stages):
91
+ # forward test again, maybe unnecessary for most methods.
92
+ prev_outputs = self.decode_head[i - 1].forward_test(
93
+ x, img_metas, self.test_cfg)
94
+ loss_decode = self.decode_head[i].forward_train(
95
+ x, prev_outputs, img_metas, gt_semantic_seg, self.train_cfg)
96
+ losses.update(add_prefix(loss_decode, f'decode_{i}'))
97
+
98
+ return losses
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/segmentors/encoder_decoder.py ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from annotator.mmpkg.mmseg.core import add_prefix
6
+ from annotator.mmpkg.mmseg.ops import resize
7
+ from .. import builder
8
+ from ..builder import SEGMENTORS
9
+ from .base import BaseSegmentor
10
+
11
+
12
+ @SEGMENTORS.register_module()
13
+ class EncoderDecoder(BaseSegmentor):
14
+ """Encoder Decoder segmentors.
15
+
16
+ EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
17
+ Note that auxiliary_head is only used for deep supervision during training,
18
+ which could be dumped during inference.
19
+ """
20
+
21
+ def __init__(self,
22
+ backbone,
23
+ decode_head,
24
+ neck=None,
25
+ auxiliary_head=None,
26
+ train_cfg=None,
27
+ test_cfg=None,
28
+ pretrained=None):
29
+ super(EncoderDecoder, self).__init__()
30
+ self.backbone = builder.build_backbone(backbone)
31
+ if neck is not None:
32
+ self.neck = builder.build_neck(neck)
33
+ self._init_decode_head(decode_head)
34
+ self._init_auxiliary_head(auxiliary_head)
35
+
36
+ self.train_cfg = train_cfg
37
+ self.test_cfg = test_cfg
38
+
39
+ self.init_weights(pretrained=pretrained)
40
+
41
+ assert self.with_decode_head
42
+
43
+ def _init_decode_head(self, decode_head):
44
+ """Initialize ``decode_head``"""
45
+ self.decode_head = builder.build_head(decode_head)
46
+ self.align_corners = self.decode_head.align_corners
47
+ self.num_classes = self.decode_head.num_classes
48
+
49
+ def _init_auxiliary_head(self, auxiliary_head):
50
+ """Initialize ``auxiliary_head``"""
51
+ if auxiliary_head is not None:
52
+ if isinstance(auxiliary_head, list):
53
+ self.auxiliary_head = nn.ModuleList()
54
+ for head_cfg in auxiliary_head:
55
+ self.auxiliary_head.append(builder.build_head(head_cfg))
56
+ else:
57
+ self.auxiliary_head = builder.build_head(auxiliary_head)
58
+
59
+ def init_weights(self, pretrained=None):
60
+ """Initialize the weights in backbone and heads.
61
+
62
+ Args:
63
+ pretrained (str, optional): Path to pre-trained weights.
64
+ Defaults to None.
65
+ """
66
+
67
+ super(EncoderDecoder, self).init_weights(pretrained)
68
+ self.backbone.init_weights(pretrained=pretrained)
69
+ self.decode_head.init_weights()
70
+ if self.with_auxiliary_head:
71
+ if isinstance(self.auxiliary_head, nn.ModuleList):
72
+ for aux_head in self.auxiliary_head:
73
+ aux_head.init_weights()
74
+ else:
75
+ self.auxiliary_head.init_weights()
76
+
77
+ def extract_feat(self, img):
78
+ """Extract features from images."""
79
+ x = self.backbone(img)
80
+ if self.with_neck:
81
+ x = self.neck(x)
82
+ return x
83
+
84
+ def encode_decode(self, img, img_metas):
85
+ """Encode images with backbone and decode into a semantic segmentation
86
+ map of the same size as input."""
87
+ x = self.extract_feat(img)
88
+ out = self._decode_head_forward_test(x, img_metas)
89
+ out = resize(
90
+ input=out,
91
+ size=img.shape[2:],
92
+ mode='bilinear',
93
+ align_corners=self.align_corners)
94
+ return out
95
+
96
+ def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg):
97
+ """Run forward function and calculate loss for decode head in
98
+ training."""
99
+ losses = dict()
100
+ loss_decode = self.decode_head.forward_train(x, img_metas,
101
+ gt_semantic_seg,
102
+ self.train_cfg)
103
+
104
+ losses.update(add_prefix(loss_decode, 'decode'))
105
+ return losses
106
+
107
+ def _decode_head_forward_test(self, x, img_metas):
108
+ """Run forward function and calculate loss for decode head in
109
+ inference."""
110
+ seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg)
111
+ return seg_logits
112
+
113
+ def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg):
114
+ """Run forward function and calculate loss for auxiliary head in
115
+ training."""
116
+ losses = dict()
117
+ if isinstance(self.auxiliary_head, nn.ModuleList):
118
+ for idx, aux_head in enumerate(self.auxiliary_head):
119
+ loss_aux = aux_head.forward_train(x, img_metas,
120
+ gt_semantic_seg,
121
+ self.train_cfg)
122
+ losses.update(add_prefix(loss_aux, f'aux_{idx}'))
123
+ else:
124
+ loss_aux = self.auxiliary_head.forward_train(
125
+ x, img_metas, gt_semantic_seg, self.train_cfg)
126
+ losses.update(add_prefix(loss_aux, 'aux'))
127
+
128
+ return losses
129
+
130
+ def forward_dummy(self, img):
131
+ """Dummy forward function."""
132
+ seg_logit = self.encode_decode(img, None)
133
+
134
+ return seg_logit
135
+
136
+ def forward_train(self, img, img_metas, gt_semantic_seg):
137
+ """Forward function for training.
138
+
139
+ Args:
140
+ img (Tensor): Input images.
141
+ img_metas (list[dict]): List of image info dict where each dict
142
+ has: 'img_shape', 'scale_factor', 'flip', and may also contain
143
+ 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
144
+ For details on the values of these keys see
145
+ `mmseg/datasets/pipelines/formatting.py:Collect`.
146
+ gt_semantic_seg (Tensor): Semantic segmentation masks
147
+ used if the architecture supports semantic segmentation task.
148
+
149
+ Returns:
150
+ dict[str, Tensor]: a dictionary of loss components
151
+ """
152
+
153
+ x = self.extract_feat(img)
154
+
155
+ losses = dict()
156
+
157
+ loss_decode = self._decode_head_forward_train(x, img_metas,
158
+ gt_semantic_seg)
159
+ losses.update(loss_decode)
160
+
161
+ if self.with_auxiliary_head:
162
+ loss_aux = self._auxiliary_head_forward_train(
163
+ x, img_metas, gt_semantic_seg)
164
+ losses.update(loss_aux)
165
+
166
+ return losses
167
+
168
+ # TODO refactor
169
+ def slide_inference(self, img, img_meta, rescale):
170
+ """Inference by sliding-window with overlap.
171
+
172
+ If h_crop > h_img or w_crop > w_img, the small patch will be used to
173
+ decode without padding.
174
+ """
175
+
176
+ h_stride, w_stride = self.test_cfg.stride
177
+ h_crop, w_crop = self.test_cfg.crop_size
178
+ batch_size, _, h_img, w_img = img.size()
179
+ num_classes = self.num_classes
180
+ h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
181
+ w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
182
+ preds = img.new_zeros((batch_size, num_classes, h_img, w_img))
183
+ count_mat = img.new_zeros((batch_size, 1, h_img, w_img))
184
+ for h_idx in range(h_grids):
185
+ for w_idx in range(w_grids):
186
+ y1 = h_idx * h_stride
187
+ x1 = w_idx * w_stride
188
+ y2 = min(y1 + h_crop, h_img)
189
+ x2 = min(x1 + w_crop, w_img)
190
+ y1 = max(y2 - h_crop, 0)
191
+ x1 = max(x2 - w_crop, 0)
192
+ crop_img = img[:, :, y1:y2, x1:x2]
193
+ crop_seg_logit = self.encode_decode(crop_img, img_meta)
194
+ preds += F.pad(crop_seg_logit,
195
+ (int(x1), int(preds.shape[3] - x2), int(y1),
196
+ int(preds.shape[2] - y2)))
197
+
198
+ count_mat[:, :, y1:y2, x1:x2] += 1
199
+ assert (count_mat == 0).sum() == 0
200
+ if torch.onnx.is_in_onnx_export():
201
+ # cast count_mat to constant while exporting to ONNX
202
+ count_mat = torch.from_numpy(
203
+ count_mat.cpu().detach().numpy()).to(device=img.device)
204
+ preds = preds / count_mat
205
+ if rescale:
206
+ preds = resize(
207
+ preds,
208
+ size=img_meta[0]['ori_shape'][:2],
209
+ mode='bilinear',
210
+ align_corners=self.align_corners,
211
+ warning=False)
212
+ return preds
213
+
214
+ def whole_inference(self, img, img_meta, rescale):
215
+ """Inference with full image."""
216
+
217
+ seg_logit = self.encode_decode(img, img_meta)
218
+ if rescale:
219
+ # support dynamic shape for onnx
220
+ if torch.onnx.is_in_onnx_export():
221
+ size = img.shape[2:]
222
+ else:
223
+ size = img_meta[0]['ori_shape'][:2]
224
+ seg_logit = resize(
225
+ seg_logit,
226
+ size=size,
227
+ mode='bilinear',
228
+ align_corners=self.align_corners,
229
+ warning=False)
230
+
231
+ return seg_logit
232
+
233
+ def inference(self, img, img_meta, rescale):
234
+ """Inference with slide/whole style.
235
+
236
+ Args:
237
+ img (Tensor): The input image of shape (N, 3, H, W).
238
+ img_meta (dict): Image info dict where each dict has: 'img_shape',
239
+ 'scale_factor', 'flip', and may also contain
240
+ 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
241
+ For details on the values of these keys see
242
+ `mmseg/datasets/pipelines/formatting.py:Collect`.
243
+ rescale (bool): Whether rescale back to original shape.
244
+
245
+ Returns:
246
+ Tensor: The output segmentation map.
247
+ """
248
+
249
+ assert self.test_cfg.mode in ['slide', 'whole']
250
+ ori_shape = img_meta[0]['ori_shape']
251
+ assert all(_['ori_shape'] == ori_shape for _ in img_meta)
252
+ if self.test_cfg.mode == 'slide':
253
+ seg_logit = self.slide_inference(img, img_meta, rescale)
254
+ else:
255
+ seg_logit = self.whole_inference(img, img_meta, rescale)
256
+ output = F.softmax(seg_logit, dim=1)
257
+ flip = img_meta[0]['flip']
258
+ if flip:
259
+ flip_direction = img_meta[0]['flip_direction']
260
+ assert flip_direction in ['horizontal', 'vertical']
261
+ if flip_direction == 'horizontal':
262
+ output = output.flip(dims=(3, ))
263
+ elif flip_direction == 'vertical':
264
+ output = output.flip(dims=(2, ))
265
+
266
+ return output
267
+
268
+ def simple_test(self, img, img_meta, rescale=True):
269
+ """Simple test with single image."""
270
+ seg_logit = self.inference(img, img_meta, rescale)
271
+ seg_pred = seg_logit.argmax(dim=1)
272
+ if torch.onnx.is_in_onnx_export():
273
+ # our inference backend only support 4D output
274
+ seg_pred = seg_pred.unsqueeze(0)
275
+ return seg_pred
276
+ seg_pred = seg_pred.cpu().numpy()
277
+ # unravel batch dim
278
+ seg_pred = list(seg_pred)
279
+ return seg_pred
280
+
281
+ def aug_test(self, imgs, img_metas, rescale=True):
282
+ """Test with augmentations.
283
+
284
+ Only rescale=True is supported.
285
+ """
286
+ # aug_test rescale all imgs back to ori_shape for now
287
+ assert rescale
288
+ # to save memory, we get augmented seg logit inplace
289
+ seg_logit = self.inference(imgs[0], img_metas[0], rescale)
290
+ for i in range(1, len(imgs)):
291
+ cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale)
292
+ seg_logit += cur_seg_logit
293
+ seg_logit /= len(imgs)
294
+ seg_pred = seg_logit.argmax(dim=1)
295
+ seg_pred = seg_pred.cpu().numpy()
296
+ # unravel batch dim
297
+ seg_pred = list(seg_pred)
298
+ return seg_pred
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/__init__.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .drop import DropPath
2
+ from .inverted_residual import InvertedResidual, InvertedResidualV3
3
+ from .make_divisible import make_divisible
4
+ from .res_layer import ResLayer
5
+ from .se_layer import SELayer
6
+ from .self_attention_block import SelfAttentionBlock
7
+ from .up_conv_block import UpConvBlock
8
+ from .weight_init import trunc_normal_
9
+
10
+ __all__ = [
11
+ 'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual',
12
+ 'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'DropPath', 'trunc_normal_'
13
+ ]
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/drop.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/rwightman/pytorch-image-
2
+ models/blob/master/timm/models/layers/drop.py."""
3
+
4
+ import torch
5
+ from torch import nn
6
+
7
+
8
+ class DropPath(nn.Module):
9
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of
10
+ residual blocks).
11
+
12
+ Args:
13
+ drop_prob (float): Drop rate for paths of model. Dropout rate has
14
+ to be between 0 and 1. Default: 0.
15
+ """
16
+
17
+ def __init__(self, drop_prob=0.):
18
+ super(DropPath, self).__init__()
19
+ self.drop_prob = drop_prob
20
+ self.keep_prob = 1 - drop_prob
21
+
22
+ def forward(self, x):
23
+ if self.drop_prob == 0. or not self.training:
24
+ return x
25
+ shape = (x.shape[0], ) + (1, ) * (
26
+ x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
27
+ random_tensor = self.keep_prob + torch.rand(
28
+ shape, dtype=x.dtype, device=x.device)
29
+ random_tensor.floor_() # binarize
30
+ output = x.div(self.keep_prob) * random_tensor
31
+ return output
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/inverted_residual.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from annotator.mmpkg.mmcv.cnn import ConvModule
2
+ from torch import nn
3
+ from torch.utils import checkpoint as cp
4
+
5
+ from .se_layer import SELayer
6
+
7
+
8
+ class InvertedResidual(nn.Module):
9
+ """InvertedResidual block for MobileNetV2.
10
+
11
+ Args:
12
+ in_channels (int): The input channels of the InvertedResidual block.
13
+ out_channels (int): The output channels of the InvertedResidual block.
14
+ stride (int): Stride of the middle (first) 3x3 convolution.
15
+ expand_ratio (int): Adjusts number of channels of the hidden layer
16
+ in InvertedResidual by this amount.
17
+ dilation (int): Dilation rate of depthwise conv. Default: 1
18
+ conv_cfg (dict): Config dict for convolution layer.
19
+ Default: None, which means using conv2d.
20
+ norm_cfg (dict): Config dict for normalization layer.
21
+ Default: dict(type='BN').
22
+ act_cfg (dict): Config dict for activation layer.
23
+ Default: dict(type='ReLU6').
24
+ with_cp (bool): Use checkpoint or not. Using checkpoint will save some
25
+ memory while slowing down the training speed. Default: False.
26
+
27
+ Returns:
28
+ Tensor: The output tensor.
29
+ """
30
+
31
+ def __init__(self,
32
+ in_channels,
33
+ out_channels,
34
+ stride,
35
+ expand_ratio,
36
+ dilation=1,
37
+ conv_cfg=None,
38
+ norm_cfg=dict(type='BN'),
39
+ act_cfg=dict(type='ReLU6'),
40
+ with_cp=False):
41
+ super(InvertedResidual, self).__init__()
42
+ self.stride = stride
43
+ assert stride in [1, 2], f'stride must in [1, 2]. ' \
44
+ f'But received {stride}.'
45
+ self.with_cp = with_cp
46
+ self.use_res_connect = self.stride == 1 and in_channels == out_channels
47
+ hidden_dim = int(round(in_channels * expand_ratio))
48
+
49
+ layers = []
50
+ if expand_ratio != 1:
51
+ layers.append(
52
+ ConvModule(
53
+ in_channels=in_channels,
54
+ out_channels=hidden_dim,
55
+ kernel_size=1,
56
+ conv_cfg=conv_cfg,
57
+ norm_cfg=norm_cfg,
58
+ act_cfg=act_cfg))
59
+ layers.extend([
60
+ ConvModule(
61
+ in_channels=hidden_dim,
62
+ out_channels=hidden_dim,
63
+ kernel_size=3,
64
+ stride=stride,
65
+ padding=dilation,
66
+ dilation=dilation,
67
+ groups=hidden_dim,
68
+ conv_cfg=conv_cfg,
69
+ norm_cfg=norm_cfg,
70
+ act_cfg=act_cfg),
71
+ ConvModule(
72
+ in_channels=hidden_dim,
73
+ out_channels=out_channels,
74
+ kernel_size=1,
75
+ conv_cfg=conv_cfg,
76
+ norm_cfg=norm_cfg,
77
+ act_cfg=None)
78
+ ])
79
+ self.conv = nn.Sequential(*layers)
80
+
81
+ def forward(self, x):
82
+
83
+ def _inner_forward(x):
84
+ if self.use_res_connect:
85
+ return x + self.conv(x)
86
+ else:
87
+ return self.conv(x)
88
+
89
+ if self.with_cp and x.requires_grad:
90
+ out = cp.checkpoint(_inner_forward, x)
91
+ else:
92
+ out = _inner_forward(x)
93
+
94
+ return out
95
+
96
+
97
+ class InvertedResidualV3(nn.Module):
98
+ """Inverted Residual Block for MobileNetV3.
99
+
100
+ Args:
101
+ in_channels (int): The input channels of this Module.
102
+ out_channels (int): The output channels of this Module.
103
+ mid_channels (int): The input channels of the depthwise convolution.
104
+ kernel_size (int): The kernel size of the depthwise convolution.
105
+ Default: 3.
106
+ stride (int): The stride of the depthwise convolution. Default: 1.
107
+ se_cfg (dict): Config dict for se layer. Default: None, which means no
108
+ se layer.
109
+ with_expand_conv (bool): Use expand conv or not. If set False,
110
+ mid_channels must be the same with in_channels. Default: True.
111
+ conv_cfg (dict): Config dict for convolution layer. Default: None,
112
+ which means using conv2d.
113
+ norm_cfg (dict): Config dict for normalization layer.
114
+ Default: dict(type='BN').
115
+ act_cfg (dict): Config dict for activation layer.
116
+ Default: dict(type='ReLU').
117
+ with_cp (bool): Use checkpoint or not. Using checkpoint will save some
118
+ memory while slowing down the training speed. Default: False.
119
+
120
+ Returns:
121
+ Tensor: The output tensor.
122
+ """
123
+
124
+ def __init__(self,
125
+ in_channels,
126
+ out_channels,
127
+ mid_channels,
128
+ kernel_size=3,
129
+ stride=1,
130
+ se_cfg=None,
131
+ with_expand_conv=True,
132
+ conv_cfg=None,
133
+ norm_cfg=dict(type='BN'),
134
+ act_cfg=dict(type='ReLU'),
135
+ with_cp=False):
136
+ super(InvertedResidualV3, self).__init__()
137
+ self.with_res_shortcut = (stride == 1 and in_channels == out_channels)
138
+ assert stride in [1, 2]
139
+ self.with_cp = with_cp
140
+ self.with_se = se_cfg is not None
141
+ self.with_expand_conv = with_expand_conv
142
+
143
+ if self.with_se:
144
+ assert isinstance(se_cfg, dict)
145
+ if not self.with_expand_conv:
146
+ assert mid_channels == in_channels
147
+
148
+ if self.with_expand_conv:
149
+ self.expand_conv = ConvModule(
150
+ in_channels=in_channels,
151
+ out_channels=mid_channels,
152
+ kernel_size=1,
153
+ stride=1,
154
+ padding=0,
155
+ conv_cfg=conv_cfg,
156
+ norm_cfg=norm_cfg,
157
+ act_cfg=act_cfg)
158
+ self.depthwise_conv = ConvModule(
159
+ in_channels=mid_channels,
160
+ out_channels=mid_channels,
161
+ kernel_size=kernel_size,
162
+ stride=stride,
163
+ padding=kernel_size // 2,
164
+ groups=mid_channels,
165
+ conv_cfg=dict(
166
+ type='Conv2dAdaptivePadding') if stride == 2 else conv_cfg,
167
+ norm_cfg=norm_cfg,
168
+ act_cfg=act_cfg)
169
+
170
+ if self.with_se:
171
+ self.se = SELayer(**se_cfg)
172
+
173
+ self.linear_conv = ConvModule(
174
+ in_channels=mid_channels,
175
+ out_channels=out_channels,
176
+ kernel_size=1,
177
+ stride=1,
178
+ padding=0,
179
+ conv_cfg=conv_cfg,
180
+ norm_cfg=norm_cfg,
181
+ act_cfg=None)
182
+
183
+ def forward(self, x):
184
+
185
+ def _inner_forward(x):
186
+ out = x
187
+
188
+ if self.with_expand_conv:
189
+ out = self.expand_conv(out)
190
+
191
+ out = self.depthwise_conv(out)
192
+
193
+ if self.with_se:
194
+ out = self.se(out)
195
+
196
+ out = self.linear_conv(out)
197
+
198
+ if self.with_res_shortcut:
199
+ return x + out
200
+ else:
201
+ return out
202
+
203
+ if self.with_cp and x.requires_grad:
204
+ out = cp.checkpoint(_inner_forward, x)
205
+ else:
206
+ out = _inner_forward(x)
207
+
208
+ return out
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/make_divisible.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
2
+ """Make divisible function.
3
+
4
+ This function rounds the channel number to the nearest value that can be
5
+ divisible by the divisor. It is taken from the original tf repo. It ensures
6
+ that all layers have a channel number that is divisible by divisor. It can
7
+ be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py # noqa
8
+
9
+ Args:
10
+ value (int): The original channel number.
11
+ divisor (int): The divisor to fully divide the channel number.
12
+ min_value (int): The minimum value of the output channel.
13
+ Default: None, means that the minimum value equal to the divisor.
14
+ min_ratio (float): The minimum ratio of the rounded channel number to
15
+ the original channel number. Default: 0.9.
16
+
17
+ Returns:
18
+ int: The modified output channel number.
19
+ """
20
+
21
+ if min_value is None:
22
+ min_value = divisor
23
+ new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
24
+ # Make sure that round down does not go down by more than (1-min_ratio).
25
+ if new_value < min_ratio * value:
26
+ new_value += divisor
27
+ return new_value
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/res_layer.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from annotator.mmpkg.mmcv.cnn import build_conv_layer, build_norm_layer
2
+ from torch import nn as nn
3
+
4
+
5
+ class ResLayer(nn.Sequential):
6
+ """ResLayer to build ResNet style backbone.
7
+
8
+ Args:
9
+ block (nn.Module): block used to build ResLayer.
10
+ inplanes (int): inplanes of block.
11
+ planes (int): planes of block.
12
+ num_blocks (int): number of blocks.
13
+ stride (int): stride of the first block. Default: 1
14
+ avg_down (bool): Use AvgPool instead of stride conv when
15
+ downsampling in the bottleneck. Default: False
16
+ conv_cfg (dict): dictionary to construct and config conv layer.
17
+ Default: None
18
+ norm_cfg (dict): dictionary to construct and config norm layer.
19
+ Default: dict(type='BN')
20
+ multi_grid (int | None): Multi grid dilation rates of last
21
+ stage. Default: None
22
+ contract_dilation (bool): Whether contract first dilation of each layer
23
+ Default: False
24
+ """
25
+
26
+ def __init__(self,
27
+ block,
28
+ inplanes,
29
+ planes,
30
+ num_blocks,
31
+ stride=1,
32
+ dilation=1,
33
+ avg_down=False,
34
+ conv_cfg=None,
35
+ norm_cfg=dict(type='BN'),
36
+ multi_grid=None,
37
+ contract_dilation=False,
38
+ **kwargs):
39
+ self.block = block
40
+
41
+ downsample = None
42
+ if stride != 1 or inplanes != planes * block.expansion:
43
+ downsample = []
44
+ conv_stride = stride
45
+ if avg_down:
46
+ conv_stride = 1
47
+ downsample.append(
48
+ nn.AvgPool2d(
49
+ kernel_size=stride,
50
+ stride=stride,
51
+ ceil_mode=True,
52
+ count_include_pad=False))
53
+ downsample.extend([
54
+ build_conv_layer(
55
+ conv_cfg,
56
+ inplanes,
57
+ planes * block.expansion,
58
+ kernel_size=1,
59
+ stride=conv_stride,
60
+ bias=False),
61
+ build_norm_layer(norm_cfg, planes * block.expansion)[1]
62
+ ])
63
+ downsample = nn.Sequential(*downsample)
64
+
65
+ layers = []
66
+ if multi_grid is None:
67
+ if dilation > 1 and contract_dilation:
68
+ first_dilation = dilation // 2
69
+ else:
70
+ first_dilation = dilation
71
+ else:
72
+ first_dilation = multi_grid[0]
73
+ layers.append(
74
+ block(
75
+ inplanes=inplanes,
76
+ planes=planes,
77
+ stride=stride,
78
+ dilation=first_dilation,
79
+ downsample=downsample,
80
+ conv_cfg=conv_cfg,
81
+ norm_cfg=norm_cfg,
82
+ **kwargs))
83
+ inplanes = planes * block.expansion
84
+ for i in range(1, num_blocks):
85
+ layers.append(
86
+ block(
87
+ inplanes=inplanes,
88
+ planes=planes,
89
+ stride=1,
90
+ dilation=dilation if multi_grid is None else multi_grid[i],
91
+ conv_cfg=conv_cfg,
92
+ norm_cfg=norm_cfg,
93
+ **kwargs))
94
+ super(ResLayer, self).__init__(*layers)
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/se_layer.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import annotator.mmpkg.mmcv as mmcv
2
+ import torch.nn as nn
3
+ from annotator.mmpkg.mmcv.cnn import ConvModule
4
+
5
+ from .make_divisible import make_divisible
6
+
7
+
8
+ class SELayer(nn.Module):
9
+ """Squeeze-and-Excitation Module.
10
+
11
+ Args:
12
+ channels (int): The input (and output) channels of the SE layer.
13
+ ratio (int): Squeeze ratio in SELayer, the intermediate channel will be
14
+ ``int(channels/ratio)``. Default: 16.
15
+ conv_cfg (None or dict): Config dict for convolution layer.
16
+ Default: None, which means using conv2d.
17
+ act_cfg (dict or Sequence[dict]): Config dict for activation layer.
18
+ If act_cfg is a dict, two activation layers will be configured
19
+ by this dict. If act_cfg is a sequence of dicts, the first
20
+ activation layer will be configured by the first dict and the
21
+ second activation layer will be configured by the second dict.
22
+ Default: (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0,
23
+ divisor=6.0)).
24
+ """
25
+
26
+ def __init__(self,
27
+ channels,
28
+ ratio=16,
29
+ conv_cfg=None,
30
+ act_cfg=(dict(type='ReLU'),
31
+ dict(type='HSigmoid', bias=3.0, divisor=6.0))):
32
+ super(SELayer, self).__init__()
33
+ if isinstance(act_cfg, dict):
34
+ act_cfg = (act_cfg, act_cfg)
35
+ assert len(act_cfg) == 2
36
+ assert mmcv.is_tuple_of(act_cfg, dict)
37
+ self.global_avgpool = nn.AdaptiveAvgPool2d(1)
38
+ self.conv1 = ConvModule(
39
+ in_channels=channels,
40
+ out_channels=make_divisible(channels // ratio, 8),
41
+ kernel_size=1,
42
+ stride=1,
43
+ conv_cfg=conv_cfg,
44
+ act_cfg=act_cfg[0])
45
+ self.conv2 = ConvModule(
46
+ in_channels=make_divisible(channels // ratio, 8),
47
+ out_channels=channels,
48
+ kernel_size=1,
49
+ stride=1,
50
+ conv_cfg=conv_cfg,
51
+ act_cfg=act_cfg[1])
52
+
53
+ def forward(self, x):
54
+ out = self.global_avgpool(x)
55
+ out = self.conv1(out)
56
+ out = self.conv2(out)
57
+ return x * out
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/self_attention_block.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from annotator.mmpkg.mmcv.cnn import ConvModule, constant_init
3
+ from torch import nn as nn
4
+ from torch.nn import functional as F
5
+
6
+
7
+ class SelfAttentionBlock(nn.Module):
8
+ """General self-attention block/non-local block.
9
+
10
+ Please refer to https://arxiv.org/abs/1706.03762 for details about key,
11
+ query and value.
12
+
13
+ Args:
14
+ key_in_channels (int): Input channels of key feature.
15
+ query_in_channels (int): Input channels of query feature.
16
+ channels (int): Output channels of key/query transform.
17
+ out_channels (int): Output channels.
18
+ share_key_query (bool): Whether share projection weight between key
19
+ and query projection.
20
+ query_downsample (nn.Module): Query downsample module.
21
+ key_downsample (nn.Module): Key downsample module.
22
+ key_query_num_convs (int): Number of convs for key/query projection.
23
+ value_num_convs (int): Number of convs for value projection.
24
+ matmul_norm (bool): Whether normalize attention map with sqrt of
25
+ channels
26
+ with_out (bool): Whether use out projection.
27
+ conv_cfg (dict|None): Config of conv layers.
28
+ norm_cfg (dict|None): Config of norm layers.
29
+ act_cfg (dict|None): Config of activation layers.
30
+ """
31
+
32
+ def __init__(self, key_in_channels, query_in_channels, channels,
33
+ out_channels, share_key_query, query_downsample,
34
+ key_downsample, key_query_num_convs, value_out_num_convs,
35
+ key_query_norm, value_out_norm, matmul_norm, with_out,
36
+ conv_cfg, norm_cfg, act_cfg):
37
+ super(SelfAttentionBlock, self).__init__()
38
+ if share_key_query:
39
+ assert key_in_channels == query_in_channels
40
+ self.key_in_channels = key_in_channels
41
+ self.query_in_channels = query_in_channels
42
+ self.out_channels = out_channels
43
+ self.channels = channels
44
+ self.share_key_query = share_key_query
45
+ self.conv_cfg = conv_cfg
46
+ self.norm_cfg = norm_cfg
47
+ self.act_cfg = act_cfg
48
+ self.key_project = self.build_project(
49
+ key_in_channels,
50
+ channels,
51
+ num_convs=key_query_num_convs,
52
+ use_conv_module=key_query_norm,
53
+ conv_cfg=conv_cfg,
54
+ norm_cfg=norm_cfg,
55
+ act_cfg=act_cfg)
56
+ if share_key_query:
57
+ self.query_project = self.key_project
58
+ else:
59
+ self.query_project = self.build_project(
60
+ query_in_channels,
61
+ channels,
62
+ num_convs=key_query_num_convs,
63
+ use_conv_module=key_query_norm,
64
+ conv_cfg=conv_cfg,
65
+ norm_cfg=norm_cfg,
66
+ act_cfg=act_cfg)
67
+ self.value_project = self.build_project(
68
+ key_in_channels,
69
+ channels if with_out else out_channels,
70
+ num_convs=value_out_num_convs,
71
+ use_conv_module=value_out_norm,
72
+ conv_cfg=conv_cfg,
73
+ norm_cfg=norm_cfg,
74
+ act_cfg=act_cfg)
75
+ if with_out:
76
+ self.out_project = self.build_project(
77
+ channels,
78
+ out_channels,
79
+ num_convs=value_out_num_convs,
80
+ use_conv_module=value_out_norm,
81
+ conv_cfg=conv_cfg,
82
+ norm_cfg=norm_cfg,
83
+ act_cfg=act_cfg)
84
+ else:
85
+ self.out_project = None
86
+
87
+ self.query_downsample = query_downsample
88
+ self.key_downsample = key_downsample
89
+ self.matmul_norm = matmul_norm
90
+
91
+ self.init_weights()
92
+
93
+ def init_weights(self):
94
+ """Initialize weight of later layer."""
95
+ if self.out_project is not None:
96
+ if not isinstance(self.out_project, ConvModule):
97
+ constant_init(self.out_project, 0)
98
+
99
+ def build_project(self, in_channels, channels, num_convs, use_conv_module,
100
+ conv_cfg, norm_cfg, act_cfg):
101
+ """Build projection layer for key/query/value/out."""
102
+ if use_conv_module:
103
+ convs = [
104
+ ConvModule(
105
+ in_channels,
106
+ channels,
107
+ 1,
108
+ conv_cfg=conv_cfg,
109
+ norm_cfg=norm_cfg,
110
+ act_cfg=act_cfg)
111
+ ]
112
+ for _ in range(num_convs - 1):
113
+ convs.append(
114
+ ConvModule(
115
+ channels,
116
+ channels,
117
+ 1,
118
+ conv_cfg=conv_cfg,
119
+ norm_cfg=norm_cfg,
120
+ act_cfg=act_cfg))
121
+ else:
122
+ convs = [nn.Conv2d(in_channels, channels, 1)]
123
+ for _ in range(num_convs - 1):
124
+ convs.append(nn.Conv2d(channels, channels, 1))
125
+ if len(convs) > 1:
126
+ convs = nn.Sequential(*convs)
127
+ else:
128
+ convs = convs[0]
129
+ return convs
130
+
131
+ def forward(self, query_feats, key_feats):
132
+ """Forward function."""
133
+ batch_size = query_feats.size(0)
134
+ query = self.query_project(query_feats)
135
+ if self.query_downsample is not None:
136
+ query = self.query_downsample(query)
137
+ query = query.reshape(*query.shape[:2], -1)
138
+ query = query.permute(0, 2, 1).contiguous()
139
+
140
+ key = self.key_project(key_feats)
141
+ value = self.value_project(key_feats)
142
+ if self.key_downsample is not None:
143
+ key = self.key_downsample(key)
144
+ value = self.key_downsample(value)
145
+ key = key.reshape(*key.shape[:2], -1)
146
+ value = value.reshape(*value.shape[:2], -1)
147
+ value = value.permute(0, 2, 1).contiguous()
148
+
149
+ sim_map = torch.matmul(query, key)
150
+ if self.matmul_norm:
151
+ sim_map = (self.channels**-.5) * sim_map
152
+ sim_map = F.softmax(sim_map, dim=-1)
153
+
154
+ context = torch.matmul(sim_map, value)
155
+ context = context.permute(0, 2, 1).contiguous()
156
+ context = context.reshape(batch_size, -1, *query_feats.shape[2:])
157
+ if self.out_project is not None:
158
+ context = self.out_project(context)
159
+ return context
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/up_conv_block.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from annotator.mmpkg.mmcv.cnn import ConvModule, build_upsample_layer
4
+
5
+
6
+ class UpConvBlock(nn.Module):
7
+ """Upsample convolution block in decoder for UNet.
8
+
9
+ This upsample convolution block consists of one upsample module
10
+ followed by one convolution block. The upsample module expands the
11
+ high-level low-resolution feature map and the convolution block fuses
12
+ the upsampled high-level low-resolution feature map and the low-level
13
+ high-resolution feature map from encoder.
14
+
15
+ Args:
16
+ conv_block (nn.Sequential): Sequential of convolutional layers.
17
+ in_channels (int): Number of input channels of the high-level
18
+ skip_channels (int): Number of input channels of the low-level
19
+ high-resolution feature map from encoder.
20
+ out_channels (int): Number of output channels.
21
+ num_convs (int): Number of convolutional layers in the conv_block.
22
+ Default: 2.
23
+ stride (int): Stride of convolutional layer in conv_block. Default: 1.
24
+ dilation (int): Dilation rate of convolutional layer in conv_block.
25
+ Default: 1.
26
+ with_cp (bool): Use checkpoint or not. Using checkpoint will save some
27
+ memory while slowing down the training speed. Default: False.
28
+ conv_cfg (dict | None): Config dict for convolution layer.
29
+ Default: None.
30
+ norm_cfg (dict | None): Config dict for normalization layer.
31
+ Default: dict(type='BN').
32
+ act_cfg (dict | None): Config dict for activation layer in ConvModule.
33
+ Default: dict(type='ReLU').
34
+ upsample_cfg (dict): The upsample config of the upsample module in
35
+ decoder. Default: dict(type='InterpConv'). If the size of
36
+ high-level feature map is the same as that of skip feature map
37
+ (low-level feature map from encoder), it does not need upsample the
38
+ high-level feature map and the upsample_cfg is None.
39
+ dcn (bool): Use deformable convolution in convolutional layer or not.
40
+ Default: None.
41
+ plugins (dict): plugins for convolutional layers. Default: None.
42
+ """
43
+
44
+ def __init__(self,
45
+ conv_block,
46
+ in_channels,
47
+ skip_channels,
48
+ out_channels,
49
+ num_convs=2,
50
+ stride=1,
51
+ dilation=1,
52
+ with_cp=False,
53
+ conv_cfg=None,
54
+ norm_cfg=dict(type='BN'),
55
+ act_cfg=dict(type='ReLU'),
56
+ upsample_cfg=dict(type='InterpConv'),
57
+ dcn=None,
58
+ plugins=None):
59
+ super(UpConvBlock, self).__init__()
60
+ assert dcn is None, 'Not implemented yet.'
61
+ assert plugins is None, 'Not implemented yet.'
62
+
63
+ self.conv_block = conv_block(
64
+ in_channels=2 * skip_channels,
65
+ out_channels=out_channels,
66
+ num_convs=num_convs,
67
+ stride=stride,
68
+ dilation=dilation,
69
+ with_cp=with_cp,
70
+ conv_cfg=conv_cfg,
71
+ norm_cfg=norm_cfg,
72
+ act_cfg=act_cfg,
73
+ dcn=None,
74
+ plugins=None)
75
+ if upsample_cfg is not None:
76
+ self.upsample = build_upsample_layer(
77
+ cfg=upsample_cfg,
78
+ in_channels=in_channels,
79
+ out_channels=skip_channels,
80
+ with_cp=with_cp,
81
+ norm_cfg=norm_cfg,
82
+ act_cfg=act_cfg)
83
+ else:
84
+ self.upsample = ConvModule(
85
+ in_channels,
86
+ skip_channels,
87
+ kernel_size=1,
88
+ stride=1,
89
+ padding=0,
90
+ conv_cfg=conv_cfg,
91
+ norm_cfg=norm_cfg,
92
+ act_cfg=act_cfg)
93
+
94
+ def forward(self, skip, x):
95
+ """Forward function."""
96
+
97
+ x = self.upsample(x)
98
+ out = torch.cat([skip, x], dim=1)
99
+ out = self.conv_block(out)
100
+
101
+ return out
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/models/utils/weight_init.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/rwightman/pytorch-image-
2
+ models/blob/master/timm/models/layers/drop.py."""
3
+
4
+ import math
5
+ import warnings
6
+
7
+ import torch
8
+
9
+
10
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
11
+ """Reference: https://people.sc.fsu.edu/~jburkardt/presentations
12
+ /truncated_normal.pdf"""
13
+
14
+ def norm_cdf(x):
15
+ # Computes standard normal cumulative distribution function
16
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
17
+
18
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
19
+ warnings.warn(
20
+ 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
21
+ 'The distribution of values may be incorrect.',
22
+ stacklevel=2)
23
+
24
+ with torch.no_grad():
25
+ # Values are generated by using a truncated uniform distribution and
26
+ # then using the inverse CDF for the normal distribution.
27
+ # Get upper and lower cdf values
28
+ lower_bound = norm_cdf((a - mean) / std)
29
+ upper_bound = norm_cdf((b - mean) / std)
30
+
31
+ # Uniformly fill tensor with values from [l, u], then translate to
32
+ # [2l-1, 2u-1].
33
+ tensor.uniform_(2 * lower_bound - 1, 2 * upper_bound - 1)
34
+
35
+ # Use inverse cdf transform for normal distribution to get truncated
36
+ # standard normal
37
+ tensor.erfinv_()
38
+
39
+ # Transform to proper mean, std
40
+ tensor.mul_(std * math.sqrt(2.))
41
+ tensor.add_(mean)
42
+
43
+ # Clamp to ensure it's in the proper range
44
+ tensor.clamp_(min=a, max=b)
45
+ return tensor
46
+
47
+
48
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
49
+ r"""Fills the input Tensor with values drawn from a truncated
50
+ normal distribution. The values are effectively drawn from the
51
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
52
+ with values outside :math:`[a, b]` redrawn until they are within
53
+ the bounds. The method used for generating the random values works
54
+ best when :math:`a \leq \text{mean} \leq b`.
55
+ Args:
56
+ tensor (``torch.Tensor``): an n-dimensional `torch.Tensor`
57
+ mean (float): the mean of the normal distribution
58
+ std (float): the standard deviation of the normal distribution
59
+ a (float): the minimum cutoff value
60
+ b (float): the maximum cutoff value
61
+ """
62
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/ops/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .encoding import Encoding
2
+ from .wrappers import Upsample, resize
3
+
4
+ __all__ = ['Upsample', 'resize', 'Encoding']
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/ops/encoding.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+
5
+
6
+ class Encoding(nn.Module):
7
+ """Encoding Layer: a learnable residual encoder.
8
+
9
+ Input is of shape (batch_size, channels, height, width).
10
+ Output is of shape (batch_size, num_codes, channels).
11
+
12
+ Args:
13
+ channels: dimension of the features or feature channels
14
+ num_codes: number of code words
15
+ """
16
+
17
+ def __init__(self, channels, num_codes):
18
+ super(Encoding, self).__init__()
19
+ # init codewords and smoothing factor
20
+ self.channels, self.num_codes = channels, num_codes
21
+ std = 1. / ((num_codes * channels)**0.5)
22
+ # [num_codes, channels]
23
+ self.codewords = nn.Parameter(
24
+ torch.empty(num_codes, channels,
25
+ dtype=torch.float).uniform_(-std, std),
26
+ requires_grad=True)
27
+ # [num_codes]
28
+ self.scale = nn.Parameter(
29
+ torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0),
30
+ requires_grad=True)
31
+
32
+ @staticmethod
33
+ def scaled_l2(x, codewords, scale):
34
+ num_codes, channels = codewords.size()
35
+ batch_size = x.size(0)
36
+ reshaped_scale = scale.view((1, 1, num_codes))
37
+ expanded_x = x.unsqueeze(2).expand(
38
+ (batch_size, x.size(1), num_codes, channels))
39
+ reshaped_codewords = codewords.view((1, 1, num_codes, channels))
40
+
41
+ scaled_l2_norm = reshaped_scale * (
42
+ expanded_x - reshaped_codewords).pow(2).sum(dim=3)
43
+ return scaled_l2_norm
44
+
45
+ @staticmethod
46
+ def aggregate(assignment_weights, x, codewords):
47
+ num_codes, channels = codewords.size()
48
+ reshaped_codewords = codewords.view((1, 1, num_codes, channels))
49
+ batch_size = x.size(0)
50
+
51
+ expanded_x = x.unsqueeze(2).expand(
52
+ (batch_size, x.size(1), num_codes, channels))
53
+ encoded_feat = (assignment_weights.unsqueeze(3) *
54
+ (expanded_x - reshaped_codewords)).sum(dim=1)
55
+ return encoded_feat
56
+
57
+ def forward(self, x):
58
+ assert x.dim() == 4 and x.size(1) == self.channels
59
+ # [batch_size, channels, height, width]
60
+ batch_size = x.size(0)
61
+ # [batch_size, height x width, channels]
62
+ x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous()
63
+ # assignment_weights: [batch_size, channels, num_codes]
64
+ assignment_weights = F.softmax(
65
+ self.scaled_l2(x, self.codewords, self.scale), dim=2)
66
+ # aggregate
67
+ encoded_feat = self.aggregate(assignment_weights, x, self.codewords)
68
+ return encoded_feat
69
+
70
+ def __repr__(self):
71
+ repr_str = self.__class__.__name__
72
+ repr_str += f'(Nx{self.channels}xHxW =>Nx{self.num_codes}' \
73
+ f'x{self.channels})'
74
+ return repr_str
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/ops/wrappers.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+
7
+ def resize(input,
8
+ size=None,
9
+ scale_factor=None,
10
+ mode='nearest',
11
+ align_corners=None,
12
+ warning=True):
13
+ if warning:
14
+ if size is not None and align_corners:
15
+ input_h, input_w = tuple(int(x) for x in input.shape[2:])
16
+ output_h, output_w = tuple(int(x) for x in size)
17
+ if output_h > input_h or output_w > output_h:
18
+ if ((output_h > 1 and output_w > 1 and input_h > 1
19
+ and input_w > 1) and (output_h - 1) % (input_h - 1)
20
+ and (output_w - 1) % (input_w - 1)):
21
+ warnings.warn(
22
+ f'When align_corners={align_corners}, '
23
+ 'the output would more aligned if '
24
+ f'input size {(input_h, input_w)} is `x+1` and '
25
+ f'out size {(output_h, output_w)} is `nx+1`')
26
+ return F.interpolate(input, size, scale_factor, mode, align_corners)
27
+
28
+
29
+ class Upsample(nn.Module):
30
+
31
+ def __init__(self,
32
+ size=None,
33
+ scale_factor=None,
34
+ mode='nearest',
35
+ align_corners=None):
36
+ super(Upsample, self).__init__()
37
+ self.size = size
38
+ if isinstance(scale_factor, tuple):
39
+ self.scale_factor = tuple(float(factor) for factor in scale_factor)
40
+ else:
41
+ self.scale_factor = float(scale_factor) if scale_factor else None
42
+ self.mode = mode
43
+ self.align_corners = align_corners
44
+
45
+ def forward(self, x):
46
+ if not self.size:
47
+ size = [int(t * self.scale_factor) for t in x.shape[-2:]]
48
+ else:
49
+ size = self.size
50
+ return resize(x, size, None, self.mode, self.align_corners)
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/utils/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .collect_env import collect_env
2
+ from .logger import get_root_logger
3
+
4
+ __all__ = ['get_root_logger', 'collect_env']
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/utils/collect_env.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from annotator.mmpkg.mmcv.utils import collect_env as collect_base_env
2
+ from annotator.mmpkg.mmcv.utils import get_git_hash
3
+
4
+ import annotator.mmpkg.mmseg as mmseg
5
+
6
+
7
+ def collect_env():
8
+ """Collect the information of the running environments."""
9
+ env_info = collect_base_env()
10
+ env_info['MMSegmentation'] = f'{mmseg.__version__}+{get_git_hash()[:7]}'
11
+
12
+ return env_info
13
+
14
+
15
+ if __name__ == '__main__':
16
+ for name, val in collect_env().items():
17
+ print('{}: {}'.format(name, val))
extensions/microsoftexcel-controlnet/annotator/mmpkg/mmseg/utils/logger.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ from annotator.mmpkg.mmcv.utils import get_logger
4
+
5
+
6
+ def get_root_logger(log_file=None, log_level=logging.INFO):
7
+ """Get the root logger.
8
+
9
+ The logger will be initialized if it has not been initialized. By default a
10
+ StreamHandler will be added. If `log_file` is specified, a FileHandler will
11
+ also be added. The name of the root logger is the top-level package name,
12
+ e.g., "mmseg".
13
+
14
+ Args:
15
+ log_file (str | None): The log filename. If specified, a FileHandler
16
+ will be added to the root logger.
17
+ log_level (int): The root logger level. Note that only the process of
18
+ rank 0 is affected, while other processes will set the level to
19
+ "Error" and be silent most of the time.
20
+
21
+ Returns:
22
+ logging.Logger: The root logger.
23
+ """
24
+
25
+ logger = get_logger(name='mmseg', log_file=log_file, log_level=log_level)
26
+
27
+ return logger
extensions/microsoftexcel-controlnet/annotator/normalbae/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Caroline Chan
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
extensions/microsoftexcel-controlnet/annotator/normalbae/__init__.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import types
3
+ import torch
4
+ import numpy as np
5
+
6
+ from einops import rearrange
7
+ from .models.NNET import NNET
8
+ from modules import devices
9
+ from annotator.annotator_path import models_path
10
+ import torchvision.transforms as transforms
11
+
12
+
13
+ # load model
14
+ def load_checkpoint(fpath, model):
15
+ ckpt = torch.load(fpath, map_location='cpu')['model']
16
+
17
+ load_dict = {}
18
+ for k, v in ckpt.items():
19
+ if k.startswith('module.'):
20
+ k_ = k.replace('module.', '')
21
+ load_dict[k_] = v
22
+ else:
23
+ load_dict[k] = v
24
+
25
+ model.load_state_dict(load_dict)
26
+ return model
27
+
28
+
29
+ class NormalBaeDetector:
30
+ model_dir = os.path.join(models_path, "normal_bae")
31
+
32
+ def __init__(self):
33
+ self.model = None
34
+ self.device = devices.get_device_for("controlnet")
35
+
36
+ def load_model(self):
37
+ remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/scannet.pt"
38
+ modelpath = os.path.join(self.model_dir, "scannet.pt")
39
+ if not os.path.exists(modelpath):
40
+ from basicsr.utils.download_util import load_file_from_url
41
+ load_file_from_url(remote_model_path, model_dir=self.model_dir)
42
+ args = types.SimpleNamespace()
43
+ args.mode = 'client'
44
+ args.architecture = 'BN'
45
+ args.pretrained = 'scannet'
46
+ args.sampling_ratio = 0.4
47
+ args.importance_ratio = 0.7
48
+ model = NNET(args)
49
+ model = load_checkpoint(modelpath, model)
50
+ model.eval()
51
+ self.model = model.to(self.device)
52
+ self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
53
+
54
+ def unload_model(self):
55
+ if self.model is not None:
56
+ self.model.cpu()
57
+
58
+ def __call__(self, input_image):
59
+ if self.model is None:
60
+ self.load_model()
61
+
62
+ self.model.to(self.device)
63
+ assert input_image.ndim == 3
64
+ image_normal = input_image
65
+ with torch.no_grad():
66
+ image_normal = torch.from_numpy(image_normal).float().to(self.device)
67
+ image_normal = image_normal / 255.0
68
+ image_normal = rearrange(image_normal, 'h w c -> 1 c h w')
69
+ image_normal = self.norm(image_normal)
70
+
71
+ normal = self.model(image_normal)
72
+ normal = normal[0][-1][:, :3]
73
+ # d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5
74
+ # d = torch.maximum(d, torch.ones_like(d) * 1e-5)
75
+ # normal /= d
76
+ normal = ((normal + 1) * 0.5).clip(0, 1)
77
+
78
+ normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy()
79
+ normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8)
80
+
81
+ return normal_image
extensions/microsoftexcel-controlnet/annotator/normalbae/models/NNET.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .submodules.encoder import Encoder
6
+ from .submodules.decoder import Decoder
7
+
8
+
9
+ class NNET(nn.Module):
10
+ def __init__(self, args):
11
+ super(NNET, self).__init__()
12
+ self.encoder = Encoder()
13
+ self.decoder = Decoder(args)
14
+
15
+ def get_1x_lr_params(self): # lr/10 learning rate
16
+ return self.encoder.parameters()
17
+
18
+ def get_10x_lr_params(self): # lr learning rate
19
+ return self.decoder.parameters()
20
+
21
+ def forward(self, img, **kwargs):
22
+ return self.decoder(self.encoder(img), **kwargs)
extensions/microsoftexcel-controlnet/annotator/normalbae/models/baseline.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .submodules.submodules import UpSampleBN, norm_normalize
6
+
7
+
8
+ # This is the baseline encoder-decoder we used in the ablation study
9
+ class NNET(nn.Module):
10
+ def __init__(self, args=None):
11
+ super(NNET, self).__init__()
12
+ self.encoder = Encoder()
13
+ self.decoder = Decoder(num_classes=4)
14
+
15
+ def forward(self, x, **kwargs):
16
+ out = self.decoder(self.encoder(x), **kwargs)
17
+
18
+ # Bilinearly upsample the output to match the input resolution
19
+ up_out = F.interpolate(out, size=[x.size(2), x.size(3)], mode='bilinear', align_corners=False)
20
+
21
+ # L2-normalize the first three channels / ensure positive value for concentration parameters (kappa)
22
+ up_out = norm_normalize(up_out)
23
+ return up_out
24
+
25
+ def get_1x_lr_params(self): # lr/10 learning rate
26
+ return self.encoder.parameters()
27
+
28
+ def get_10x_lr_params(self): # lr learning rate
29
+ modules = [self.decoder]
30
+ for m in modules:
31
+ yield from m.parameters()
32
+
33
+
34
+ # Encoder
35
+ class Encoder(nn.Module):
36
+ def __init__(self):
37
+ super(Encoder, self).__init__()
38
+
39
+ basemodel_name = 'tf_efficientnet_b5_ap'
40
+ basemodel = torch.hub.load('rwightman/gen-efficientnet-pytorch', basemodel_name, pretrained=True)
41
+
42
+ # Remove last layer
43
+ basemodel.global_pool = nn.Identity()
44
+ basemodel.classifier = nn.Identity()
45
+
46
+ self.original_model = basemodel
47
+
48
+ def forward(self, x):
49
+ features = [x]
50
+ for k, v in self.original_model._modules.items():
51
+ if (k == 'blocks'):
52
+ for ki, vi in v._modules.items():
53
+ features.append(vi(features[-1]))
54
+ else:
55
+ features.append(v(features[-1]))
56
+ return features
57
+
58
+
59
+ # Decoder (no pixel-wise MLP, no uncertainty-guided sampling)
60
+ class Decoder(nn.Module):
61
+ def __init__(self, num_classes=4):
62
+ super(Decoder, self).__init__()
63
+ self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
64
+ self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
65
+ self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
66
+ self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
67
+ self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
68
+ self.conv3 = nn.Conv2d(128, num_classes, kernel_size=3, stride=1, padding=1)
69
+
70
+ def forward(self, features):
71
+ x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
72
+ x_d0 = self.conv2(x_block4)
73
+ x_d1 = self.up1(x_d0, x_block3)
74
+ x_d2 = self.up2(x_d1, x_block2)
75
+ x_d3 = self.up3(x_d2, x_block1)
76
+ x_d4 = self.up4(x_d3, x_block0)
77
+ out = self.conv3(x_d4)
78
+ return out
79
+
80
+
81
+ if __name__ == '__main__':
82
+ model = Baseline()
83
+ x = torch.rand(2, 3, 480, 640)
84
+ out = model(x)
85
+ print(out.shape)
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/decoder.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from .submodules import UpSampleBN, UpSampleGN, norm_normalize, sample_points
5
+
6
+
7
+ class Decoder(nn.Module):
8
+ def __init__(self, args):
9
+ super(Decoder, self).__init__()
10
+
11
+ # hyper-parameter for sampling
12
+ self.sampling_ratio = args.sampling_ratio
13
+ self.importance_ratio = args.importance_ratio
14
+
15
+ # feature-map
16
+ self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
17
+ if args.architecture == 'BN':
18
+ self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
19
+ self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
20
+ self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
21
+ self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
22
+
23
+ elif args.architecture == 'GN':
24
+ self.up1 = UpSampleGN(skip_input=2048 + 176, output_features=1024)
25
+ self.up2 = UpSampleGN(skip_input=1024 + 64, output_features=512)
26
+ self.up3 = UpSampleGN(skip_input=512 + 40, output_features=256)
27
+ self.up4 = UpSampleGN(skip_input=256 + 24, output_features=128)
28
+
29
+ else:
30
+ raise Exception('invalid architecture')
31
+
32
+ # produces 1/8 res output
33
+ self.out_conv_res8 = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
34
+
35
+ # produces 1/4 res output
36
+ self.out_conv_res4 = nn.Sequential(
37
+ nn.Conv1d(512 + 4, 128, kernel_size=1), nn.ReLU(),
38
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
39
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
40
+ nn.Conv1d(128, 4, kernel_size=1),
41
+ )
42
+
43
+ # produces 1/2 res output
44
+ self.out_conv_res2 = nn.Sequential(
45
+ nn.Conv1d(256 + 4, 128, kernel_size=1), nn.ReLU(),
46
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
47
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
48
+ nn.Conv1d(128, 4, kernel_size=1),
49
+ )
50
+
51
+ # produces 1/1 res output
52
+ self.out_conv_res1 = nn.Sequential(
53
+ nn.Conv1d(128 + 4, 128, kernel_size=1), nn.ReLU(),
54
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
55
+ nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
56
+ nn.Conv1d(128, 4, kernel_size=1),
57
+ )
58
+
59
+ def forward(self, features, gt_norm_mask=None, mode='test'):
60
+ x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
61
+
62
+ # generate feature-map
63
+
64
+ x_d0 = self.conv2(x_block4) # x_d0 : [2, 2048, 15, 20] 1/32 res
65
+ x_d1 = self.up1(x_d0, x_block3) # x_d1 : [2, 1024, 30, 40] 1/16 res
66
+ x_d2 = self.up2(x_d1, x_block2) # x_d2 : [2, 512, 60, 80] 1/8 res
67
+ x_d3 = self.up3(x_d2, x_block1) # x_d3: [2, 256, 120, 160] 1/4 res
68
+ x_d4 = self.up4(x_d3, x_block0) # x_d4: [2, 128, 240, 320] 1/2 res
69
+
70
+ # 1/8 res output
71
+ out_res8 = self.out_conv_res8(x_d2) # out_res8: [2, 4, 60, 80] 1/8 res output
72
+ out_res8 = norm_normalize(out_res8) # out_res8: [2, 4, 60, 80] 1/8 res output
73
+
74
+ ################################################################################################################
75
+ # out_res4
76
+ ################################################################################################################
77
+
78
+ if mode == 'train':
79
+ # upsampling ... out_res8: [2, 4, 60, 80] -> out_res8_res4: [2, 4, 120, 160]
80
+ out_res8_res4 = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
81
+ B, _, H, W = out_res8_res4.shape
82
+
83
+ # samples: [B, 1, N, 2]
84
+ point_coords_res4, rows_int, cols_int = sample_points(out_res8_res4.detach(), gt_norm_mask,
85
+ sampling_ratio=self.sampling_ratio,
86
+ beta=self.importance_ratio)
87
+
88
+ # output (needed for evaluation / visualization)
89
+ out_res4 = out_res8_res4
90
+
91
+ # grid_sample feature-map
92
+ feat_res4 = F.grid_sample(x_d2, point_coords_res4, mode='bilinear', align_corners=True) # (B, 512, 1, N)
93
+ init_pred = F.grid_sample(out_res8, point_coords_res4, mode='bilinear', align_corners=True) # (B, 4, 1, N)
94
+ feat_res4 = torch.cat([feat_res4, init_pred], dim=1) # (B, 512+4, 1, N)
95
+
96
+ # prediction (needed to compute loss)
97
+ samples_pred_res4 = self.out_conv_res4(feat_res4[:, :, 0, :]) # (B, 4, N)
98
+ samples_pred_res4 = norm_normalize(samples_pred_res4) # (B, 4, N) - normalized
99
+
100
+ for i in range(B):
101
+ out_res4[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res4[i, :, :]
102
+
103
+ else:
104
+ # grid_sample feature-map
105
+ feat_map = F.interpolate(x_d2, scale_factor=2, mode='bilinear', align_corners=True)
106
+ init_pred = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
107
+ feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
108
+ B, _, H, W = feat_map.shape
109
+
110
+ # try all pixels
111
+ out_res4 = self.out_conv_res4(feat_map.view(B, 512 + 4, -1)) # (B, 4, N)
112
+ out_res4 = norm_normalize(out_res4) # (B, 4, N) - normalized
113
+ out_res4 = out_res4.view(B, 4, H, W)
114
+ samples_pred_res4 = point_coords_res4 = None
115
+
116
+ ################################################################################################################
117
+ # out_res2
118
+ ################################################################################################################
119
+
120
+ if mode == 'train':
121
+
122
+ # upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
123
+ out_res4_res2 = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
124
+ B, _, H, W = out_res4_res2.shape
125
+
126
+ # samples: [B, 1, N, 2]
127
+ point_coords_res2, rows_int, cols_int = sample_points(out_res4_res2.detach(), gt_norm_mask,
128
+ sampling_ratio=self.sampling_ratio,
129
+ beta=self.importance_ratio)
130
+
131
+ # output (needed for evaluation / visualization)
132
+ out_res2 = out_res4_res2
133
+
134
+ # grid_sample feature-map
135
+ feat_res2 = F.grid_sample(x_d3, point_coords_res2, mode='bilinear', align_corners=True) # (B, 256, 1, N)
136
+ init_pred = F.grid_sample(out_res4, point_coords_res2, mode='bilinear', align_corners=True) # (B, 4, 1, N)
137
+ feat_res2 = torch.cat([feat_res2, init_pred], dim=1) # (B, 256+4, 1, N)
138
+
139
+ # prediction (needed to compute loss)
140
+ samples_pred_res2 = self.out_conv_res2(feat_res2[:, :, 0, :]) # (B, 4, N)
141
+ samples_pred_res2 = norm_normalize(samples_pred_res2) # (B, 4, N) - normalized
142
+
143
+ for i in range(B):
144
+ out_res2[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res2[i, :, :]
145
+
146
+ else:
147
+ # grid_sample feature-map
148
+ feat_map = F.interpolate(x_d3, scale_factor=2, mode='bilinear', align_corners=True)
149
+ init_pred = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
150
+ feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
151
+ B, _, H, W = feat_map.shape
152
+
153
+ out_res2 = self.out_conv_res2(feat_map.view(B, 256 + 4, -1)) # (B, 4, N)
154
+ out_res2 = norm_normalize(out_res2) # (B, 4, N) - normalized
155
+ out_res2 = out_res2.view(B, 4, H, W)
156
+ samples_pred_res2 = point_coords_res2 = None
157
+
158
+ ################################################################################################################
159
+ # out_res1
160
+ ################################################################################################################
161
+
162
+ if mode == 'train':
163
+ # upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
164
+ out_res2_res1 = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
165
+ B, _, H, W = out_res2_res1.shape
166
+
167
+ # samples: [B, 1, N, 2]
168
+ point_coords_res1, rows_int, cols_int = sample_points(out_res2_res1.detach(), gt_norm_mask,
169
+ sampling_ratio=self.sampling_ratio,
170
+ beta=self.importance_ratio)
171
+
172
+ # output (needed for evaluation / visualization)
173
+ out_res1 = out_res2_res1
174
+
175
+ # grid_sample feature-map
176
+ feat_res1 = F.grid_sample(x_d4, point_coords_res1, mode='bilinear', align_corners=True) # (B, 128, 1, N)
177
+ init_pred = F.grid_sample(out_res2, point_coords_res1, mode='bilinear', align_corners=True) # (B, 4, 1, N)
178
+ feat_res1 = torch.cat([feat_res1, init_pred], dim=1) # (B, 128+4, 1, N)
179
+
180
+ # prediction (needed to compute loss)
181
+ samples_pred_res1 = self.out_conv_res1(feat_res1[:, :, 0, :]) # (B, 4, N)
182
+ samples_pred_res1 = norm_normalize(samples_pred_res1) # (B, 4, N) - normalized
183
+
184
+ for i in range(B):
185
+ out_res1[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res1[i, :, :]
186
+
187
+ else:
188
+ # grid_sample feature-map
189
+ feat_map = F.interpolate(x_d4, scale_factor=2, mode='bilinear', align_corners=True)
190
+ init_pred = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
191
+ feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
192
+ B, _, H, W = feat_map.shape
193
+
194
+ out_res1 = self.out_conv_res1(feat_map.view(B, 128 + 4, -1)) # (B, 4, N)
195
+ out_res1 = norm_normalize(out_res1) # (B, 4, N) - normalized
196
+ out_res1 = out_res1.view(B, 4, H, W)
197
+ samples_pred_res1 = point_coords_res1 = None
198
+
199
+ return [out_res8, out_res4, out_res2, out_res1], \
200
+ [out_res8, samples_pred_res4, samples_pred_res2, samples_pred_res1], \
201
+ [None, point_coords_res4, point_coords_res2, point_coords_res1]
202
+
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/.gitignore ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+ db.sqlite3
58
+
59
+ # Flask stuff:
60
+ instance/
61
+ .webassets-cache
62
+
63
+ # Scrapy stuff:
64
+ .scrapy
65
+
66
+ # Sphinx documentation
67
+ docs/_build/
68
+
69
+ # PyBuilder
70
+ target/
71
+
72
+ # Jupyter Notebook
73
+ .ipynb_checkpoints
74
+
75
+ # pyenv
76
+ .python-version
77
+
78
+ # celery beat schedule file
79
+ celerybeat-schedule
80
+
81
+ # SageMath parsed files
82
+ *.sage.py
83
+
84
+ # Environments
85
+ .env
86
+ .venv
87
+ env/
88
+ venv/
89
+ ENV/
90
+ env.bak/
91
+ venv.bak/
92
+
93
+ # Spyder project settings
94
+ .spyderproject
95
+ .spyproject
96
+
97
+ # Rope project settings
98
+ .ropeproject
99
+
100
+ # mkdocs documentation
101
+ /site
102
+
103
+ # pytorch stuff
104
+ *.pth
105
+ *.onnx
106
+ *.pb
107
+
108
+ trained_models/
109
+ .fuse_hidden*
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/BENCHMARK.md ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Performance Benchmarks
2
+
3
+ All benchmarks run as per:
4
+
5
+ ```
6
+ python onnx_export.py --model mobilenetv3_100 ./mobilenetv3_100.onnx
7
+ python onnx_optimize.py ./mobilenetv3_100.onnx --output mobilenetv3_100-opt.onnx
8
+ python onnx_to_caffe.py ./mobilenetv3_100.onnx --c2-prefix mobilenetv3
9
+ python onnx_to_caffe.py ./mobilenetv3_100-opt.onnx --c2-prefix mobilenetv3-opt
10
+ python caffe2_benchmark.py --c2-init ./mobilenetv3.init.pb --c2-predict ./mobilenetv3.predict.pb
11
+ python caffe2_benchmark.py --c2-init ./mobilenetv3-opt.init.pb --c2-predict ./mobilenetv3-opt.predict.pb
12
+ ```
13
+
14
+ ## EfficientNet-B0
15
+
16
+ ### Unoptimized
17
+ ```
18
+ Main run finished. Milliseconds per iter: 49.2862. Iters per second: 20.2897
19
+ Time per operator type:
20
+ 29.7378 ms. 60.5145%. Conv
21
+ 12.1785 ms. 24.7824%. Sigmoid
22
+ 3.62811 ms. 7.38297%. SpatialBN
23
+ 2.98444 ms. 6.07314%. Mul
24
+ 0.326902 ms. 0.665225%. AveragePool
25
+ 0.197317 ms. 0.401528%. FC
26
+ 0.0852877 ms. 0.173555%. Add
27
+ 0.0032607 ms. 0.00663532%. Squeeze
28
+ 49.1416 ms in Total
29
+ FLOP per operator type:
30
+ 0.76907 GFLOP. 95.2696%. Conv
31
+ 0.0269508 GFLOP. 3.33857%. SpatialBN
32
+ 0.00846444 GFLOP. 1.04855%. Mul
33
+ 0.002561 GFLOP. 0.317248%. FC
34
+ 0.000210112 GFLOP. 0.0260279%. Add
35
+ 0.807256 GFLOP in Total
36
+ Feature Memory Read per operator type:
37
+ 58.5253 MB. 43.0891%. Mul
38
+ 43.2015 MB. 31.807%. Conv
39
+ 27.2869 MB. 20.0899%. SpatialBN
40
+ 5.12912 MB. 3.77631%. FC
41
+ 1.6809 MB. 1.23756%. Add
42
+ 135.824 MB in Total
43
+ Feature Memory Written per operator type:
44
+ 33.8578 MB. 38.1965%. Mul
45
+ 26.9881 MB. 30.4465%. Conv
46
+ 26.9508 MB. 30.4044%. SpatialBN
47
+ 0.840448 MB. 0.948147%. Add
48
+ 0.004 MB. 0.00451258%. FC
49
+ 88.6412 MB in Total
50
+ Parameter Memory per operator type:
51
+ 15.8248 MB. 74.9391%. Conv
52
+ 5.124 MB. 24.265%. FC
53
+ 0.168064 MB. 0.795877%. SpatialBN
54
+ 0 MB. 0%. Add
55
+ 0 MB. 0%. Mul
56
+ 21.1168 MB in Total
57
+ ```
58
+ ### Optimized
59
+ ```
60
+ Main run finished. Milliseconds per iter: 46.0838. Iters per second: 21.6996
61
+ Time per operator type:
62
+ 29.776 ms. 65.002%. Conv
63
+ 12.2803 ms. 26.8084%. Sigmoid
64
+ 3.15073 ms. 6.87815%. Mul
65
+ 0.328651 ms. 0.717456%. AveragePool
66
+ 0.186237 ms. 0.406563%. FC
67
+ 0.0832429 ms. 0.181722%. Add
68
+ 0.0026184 ms. 0.00571606%. Squeeze
69
+ 45.8078 ms in Total
70
+ FLOP per operator type:
71
+ 0.76907 GFLOP. 98.5601%. Conv
72
+ 0.00846444 GFLOP. 1.08476%. Mul
73
+ 0.002561 GFLOP. 0.328205%. FC
74
+ 0.000210112 GFLOP. 0.0269269%. Add
75
+ 0.780305 GFLOP in Total
76
+ Feature Memory Read per operator type:
77
+ 58.5253 MB. 53.8803%. Mul
78
+ 43.2855 MB. 39.8501%. Conv
79
+ 5.12912 MB. 4.72204%. FC
80
+ 1.6809 MB. 1.54749%. Add
81
+ 108.621 MB in Total
82
+ Feature Memory Written per operator type:
83
+ 33.8578 MB. 54.8834%. Mul
84
+ 26.9881 MB. 43.7477%. Conv
85
+ 0.840448 MB. 1.36237%. Add
86
+ 0.004 MB. 0.00648399%. FC
87
+ 61.6904 MB in Total
88
+ Parameter Memory per operator type:
89
+ 15.8248 MB. 75.5403%. Conv
90
+ 5.124 MB. 24.4597%. FC
91
+ 0 MB. 0%. Add
92
+ 0 MB. 0%. Mul
93
+ 20.9488 MB in Total
94
+ ```
95
+
96
+ ## EfficientNet-B1
97
+ ### Optimized
98
+ ```
99
+ Main run finished. Milliseconds per iter: 71.8102. Iters per second: 13.9256
100
+ Time per operator type:
101
+ 45.7915 ms. 66.3206%. Conv
102
+ 17.8718 ms. 25.8841%. Sigmoid
103
+ 4.44132 ms. 6.43244%. Mul
104
+ 0.51001 ms. 0.738658%. AveragePool
105
+ 0.233283 ms. 0.337868%. Add
106
+ 0.194986 ms. 0.282402%. FC
107
+ 0.00268255 ms. 0.00388519%. Squeeze
108
+ 69.0456 ms in Total
109
+ FLOP per operator type:
110
+ 1.37105 GFLOP. 98.7673%. Conv
111
+ 0.0138759 GFLOP. 0.99959%. Mul
112
+ 0.002561 GFLOP. 0.184489%. FC
113
+ 0.000674432 GFLOP. 0.0485847%. Add
114
+ 1.38816 GFLOP in Total
115
+ Feature Memory Read per operator type:
116
+ 94.624 MB. 54.0789%. Mul
117
+ 69.8255 MB. 39.9062%. Conv
118
+ 5.39546 MB. 3.08357%. Add
119
+ 5.12912 MB. 2.93136%. FC
120
+ 174.974 MB in Total
121
+ Feature Memory Written per operator type:
122
+ 55.5035 MB. 54.555%. Mul
123
+ 43.5333 MB. 42.7894%. Conv
124
+ 2.69773 MB. 2.65163%. Add
125
+ 0.004 MB. 0.00393165%. FC
126
+ 101.739 MB in Total
127
+ Parameter Memory per operator type:
128
+ 25.7479 MB. 83.4024%. Conv
129
+ 5.124 MB. 16.5976%. FC
130
+ 0 MB. 0%. Add
131
+ 0 MB. 0%. Mul
132
+ 30.8719 MB in Total
133
+ ```
134
+
135
+ ## EfficientNet-B2
136
+ ### Optimized
137
+ ```
138
+ Main run finished. Milliseconds per iter: 92.28. Iters per second: 10.8366
139
+ Time per operator type:
140
+ 61.4627 ms. 67.5845%. Conv
141
+ 22.7458 ms. 25.0113%. Sigmoid
142
+ 5.59931 ms. 6.15701%. Mul
143
+ 0.642567 ms. 0.706568%. AveragePool
144
+ 0.272795 ms. 0.299965%. Add
145
+ 0.216178 ms. 0.237709%. FC
146
+ 0.00268895 ms. 0.00295677%. Squeeze
147
+ 90.942 ms in Total
148
+ FLOP per operator type:
149
+ 1.98431 GFLOP. 98.9343%. Conv
150
+ 0.0177039 GFLOP. 0.882686%. Mul
151
+ 0.002817 GFLOP. 0.140451%. FC
152
+ 0.000853984 GFLOP. 0.0425782%. Add
153
+ 2.00568 GFLOP in Total
154
+ Feature Memory Read per operator type:
155
+ 120.609 MB. 54.9637%. Mul
156
+ 86.3512 MB. 39.3519%. Conv
157
+ 6.83187 MB. 3.11341%. Add
158
+ 5.64163 MB. 2.571%. FC
159
+ 219.433 MB in Total
160
+ Feature Memory Written per operator type:
161
+ 70.8155 MB. 54.6573%. Mul
162
+ 55.3273 MB. 42.7031%. Conv
163
+ 3.41594 MB. 2.63651%. Add
164
+ 0.004 MB. 0.00308731%. FC
165
+ 129.563 MB in Total
166
+ Parameter Memory per operator type:
167
+ 30.4721 MB. 84.3913%. Conv
168
+ 5.636 MB. 15.6087%. FC
169
+ 0 MB. 0%. Add
170
+ 0 MB. 0%. Mul
171
+ 36.1081 MB in Total
172
+ ```
173
+
174
+ ## MixNet-M
175
+ ### Optimized
176
+ ```
177
+ Main run finished. Milliseconds per iter: 63.1122. Iters per second: 15.8448
178
+ Time per operator type:
179
+ 48.1139 ms. 75.2052%. Conv
180
+ 7.1341 ms. 11.1511%. Sigmoid
181
+ 2.63706 ms. 4.12189%. SpatialBN
182
+ 1.73186 ms. 2.70701%. Mul
183
+ 1.38707 ms. 2.16809%. Split
184
+ 1.29322 ms. 2.02139%. Concat
185
+ 1.00093 ms. 1.56452%. Relu
186
+ 0.235309 ms. 0.367803%. Add
187
+ 0.221579 ms. 0.346343%. FC
188
+ 0.219315 ms. 0.342803%. AveragePool
189
+ 0.00250145 ms. 0.00390993%. Squeeze
190
+ 63.9768 ms in Total
191
+ FLOP per operator type:
192
+ 0.675273 GFLOP. 95.5827%. Conv
193
+ 0.0221072 GFLOP. 3.12921%. SpatialBN
194
+ 0.00538445 GFLOP. 0.762152%. Mul
195
+ 0.003073 GFLOP. 0.434973%. FC
196
+ 0.000642488 GFLOP. 0.0909421%. Add
197
+ 0 GFLOP. 0%. Concat
198
+ 0 GFLOP. 0%. Relu
199
+ 0.70648 GFLOP in Total
200
+ Feature Memory Read per operator type:
201
+ 46.8424 MB. 30.502%. Conv
202
+ 36.8626 MB. 24.0036%. Mul
203
+ 22.3152 MB. 14.5309%. SpatialBN
204
+ 22.1074 MB. 14.3955%. Concat
205
+ 14.1496 MB. 9.21372%. Relu
206
+ 6.15414 MB. 4.00735%. FC
207
+ 5.1399 MB. 3.34692%. Add
208
+ 153.571 MB in Total
209
+ Feature Memory Written per operator type:
210
+ 32.7672 MB. 28.4331%. Conv
211
+ 22.1072 MB. 19.1831%. Concat
212
+ 22.1072 MB. 19.1831%. SpatialBN
213
+ 21.5378 MB. 18.689%. Mul
214
+ 14.1496 MB. 12.2781%. Relu
215
+ 2.56995 MB. 2.23003%. Add
216
+ 0.004 MB. 0.00347092%. FC
217
+ 115.243 MB in Total
218
+ Parameter Memory per operator type:
219
+ 13.7059 MB. 68.674%. Conv
220
+ 6.148 MB. 30.8049%. FC
221
+ 0.104 MB. 0.521097%. SpatialBN
222
+ 0 MB. 0%. Add
223
+ 0 MB. 0%. Concat
224
+ 0 MB. 0%. Mul
225
+ 0 MB. 0%. Relu
226
+ 19.9579 MB in Total
227
+ ```
228
+
229
+ ## TF MobileNet-V3 Large 1.0
230
+
231
+ ### Optimized
232
+ ```
233
+ Main run finished. Milliseconds per iter: 22.0495. Iters per second: 45.3525
234
+ Time per operator type:
235
+ 17.437 ms. 80.0087%. Conv
236
+ 1.27662 ms. 5.8577%. Add
237
+ 1.12759 ms. 5.17387%. Div
238
+ 0.701155 ms. 3.21721%. Mul
239
+ 0.562654 ms. 2.58171%. Relu
240
+ 0.431144 ms. 1.97828%. Clip
241
+ 0.156902 ms. 0.719936%. FC
242
+ 0.0996858 ms. 0.457402%. AveragePool
243
+ 0.00112455 ms. 0.00515993%. Flatten
244
+ 21.7939 ms in Total
245
+ FLOP per operator type:
246
+ 0.43062 GFLOP. 98.1484%. Conv
247
+ 0.002561 GFLOP. 0.583713%. FC
248
+ 0.00210867 GFLOP. 0.480616%. Mul
249
+ 0.00193868 GFLOP. 0.441871%. Add
250
+ 0.00151532 GFLOP. 0.345377%. Div
251
+ 0 GFLOP. 0%. Relu
252
+ 0.438743 GFLOP in Total
253
+ Feature Memory Read per operator type:
254
+ 34.7967 MB. 43.9391%. Conv
255
+ 14.496 MB. 18.3046%. Mul
256
+ 9.44828 MB. 11.9307%. Add
257
+ 9.26157 MB. 11.6949%. Relu
258
+ 6.0614 MB. 7.65395%. Div
259
+ 5.12912 MB. 6.47673%. FC
260
+ 79.193 MB in Total
261
+ Feature Memory Written per operator type:
262
+ 17.6247 MB. 35.8656%. Conv
263
+ 9.26157 MB. 18.847%. Relu
264
+ 8.43469 MB. 17.1643%. Mul
265
+ 7.75472 MB. 15.7806%. Add
266
+ 6.06128 MB. 12.3345%. Div
267
+ 0.004 MB. 0.00813985%. FC
268
+ 49.1409 MB in Total
269
+ Parameter Memory per operator type:
270
+ 16.6851 MB. 76.5052%. Conv
271
+ 5.124 MB. 23.4948%. FC
272
+ 0 MB. 0%. Add
273
+ 0 MB. 0%. Div
274
+ 0 MB. 0%. Mul
275
+ 0 MB. 0%. Relu
276
+ 21.8091 MB in Total
277
+ ```
278
+
279
+ ## MobileNet-V3 (RW)
280
+
281
+ ### Unoptimized
282
+ ```
283
+ Main run finished. Milliseconds per iter: 24.8316. Iters per second: 40.2712
284
+ Time per operator type:
285
+ 15.9266 ms. 69.2624%. Conv
286
+ 2.36551 ms. 10.2873%. SpatialBN
287
+ 1.39102 ms. 6.04936%. Add
288
+ 1.30327 ms. 5.66773%. Div
289
+ 0.737014 ms. 3.20517%. Mul
290
+ 0.639697 ms. 2.78195%. Relu
291
+ 0.375681 ms. 1.63378%. Clip
292
+ 0.153126 ms. 0.665921%. FC
293
+ 0.0993787 ms. 0.432184%. AveragePool
294
+ 0.0032632 ms. 0.0141912%. Squeeze
295
+ 22.9946 ms in Total
296
+ FLOP per operator type:
297
+ 0.430616 GFLOP. 94.4041%. Conv
298
+ 0.0175992 GFLOP. 3.85829%. SpatialBN
299
+ 0.002561 GFLOP. 0.561449%. FC
300
+ 0.00210961 GFLOP. 0.46249%. Mul
301
+ 0.00173891 GFLOP. 0.381223%. Add
302
+ 0.00151626 GFLOP. 0.33241%. Div
303
+ 0 GFLOP. 0%. Relu
304
+ 0.456141 GFLOP in Total
305
+ Feature Memory Read per operator type:
306
+ 34.7354 MB. 36.4363%. Conv
307
+ 17.7944 MB. 18.6658%. SpatialBN
308
+ 14.5035 MB. 15.2137%. Mul
309
+ 9.25778 MB. 9.71113%. Relu
310
+ 7.84641 MB. 8.23064%. Add
311
+ 6.06516 MB. 6.36216%. Div
312
+ 5.12912 MB. 5.38029%. FC
313
+ 95.3317 MB in Total
314
+ Feature Memory Written per operator type:
315
+ 17.6246 MB. 26.7264%. Conv
316
+ 17.5992 MB. 26.6878%. SpatialBN
317
+ 9.25778 MB. 14.0387%. Relu
318
+ 8.43843 MB. 12.7962%. Mul
319
+ 6.95565 MB. 10.5477%. Add
320
+ 6.06502 MB. 9.19713%. Div
321
+ 0.004 MB. 0.00606568%. FC
322
+ 65.9447 MB in Total
323
+ Parameter Memory per operator type:
324
+ 16.6778 MB. 76.1564%. Conv
325
+ 5.124 MB. 23.3979%. FC
326
+ 0.0976 MB. 0.445674%. SpatialBN
327
+ 0 MB. 0%. Add
328
+ 0 MB. 0%. Div
329
+ 0 MB. 0%. Mul
330
+ 0 MB. 0%. Relu
331
+ 21.8994 MB in Total
332
+
333
+ ```
334
+ ### Optimized
335
+
336
+ ```
337
+ Main run finished. Milliseconds per iter: 22.0981. Iters per second: 45.2527
338
+ Time per operator type:
339
+ 17.146 ms. 78.8965%. Conv
340
+ 1.38453 ms. 6.37084%. Add
341
+ 1.30991 ms. 6.02749%. Div
342
+ 0.685417 ms. 3.15391%. Mul
343
+ 0.532589 ms. 2.45068%. Relu
344
+ 0.418263 ms. 1.92461%. Clip
345
+ 0.15128 ms. 0.696106%. FC
346
+ 0.102065 ms. 0.469648%. AveragePool
347
+ 0.0022143 ms. 0.010189%. Squeeze
348
+ 21.7323 ms in Total
349
+ FLOP per operator type:
350
+ 0.430616 GFLOP. 98.1927%. Conv
351
+ 0.002561 GFLOP. 0.583981%. FC
352
+ 0.00210961 GFLOP. 0.481051%. Mul
353
+ 0.00173891 GFLOP. 0.396522%. Add
354
+ 0.00151626 GFLOP. 0.34575%. Div
355
+ 0 GFLOP. 0%. Relu
356
+ 0.438542 GFLOP in Total
357
+ Feature Memory Read per operator type:
358
+ 34.7842 MB. 44.833%. Conv
359
+ 14.5035 MB. 18.6934%. Mul
360
+ 9.25778 MB. 11.9323%. Relu
361
+ 7.84641 MB. 10.1132%. Add
362
+ 6.06516 MB. 7.81733%. Div
363
+ 5.12912 MB. 6.61087%. FC
364
+ 77.5861 MB in Total
365
+ Feature Memory Written per operator type:
366
+ 17.6246 MB. 36.4556%. Conv
367
+ 9.25778 MB. 19.1492%. Relu
368
+ 8.43843 MB. 17.4544%. Mul
369
+ 6.95565 MB. 14.3874%. Add
370
+ 6.06502 MB. 12.5452%. Div
371
+ 0.004 MB. 0.00827378%. FC
372
+ 48.3455 MB in Total
373
+ Parameter Memory per operator type:
374
+ 16.6778 MB. 76.4973%. Conv
375
+ 5.124 MB. 23.5027%. FC
376
+ 0 MB. 0%. Add
377
+ 0 MB. 0%. Div
378
+ 0 MB. 0%. Mul
379
+ 0 MB. 0%. Relu
380
+ 21.8018 MB in Total
381
+
382
+ ```
383
+
384
+ ## MnasNet-A1
385
+
386
+ ### Unoptimized
387
+ ```
388
+ Main run finished. Milliseconds per iter: 30.0892. Iters per second: 33.2345
389
+ Time per operator type:
390
+ 24.4656 ms. 79.0905%. Conv
391
+ 4.14958 ms. 13.4144%. SpatialBN
392
+ 1.60598 ms. 5.19169%. Relu
393
+ 0.295219 ms. 0.95436%. Mul
394
+ 0.187609 ms. 0.606486%. FC
395
+ 0.120556 ms. 0.389724%. AveragePool
396
+ 0.09036 ms. 0.292109%. Add
397
+ 0.015727 ms. 0.050841%. Sigmoid
398
+ 0.00306205 ms. 0.00989875%. Squeeze
399
+ 30.9337 ms in Total
400
+ FLOP per operator type:
401
+ 0.620598 GFLOP. 95.6434%. Conv
402
+ 0.0248873 GFLOP. 3.8355%. SpatialBN
403
+ 0.002561 GFLOP. 0.394688%. FC
404
+ 0.000597408 GFLOP. 0.0920695%. Mul
405
+ 0.000222656 GFLOP. 0.0343146%. Add
406
+ 0 GFLOP. 0%. Relu
407
+ 0.648867 GFLOP in Total
408
+ Feature Memory Read per operator type:
409
+ 35.5457 MB. 38.4109%. Conv
410
+ 25.1552 MB. 27.1829%. SpatialBN
411
+ 22.5235 MB. 24.339%. Relu
412
+ 5.12912 MB. 5.54256%. FC
413
+ 2.40586 MB. 2.59978%. Mul
414
+ 1.78125 MB. 1.92483%. Add
415
+ 92.5406 MB in Total
416
+ Feature Memory Written per operator type:
417
+ 24.9042 MB. 32.9424%. Conv
418
+ 24.8873 MB. 32.92%. SpatialBN
419
+ 22.5235 MB. 29.7932%. Relu
420
+ 2.38963 MB. 3.16092%. Mul
421
+ 0.890624 MB. 1.17809%. Add
422
+ 0.004 MB. 0.00529106%. FC
423
+ 75.5993 MB in Total
424
+ Parameter Memory per operator type:
425
+ 10.2732 MB. 66.1459%. Conv
426
+ 5.124 MB. 32.9917%. FC
427
+ 0.133952 MB. 0.86247%. SpatialBN
428
+ 0 MB. 0%. Add
429
+ 0 MB. 0%. Mul
430
+ 0 MB. 0%. Relu
431
+ 15.5312 MB in Total
432
+ ```
433
+
434
+ ### Optimized
435
+ ```
436
+ Main run finished. Milliseconds per iter: 24.2367. Iters per second: 41.2597
437
+ Time per operator type:
438
+ 22.0547 ms. 91.1375%. Conv
439
+ 1.49096 ms. 6.16116%. Relu
440
+ 0.253417 ms. 1.0472%. Mul
441
+ 0.18506 ms. 0.76473%. FC
442
+ 0.112942 ms. 0.466717%. AveragePool
443
+ 0.086769 ms. 0.358559%. Add
444
+ 0.0127889 ms. 0.0528479%. Sigmoid
445
+ 0.0027346 ms. 0.0113003%. Squeeze
446
+ 24.1994 ms in Total
447
+ FLOP per operator type:
448
+ 0.620598 GFLOP. 99.4581%. Conv
449
+ 0.002561 GFLOP. 0.41043%. FC
450
+ 0.000597408 GFLOP. 0.0957417%. Mul
451
+ 0.000222656 GFLOP. 0.0356832%. Add
452
+ 0 GFLOP. 0%. Relu
453
+ 0.623979 GFLOP in Total
454
+ Feature Memory Read per operator type:
455
+ 35.6127 MB. 52.7968%. Conv
456
+ 22.5235 MB. 33.3917%. Relu
457
+ 5.12912 MB. 7.60406%. FC
458
+ 2.40586 MB. 3.56675%. Mul
459
+ 1.78125 MB. 2.64075%. Add
460
+ 67.4524 MB in Total
461
+ Feature Memory Written per operator type:
462
+ 24.9042 MB. 49.1092%. Conv
463
+ 22.5235 MB. 44.4145%. Relu
464
+ 2.38963 MB. 4.71216%. Mul
465
+ 0.890624 MB. 1.75624%. Add
466
+ 0.004 MB. 0.00788768%. FC
467
+ 50.712 MB in Total
468
+ Parameter Memory per operator type:
469
+ 10.2732 MB. 66.7213%. Conv
470
+ 5.124 MB. 33.2787%. FC
471
+ 0 MB. 0%. Add
472
+ 0 MB. 0%. Mul
473
+ 0 MB. 0%. Relu
474
+ 15.3972 MB in Total
475
+ ```
476
+ ## MnasNet-B1
477
+
478
+ ### Unoptimized
479
+ ```
480
+ Main run finished. Milliseconds per iter: 28.3109. Iters per second: 35.322
481
+ Time per operator type:
482
+ 29.1121 ms. 83.3081%. Conv
483
+ 4.14959 ms. 11.8746%. SpatialBN
484
+ 1.35823 ms. 3.88675%. Relu
485
+ 0.186188 ms. 0.532802%. FC
486
+ 0.116244 ms. 0.332647%. Add
487
+ 0.018641 ms. 0.0533437%. AveragePool
488
+ 0.0040904 ms. 0.0117052%. Squeeze
489
+ 34.9451 ms in Total
490
+ FLOP per operator type:
491
+ 0.626272 GFLOP. 96.2088%. Conv
492
+ 0.0218266 GFLOP. 3.35303%. SpatialBN
493
+ 0.002561 GFLOP. 0.393424%. FC
494
+ 0.000291648 GFLOP. 0.0448034%. Add
495
+ 0 GFLOP. 0%. Relu
496
+ 0.650951 GFLOP in Total
497
+ Feature Memory Read per operator type:
498
+ 34.4354 MB. 41.3788%. Conv
499
+ 22.1299 MB. 26.5921%. SpatialBN
500
+ 19.1923 MB. 23.0622%. Relu
501
+ 5.12912 MB. 6.16333%. FC
502
+ 2.33318 MB. 2.80364%. Add
503
+ 83.2199 MB in Total
504
+ Feature Memory Written per operator type:
505
+ 21.8266 MB. 34.0955%. Conv
506
+ 21.8266 MB. 34.0955%. SpatialBN
507
+ 19.1923 MB. 29.9805%. Relu
508
+ 1.16659 MB. 1.82234%. Add
509
+ 0.004 MB. 0.00624844%. FC
510
+ 64.016 MB in Total
511
+ Parameter Memory per operator type:
512
+ 12.2576 MB. 69.9104%. Conv
513
+ 5.124 MB. 29.2245%. FC
514
+ 0.15168 MB. 0.865099%. SpatialBN
515
+ 0 MB. 0%. Add
516
+ 0 MB. 0%. Relu
517
+ 17.5332 MB in Total
518
+ ```
519
+
520
+ ### Optimized
521
+ ```
522
+ Main run finished. Milliseconds per iter: 26.6364. Iters per second: 37.5426
523
+ Time per operator type:
524
+ 24.9888 ms. 94.0962%. Conv
525
+ 1.26147 ms. 4.75011%. Relu
526
+ 0.176234 ms. 0.663619%. FC
527
+ 0.113309 ms. 0.426672%. Add
528
+ 0.0138708 ms. 0.0522311%. AveragePool
529
+ 0.00295685 ms. 0.0111341%. Squeeze
530
+ 26.5566 ms in Total
531
+ FLOP per operator type:
532
+ 0.626272 GFLOP. 99.5466%. Conv
533
+ 0.002561 GFLOP. 0.407074%. FC
534
+ 0.000291648 GFLOP. 0.0463578%. Add
535
+ 0 GFLOP. 0%. Relu
536
+ 0.629124 GFLOP in Total
537
+ Feature Memory Read per operator type:
538
+ 34.5112 MB. 56.4224%. Conv
539
+ 19.1923 MB. 31.3775%. Relu
540
+ 5.12912 MB. 8.3856%. FC
541
+ 2.33318 MB. 3.81452%. Add
542
+ 61.1658 MB in Total
543
+ Feature Memory Written per operator type:
544
+ 21.8266 MB. 51.7346%. Conv
545
+ 19.1923 MB. 45.4908%. Relu
546
+ 1.16659 MB. 2.76513%. Add
547
+ 0.004 MB. 0.00948104%. FC
548
+ 42.1895 MB in Total
549
+ Parameter Memory per operator type:
550
+ 12.2576 MB. 70.5205%. Conv
551
+ 5.124 MB. 29.4795%. FC
552
+ 0 MB. 0%. Add
553
+ 0 MB. 0%. Relu
554
+ 17.3816 MB in Total
555
+ ```
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "{}"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2020 Ross Wightman
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/README.md ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # (Generic) EfficientNets for PyTorch
2
+
3
+ A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter efficient architectures derived from the MobileNet V1/V2 block sequence, including those found via automated neural architecture search.
4
+
5
+ All models are implemented by GenEfficientNet or MobileNetV3 classes, with string based architecture definitions to configure the block layouts (idea from [here](https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py))
6
+
7
+ ## What's New
8
+
9
+ ### Aug 19, 2020
10
+ * Add updated PyTorch trained EfficientNet-B3 weights trained by myself with `timm` (82.1 top-1)
11
+ * Add PyTorch trained EfficientNet-Lite0 contributed by [@hal-314](https://github.com/hal-314) (75.5 top-1)
12
+ * Update ONNX and Caffe2 export / utility scripts to work with latest PyTorch / ONNX
13
+ * ONNX runtime based validation script added
14
+ * activations (mostly) brought in sync with `timm` equivalents
15
+
16
+
17
+ ### April 5, 2020
18
+ * Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
19
+ * 3.5M param MobileNet-V2 100 @ 73%
20
+ * 4.5M param MobileNet-V2 110d @ 75%
21
+ * 6.1M param MobileNet-V2 140 @ 76.5%
22
+ * 5.8M param MobileNet-V2 120d @ 77.3%
23
+
24
+ ### March 23, 2020
25
+ * Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
26
+ * Add PyTorch trained MobileNet-V3 Large weights with 75.77% top-1
27
+ * IMPORTANT CHANGE (if training from scratch) - weight init changed to better match Tensorflow impl, set `fix_group_fanout=False` in `initialize_weight_goog` for old behavior
28
+
29
+ ### Feb 12, 2020
30
+ * Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
31
+ * Port new EfficientNet-B8 (RandAugment) weights from TF TPU, these are different than the B8 AdvProp, different input normalization.
32
+ * Add RandAugment PyTorch trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin)
33
+
34
+ ### Jan 22, 2020
35
+ * Update weights for EfficientNet B0, B2, B3 and MixNet-XL with latest RandAugment trained weights. Trained with (https://github.com/rwightman/pytorch-image-models)
36
+ * Fix torchscript compatibility for PyTorch 1.4, add torchscript support for MixedConv2d using ModuleDict
37
+ * Test models, torchscript, onnx export with PyTorch 1.4 -- no issues
38
+
39
+ ### Nov 22, 2019
40
+ * New top-1 high! Ported official TF EfficientNet AdvProp (https://arxiv.org/abs/1911.09665) weights and B8 model spec. Created a new set of `ap` models since they use a different
41
+ preprocessing (Inception mean/std) from the original EfficientNet base/AA/RA weights.
42
+
43
+ ### Nov 15, 2019
44
+ * Ported official TF MobileNet-V3 float32 large/small/minimalistic weights
45
+ * Modifications to MobileNet-V3 model and components to support some additional config needed for differences between TF MobileNet-V3 and mine
46
+
47
+ ### Oct 30, 2019
48
+ * Many of the models will now work with torch.jit.script, MixNet being the biggest exception
49
+ * Improved interface for enabling torchscript or ONNX export compatible modes (via config)
50
+ * Add JIT optimized mem-efficient Swish/Mish autograd.fn in addition to memory-efficient autgrad.fn
51
+ * Activation factory to select best version of activation by name or override one globally
52
+ * Add pretrained checkpoint load helper that handles input conv and classifier changes
53
+
54
+ ### Oct 27, 2019
55
+ * Add CondConv EfficientNet variants ported from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv
56
+ * Add RandAug weights for TF EfficientNet B5 and B7 from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
57
+ * Bring over MixNet-XL model and depth scaling algo from my pytorch-image-models code base
58
+ * Switch activations and global pooling to modules
59
+ * Add memory-efficient Swish/Mish impl
60
+ * Add as_sequential() method to all models and allow as an argument in entrypoint fns
61
+ * Move MobileNetV3 into own file since it has a different head
62
+ * Remove ChamNet, MobileNet V2/V1 since they will likely never be used here
63
+
64
+ ## Models
65
+
66
+ Implemented models include:
67
+ * EfficientNet NoisyStudent (B0-B7, L2) (https://arxiv.org/abs/1911.04252)
68
+ * EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665)
69
+ * EfficientNet (B0-B8) (https://arxiv.org/abs/1905.11946)
70
+ * EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html)
71
+ * EfficientNet-CondConv (https://arxiv.org/abs/1904.04971)
72
+ * EfficientNet-Lite (https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
73
+ * MixNet (https://arxiv.org/abs/1907.09595)
74
+ * MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626)
75
+ * MobileNet-V3 (https://arxiv.org/abs/1905.02244)
76
+ * FBNet-C (https://arxiv.org/abs/1812.03443)
77
+ * Single-Path NAS (https://arxiv.org/abs/1904.02877)
78
+
79
+ I originally implemented and trained some these models with code [here](https://github.com/rwightman/pytorch-image-models), this repository contains just the GenEfficientNet models, validation, and associated ONNX/Caffe2 export code.
80
+
81
+ ## Pretrained
82
+
83
+ I've managed to train several of the models to accuracies close to or above the originating papers and official impl. My training code is here: https://github.com/rwightman/pytorch-image-models
84
+
85
+
86
+ |Model | Prec@1 (Err) | Prec@5 (Err) | Param#(M) | MAdds(M) | Image Scaling | Resolution | Crop |
87
+ |---|---|---|---|---|---|---|---|
88
+ | efficientnet_b3 | 82.240 (17.760) | 96.116 (3.884) | 12.23 | TBD | bicubic | 320 | 1.0 |
89
+ | efficientnet_b3 | 82.076 (17.924) | 96.020 (3.980) | 12.23 | TBD | bicubic | 300 | 0.904 |
90
+ | mixnet_xl | 81.074 (18.926) | 95.282 (4.718) | 11.90 | TBD | bicubic | 256 | 1.0 |
91
+ | efficientnet_b2 | 80.612 (19.388) | 95.318 (4.682) | 9.1 | TBD | bicubic | 288 | 1.0 |
92
+ | mixnet_xl | 80.476 (19.524) | 94.936 (5.064) | 11.90 | TBD | bicubic | 224 | 0.875 |
93
+ | efficientnet_b2 | 80.288 (19.712) | 95.166 (4.834) | 9.1 | 1003 | bicubic | 260 | 0.890 |
94
+ | mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33 | TBD | bicubic | 224 | 0.875 |
95
+ | efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.8 | 694 | bicubic | 240 | 0.882 |
96
+ | efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44 | TBD | bicubic | 224 | 0.875 |
97
+ | efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.3 | 390 | bicubic | 224 | 0.875 |
98
+ | mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8 | TBD | bicubic | 224 | 0.875 |
99
+ | mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01 | 353 | bicubic | 224 | 0.875 |
100
+ | mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1 | TBD | bicubic | 224 | 0.875 |
101
+ | mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13 | TBD | bicubic | 224 | 0.875 |
102
+ | mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5 | TBD | bicubic | 224 | 0.875 |
103
+ | mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5 | 219 | bicubic | 224 | 0.875 |
104
+ | efficientnet_lite0 | 75.472 (24.528) | 92.520 (7.480) | 4.65 | TBD | bicubic | 224 | 0.875 |
105
+ | mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.9 | 312 | bicubic | 224 | 0.875 |
106
+ | fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6 | 385 | bilinear | 224 | 0.875 |
107
+ | mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5 | TBD | bicubic | 224 | 0.875 |
108
+ | mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.4 | 315 | bicubic | 224 | 0.875 |
109
+ | spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.4 | TBD | bilinear | 224 | 0.875 |
110
+ | mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5 | TBD | bicubic | 224 | 0.875 |
111
+
112
+
113
+ More pretrained models to come...
114
+
115
+
116
+ ## Ported Weights
117
+
118
+ The weights ported from Tensorflow checkpoints for the EfficientNet models do pretty much match accuracy in Tensorflow once a SAME convolution padding equivalent is added, and the same crop factors, image scaling, etc (see table) are used via cmd line args.
119
+
120
+ **IMPORTANT:**
121
+ * Tensorflow ported weights for EfficientNet AdvProp (AP), EfficientNet EdgeTPU, EfficientNet-CondConv, EfficientNet-Lite, and MobileNet-V3 models use Inception style (0.5, 0.5, 0.5) for mean and std.
122
+ * Enabling the Tensorflow preprocessing pipeline with `--tf-preprocessing` at validation time will improve scores by 0.1-0.5%, very close to original TF impl.
123
+
124
+ To run validation for tf_efficientnet_b5:
125
+ `python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --crop-pct 0.934 --interpolation bicubic`
126
+
127
+ To run validation w/ TF preprocessing for tf_efficientnet_b5:
128
+ `python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --tf-preprocessing`
129
+
130
+ To run validation for a model with Inception preprocessing, ie EfficientNet-B8 AdvProp:
131
+ `python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b8_ap -b 48 --num-gpu 2 --img-size 672 --crop-pct 0.954 --mean 0.5 --std 0.5`
132
+
133
+ |Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size | Crop |
134
+ |---|---|---|---|---|---|---|
135
+ | tf_efficientnet_l2_ns *tfp | 88.352 (11.648) | 98.652 (1.348) | 480 | bicubic | 800 | N/A |
136
+ | tf_efficientnet_l2_ns | TBD | TBD | 480 | bicubic | 800 | 0.961 |
137
+ | tf_efficientnet_l2_ns_475 | 88.234 (11.766) | 98.546 (1.454) | 480 | bicubic | 475 | 0.936 |
138
+ | tf_efficientnet_l2_ns_475 *tfp | 88.172 (11.828) | 98.566 (1.434) | 480 | bicubic | 475 | N/A |
139
+ | tf_efficientnet_b7_ns *tfp | 86.844 (13.156) | 98.084 (1.916) | 66.35 | bicubic | 600 | N/A |
140
+ | tf_efficientnet_b7_ns | 86.840 (13.160) | 98.094 (1.906) | 66.35 | bicubic | 600 | N/A |
141
+ | tf_efficientnet_b6_ns | 86.452 (13.548) | 97.882 (2.118) | 43.04 | bicubic | 528 | N/A |
142
+ | tf_efficientnet_b6_ns *tfp | 86.444 (13.556) | 97.880 (2.120) | 43.04 | bicubic | 528 | N/A |
143
+ | tf_efficientnet_b5_ns *tfp | 86.064 (13.936) | 97.746 (2.254) | 30.39 | bicubic | 456 | N/A |
144
+ | tf_efficientnet_b5_ns | 86.088 (13.912) | 97.752 (2.248) | 30.39 | bicubic | 456 | N/A |
145
+ | tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 | N/A |
146
+ | tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 | N/A |
147
+ | tf_efficientnet_b8 | 85.370 (14.630) | 97.390 (2.610) | 87.4 | bicubic | 672 | 0.954 |
148
+ | tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 | 0.954 |
149
+ | tf_efficientnet_b4_ns *tfp | 85.298 (14.702) | 97.504 (2.496) | 19.34 | bicubic | 380 | N/A |
150
+ | tf_efficientnet_b4_ns | 85.162 (14.838) | 97.470 (2.530) | 19.34 | bicubic | 380 | 0.922 |
151
+ | tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 | N/A |
152
+ | tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 | 0.949 |
153
+ | tf_efficientnet_b7 *tfp | 84.940 (15.060) | 97.214 (2.786) | 66.35 | bicubic | 600 | N/A |
154
+ | tf_efficientnet_b7 | 84.932 (15.068) | 97.208 (2.792) | 66.35 | bicubic | 600 | 0.949 |
155
+ | tf_efficientnet_b6_ap | 84.786 (15.214) | 97.138 (2.862) | 43.04 | bicubic | 528 | 0.942 |
156
+ | tf_efficientnet_b6_ap *tfp | 84.760 (15.240) | 97.124 (2.876) | 43.04 | bicubic | 528 | N/A |
157
+ | tf_efficientnet_b5_ap *tfp | 84.276 (15.724) | 96.932 (3.068) | 30.39 | bicubic | 456 | N/A |
158
+ | tf_efficientnet_b5_ap | 84.254 (15.746) | 96.976 (3.024) | 30.39 | bicubic | 456 | 0.934 |
159
+ | tf_efficientnet_b6 *tfp | 84.140 (15.860) | 96.852 (3.148) | 43.04 | bicubic | 528 | N/A |
160
+ | tf_efficientnet_b6 | 84.110 (15.890) | 96.886 (3.114) | 43.04 | bicubic | 528 | 0.942 |
161
+ | tf_efficientnet_b3_ns *tfp | 84.054 (15.946) | 96.918 (3.082) | 12.23 | bicubic | 300 | N/A |
162
+ | tf_efficientnet_b3_ns | 84.048 (15.952) | 96.910 (3.090) | 12.23 | bicubic | 300 | .904 |
163
+ | tf_efficientnet_b5 *tfp | 83.822 (16.178) | 96.756 (3.244) | 30.39 | bicubic | 456 | N/A |
164
+ | tf_efficientnet_b5 | 83.812 (16.188) | 96.748 (3.252) | 30.39 | bicubic | 456 | 0.934 |
165
+ | tf_efficientnet_b4_ap *tfp | 83.278 (16.722) | 96.376 (3.624) | 19.34 | bicubic | 380 | N/A |
166
+ | tf_efficientnet_b4_ap | 83.248 (16.752) | 96.388 (3.612) | 19.34 | bicubic | 380 | 0.922 |
167
+ | tf_efficientnet_b4 | 83.022 (16.978) | 96.300 (3.700) | 19.34 | bicubic | 380 | 0.922 |
168
+ | tf_efficientnet_b4 *tfp | 82.948 (17.052) | 96.308 (3.692) | 19.34 | bicubic | 380 | N/A |
169
+ | tf_efficientnet_b2_ns *tfp | 82.436 (17.564) | 96.268 (3.732) | 9.11 | bicubic | 260 | N/A |
170
+ | tf_efficientnet_b2_ns | 82.380 (17.620) | 96.248 (3.752) | 9.11 | bicubic | 260 | 0.89 |
171
+ | tf_efficientnet_b3_ap *tfp | 81.882 (18.118) | 95.662 (4.338) | 12.23 | bicubic | 300 | N/A |
172
+ | tf_efficientnet_b3_ap | 81.828 (18.172) | 95.624 (4.376) | 12.23 | bicubic | 300 | 0.904 |
173
+ | tf_efficientnet_b3 | 81.636 (18.364) | 95.718 (4.282) | 12.23 | bicubic | 300 | 0.904 |
174
+ | tf_efficientnet_b3 *tfp | 81.576 (18.424) | 95.662 (4.338) | 12.23 | bicubic | 300 | N/A |
175
+ | tf_efficientnet_lite4 | 81.528 (18.472) | 95.668 (4.332) | 13.00 | bilinear | 380 | 0.92 |
176
+ | tf_efficientnet_b1_ns *tfp | 81.514 (18.486) | 95.776 (4.224) | 7.79 | bicubic | 240 | N/A |
177
+ | tf_efficientnet_lite4 *tfp | 81.502 (18.498) | 95.676 (4.324) | 13.00 | bilinear | 380 | N/A |
178
+ | tf_efficientnet_b1_ns | 81.388 (18.612) | 95.738 (4.262) | 7.79 | bicubic | 240 | 0.88 |
179
+ | tf_efficientnet_el | 80.534 (19.466) | 95.190 (4.810) | 10.59 | bicubic | 300 | 0.904 |
180
+ | tf_efficientnet_el *tfp | 80.476 (19.524) | 95.200 (4.800) | 10.59 | bicubic | 300 | N/A |
181
+ | tf_efficientnet_b2_ap *tfp | 80.420 (19.580) | 95.040 (4.960) | 9.11 | bicubic | 260 | N/A |
182
+ | tf_efficientnet_b2_ap | 80.306 (19.694) | 95.028 (4.972) | 9.11 | bicubic | 260 | 0.890 |
183
+ | tf_efficientnet_b2 *tfp | 80.188 (19.812) | 94.974 (5.026) | 9.11 | bicubic | 260 | N/A |
184
+ | tf_efficientnet_b2 | 80.086 (19.914) | 94.908 (5.092) | 9.11 | bicubic | 260 | 0.890 |
185
+ | tf_efficientnet_lite3 | 79.812 (20.188) | 94.914 (5.086) | 8.20 | bilinear | 300 | 0.904 |
186
+ | tf_efficientnet_lite3 *tfp | 79.734 (20.266) | 94.838 (5.162) | 8.20 | bilinear | 300 | N/A |
187
+ | tf_efficientnet_b1_ap *tfp | 79.532 (20.468) | 94.378 (5.622) | 7.79 | bicubic | 240 | N/A |
188
+ | tf_efficientnet_cc_b1_8e *tfp | 79.464 (20.536)| 94.492 (5.508) | 39.7 | bicubic | 240 | 0.88 |
189
+ | tf_efficientnet_cc_b1_8e | 79.298 (20.702) | 94.364 (5.636) | 39.7 | bicubic | 240 | 0.88 |
190
+ | tf_efficientnet_b1_ap | 79.278 (20.722) | 94.308 (5.692) | 7.79 | bicubic | 240 | 0.88 |
191
+ | tf_efficientnet_b1 *tfp | 79.172 (20.828) | 94.450 (5.550) | 7.79 | bicubic | 240 | N/A |
192
+ | tf_efficientnet_em *tfp | 78.958 (21.042) | 94.458 (5.542) | 6.90 | bicubic | 240 | N/A |
193
+ | tf_efficientnet_b0_ns *tfp | 78.806 (21.194) | 94.496 (5.504) | 5.29 | bicubic | 224 | N/A |
194
+ | tf_mixnet_l *tfp | 78.846 (21.154) | 94.212 (5.788) | 7.33 | bilinear | 224 | N/A |
195
+ | tf_efficientnet_b1 | 78.826 (21.174) | 94.198 (5.802) | 7.79 | bicubic | 240 | 0.88 |
196
+ | tf_mixnet_l | 78.770 (21.230) | 94.004 (5.996) | 7.33 | bicubic | 224 | 0.875 |
197
+ | tf_efficientnet_em | 78.742 (21.258) | 94.332 (5.668) | 6.90 | bicubic | 240 | 0.875 |
198
+ | tf_efficientnet_b0_ns | 78.658 (21.342) | 94.376 (5.624) | 5.29 | bicubic | 224 | 0.875 |
199
+ | tf_efficientnet_cc_b0_8e *tfp | 78.314 (21.686) | 93.790 (6.210) | 24.0 | bicubic | 224 | 0.875 |
200
+ | tf_efficientnet_cc_b0_8e | 77.908 (22.092) | 93.656 (6.344) | 24.0 | bicubic | 224 | 0.875 |
201
+ | tf_efficientnet_cc_b0_4e *tfp | 77.746 (22.254) | 93.552 (6.448) | 13.3 | bicubic | 224 | 0.875 |
202
+ | tf_efficientnet_cc_b0_4e | 77.304 (22.696) | 93.332 (6.668) | 13.3 | bicubic | 224 | 0.875 |
203
+ | tf_efficientnet_es *tfp | 77.616 (22.384) | 93.750 (6.250) | 5.44 | bicubic | 224 | N/A |
204
+ | tf_efficientnet_lite2 *tfp | 77.544 (22.456) | 93.800 (6.200) | 6.09 | bilinear | 260 | N/A |
205
+ | tf_efficientnet_lite2 | 77.460 (22.540) | 93.746 (6.254) | 6.09 | bicubic | 260 | 0.89 |
206
+ | tf_efficientnet_b0_ap *tfp | 77.514 (22.486) | 93.576 (6.424) | 5.29 | bicubic | 224 | N/A |
207
+ | tf_efficientnet_es | 77.264 (22.736) | 93.600 (6.400) | 5.44 | bicubic | 224 | N/A |
208
+ | tf_efficientnet_b0 *tfp | 77.258 (22.742) | 93.478 (6.522) | 5.29 | bicubic | 224 | N/A |
209
+ | tf_efficientnet_b0_ap | 77.084 (22.916) | 93.254 (6.746) | 5.29 | bicubic | 224 | 0.875 |
210
+ | tf_mixnet_m *tfp | 77.072 (22.928) | 93.368 (6.632) | 5.01 | bilinear | 224 | N/A |
211
+ | tf_mixnet_m | 76.950 (23.050) | 93.156 (6.844) | 5.01 | bicubic | 224 | 0.875 |
212
+ | tf_efficientnet_b0 | 76.848 (23.152) | 93.228 (6.772) | 5.29 | bicubic | 224 | 0.875 |
213
+ | tf_efficientnet_lite1 *tfp | 76.764 (23.236) | 93.326 (6.674) | 5.42 | bilinear | 240 | N/A |
214
+ | tf_efficientnet_lite1 | 76.638 (23.362) | 93.232 (6.768) | 5.42 | bicubic | 240 | 0.882 |
215
+ | tf_mixnet_s *tfp | 75.800 (24.200) | 92.788 (7.212) | 4.13 | bilinear | 224 | N/A |
216
+ | tf_mobilenetv3_large_100 *tfp | 75.768 (24.232) | 92.710 (7.290) | 5.48 | bilinear | 224 | N/A |
217
+ | tf_mixnet_s | 75.648 (24.352) | 92.636 (7.364) | 4.13 | bicubic | 224 | 0.875 |
218
+ | tf_mobilenetv3_large_100 | 75.516 (24.484) | 92.600 (7.400) | 5.48 | bilinear | 224 | 0.875 |
219
+ | tf_efficientnet_lite0 *tfp | 75.074 (24.926) | 92.314 (7.686) | 4.65 | bilinear | 224 | N/A |
220
+ | tf_efficientnet_lite0 | 74.842 (25.158) | 92.170 (7.830) | 4.65 | bicubic | 224 | 0.875 |
221
+ | tf_mobilenetv3_large_075 *tfp | 73.730 (26.270) | 91.616 (8.384) | 3.99 | bilinear | 224 |N/A |
222
+ | tf_mobilenetv3_large_075 | 73.442 (26.558) | 91.352 (8.648) | 3.99 | bilinear | 224 | 0.875 |
223
+ | tf_mobilenetv3_large_minimal_100 *tfp | 72.678 (27.322) | 90.860 (9.140) | 3.92 | bilinear | 224 | N/A |
224
+ | tf_mobilenetv3_large_minimal_100 | 72.244 (27.756) | 90.636 (9.364) | 3.92 | bilinear | 224 | 0.875 |
225
+ | tf_mobilenetv3_small_100 *tfp | 67.918 (32.082) | 87.958 (12.042 | 2.54 | bilinear | 224 | N/A |
226
+ | tf_mobilenetv3_small_100 | 67.918 (32.082) | 87.662 (12.338) | 2.54 | bilinear | 224 | 0.875 |
227
+ | tf_mobilenetv3_small_075 *tfp | 66.142 (33.858) | 86.498 (13.502) | 2.04 | bilinear | 224 | N/A |
228
+ | tf_mobilenetv3_small_075 | 65.718 (34.282) | 86.136 (13.864) | 2.04 | bilinear | 224 | 0.875 |
229
+ | tf_mobilenetv3_small_minimal_100 *tfp | 63.378 (36.622) | 84.802 (15.198) | 2.04 | bilinear | 224 | N/A |
230
+ | tf_mobilenetv3_small_minimal_100 | 62.898 (37.102) | 84.230 (15.770) | 2.04 | bilinear | 224 | 0.875 |
231
+
232
+
233
+ *tfp models validated with `tf-preprocessing` pipeline
234
+
235
+ Google tf and tflite weights ported from official Tensorflow repositories
236
+ * https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
237
+ * https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
238
+ * https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
239
+
240
+ ## Usage
241
+
242
+ ### Environment
243
+
244
+ All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x, 3.7.x, 3.8.x.
245
+
246
+ Users have reported that a Python 3 Anaconda install in Windows works. I have not verified this myself.
247
+
248
+ PyTorch versions 1.4, 1.5, 1.6 have been tested with this code.
249
+
250
+ I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:
251
+ ```
252
+ conda create -n torch-env
253
+ conda activate torch-env
254
+ conda install -c pytorch pytorch torchvision cudatoolkit=10.2
255
+ ```
256
+
257
+ ### PyTorch Hub
258
+
259
+ Models can be accessed via the PyTorch Hub API
260
+
261
+ ```
262
+ >>> torch.hub.list('rwightman/gen-efficientnet-pytorch')
263
+ ['efficientnet_b0', ...]
264
+ >>> model = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b0', pretrained=True)
265
+ >>> model.eval()
266
+ >>> output = model(torch.randn(1,3,224,224))
267
+ ```
268
+
269
+ ### Pip
270
+ This package can be installed via pip.
271
+
272
+ Install (after conda env/install):
273
+ ```
274
+ pip install geffnet
275
+ ```
276
+
277
+ Eval use:
278
+ ```
279
+ >>> import geffnet
280
+ >>> m = geffnet.create_model('mobilenetv3_large_100', pretrained=True)
281
+ >>> m.eval()
282
+ ```
283
+
284
+ Train use:
285
+ ```
286
+ >>> import geffnet
287
+ >>> # models can also be created by using the entrypoint directly
288
+ >>> m = geffnet.efficientnet_b2(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2)
289
+ >>> m.train()
290
+ ```
291
+
292
+ Create in a nn.Sequential container, for fast.ai, etc:
293
+ ```
294
+ >>> import geffnet
295
+ >>> m = geffnet.mixnet_l(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2, as_sequential=True)
296
+ ```
297
+
298
+ ### Exporting
299
+
300
+ Scripts are included to
301
+ * export models to ONNX (`onnx_export.py`)
302
+ * optimized ONNX graph (`onnx_optimize.py` or `onnx_validate.py` w/ `--onnx-output-opt` arg)
303
+ * validate with ONNX runtime (`onnx_validate.py`)
304
+ * convert ONNX model to Caffe2 (`onnx_to_caffe.py`)
305
+ * validate in Caffe2 (`caffe2_validate.py`)
306
+ * benchmark in Caffe2 w/ FLOPs, parameters output (`caffe2_benchmark.py`)
307
+
308
+ As an example, to export the MobileNet-V3 pretrained model and then run an Imagenet validation:
309
+ ```
310
+ python onnx_export.py --model mobilenetv3_large_100 ./mobilenetv3_100.onnx
311
+ python onnx_validate.py /imagenet/validation/ --onnx-input ./mobilenetv3_100.onnx
312
+ ```
313
+
314
+ These scripts were tested to be working as of PyTorch 1.6 and ONNX 1.7 w/ ONNX runtime 1.4. Caffe2 compatible
315
+ export now requires additional args mentioned in the export script (not needed in earlier versions).
316
+
317
+ #### Export Notes
318
+ 1. The TF ported weights with the 'SAME' conv padding activated cannot be exported to ONNX unless `_EXPORTABLE` flag in `config.py` is set to True. Use `config.set_exportable(True)` as in the `onnx_export.py` script.
319
+ 2. TF ported models with 'SAME' padding will have the padding fixed at export time to the resolution used for export. Even though dynamic padding is supported in opset >= 11, I can't get it working.
320
+ 3. ONNX optimize facility doesn't work reliably in PyTorch 1.6 / ONNX 1.7. Fortunately, the onnxruntime based inference is working very well now and includes on the fly optimization.
321
+ 3. ONNX / Caffe2 export/import frequently breaks with different PyTorch and ONNX version releases. Please check their respective issue trackers before filing issues here.
322
+
323
+
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/caffe2_benchmark.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Caffe2 validation script
2
+
3
+ This script runs Caffe2 benchmark on exported ONNX model.
4
+ It is a useful tool for reporting model FLOPS.
5
+
6
+ Copyright 2020 Ross Wightman
7
+ """
8
+ import argparse
9
+ from caffe2.python import core, workspace, model_helper
10
+ from caffe2.proto import caffe2_pb2
11
+
12
+
13
+ parser = argparse.ArgumentParser(description='Caffe2 Model Benchmark')
14
+ parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
15
+ help='caffe2 model pb name prefix')
16
+ parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
17
+ help='caffe2 model init .pb')
18
+ parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
19
+ help='caffe2 model predict .pb')
20
+ parser.add_argument('-b', '--batch-size', default=1, type=int,
21
+ metavar='N', help='mini-batch size (default: 1)')
22
+ parser.add_argument('--img-size', default=224, type=int,
23
+ metavar='N', help='Input image dimension, uses model default if empty')
24
+
25
+
26
+ def main():
27
+ args = parser.parse_args()
28
+ args.gpu_id = 0
29
+ if args.c2_prefix:
30
+ args.c2_init = args.c2_prefix + '.init.pb'
31
+ args.c2_predict = args.c2_prefix + '.predict.pb'
32
+
33
+ model = model_helper.ModelHelper(name="le_net", init_params=False)
34
+
35
+ # Bring in the init net from init_net.pb
36
+ init_net_proto = caffe2_pb2.NetDef()
37
+ with open(args.c2_init, "rb") as f:
38
+ init_net_proto.ParseFromString(f.read())
39
+ model.param_init_net = core.Net(init_net_proto)
40
+
41
+ # bring in the predict net from predict_net.pb
42
+ predict_net_proto = caffe2_pb2.NetDef()
43
+ with open(args.c2_predict, "rb") as f:
44
+ predict_net_proto.ParseFromString(f.read())
45
+ model.net = core.Net(predict_net_proto)
46
+
47
+ # CUDA performance not impressive
48
+ #device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
49
+ #model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
50
+ #model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
51
+
52
+ input_blob = model.net.external_inputs[0]
53
+ model.param_init_net.GaussianFill(
54
+ [],
55
+ input_blob.GetUnscopedName(),
56
+ shape=(args.batch_size, 3, args.img_size, args.img_size),
57
+ mean=0.0,
58
+ std=1.0)
59
+ workspace.RunNetOnce(model.param_init_net)
60
+ workspace.CreateNet(model.net, overwrite=True)
61
+ workspace.BenchmarkNet(model.net.Proto().name, 5, 20, True)
62
+
63
+
64
+ if __name__ == '__main__':
65
+ main()
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/caffe2_validate.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Caffe2 validation script
2
+
3
+ This script is created to verify exported ONNX models running in Caffe2
4
+ It utilizes the same PyTorch dataloader/processing pipeline for a
5
+ fair comparison against the originals.
6
+
7
+ Copyright 2020 Ross Wightman
8
+ """
9
+ import argparse
10
+ import numpy as np
11
+ from caffe2.python import core, workspace, model_helper
12
+ from caffe2.proto import caffe2_pb2
13
+ from data import create_loader, resolve_data_config, Dataset
14
+ from utils import AverageMeter
15
+ import time
16
+
17
+ parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation')
18
+ parser.add_argument('data', metavar='DIR',
19
+ help='path to dataset')
20
+ parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
21
+ help='caffe2 model pb name prefix')
22
+ parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
23
+ help='caffe2 model init .pb')
24
+ parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
25
+ help='caffe2 model predict .pb')
26
+ parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
27
+ help='number of data loading workers (default: 2)')
28
+ parser.add_argument('-b', '--batch-size', default=256, type=int,
29
+ metavar='N', help='mini-batch size (default: 256)')
30
+ parser.add_argument('--img-size', default=None, type=int,
31
+ metavar='N', help='Input image dimension, uses model default if empty')
32
+ parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
33
+ help='Override mean pixel value of dataset')
34
+ parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
35
+ help='Override std deviation of of dataset')
36
+ parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT',
37
+ help='Override default crop pct of 0.875')
38
+ parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
39
+ help='Image resize interpolation type (overrides model)')
40
+ parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
41
+ help='use tensorflow mnasnet preporcessing')
42
+ parser.add_argument('--print-freq', '-p', default=10, type=int,
43
+ metavar='N', help='print frequency (default: 10)')
44
+
45
+
46
+ def main():
47
+ args = parser.parse_args()
48
+ args.gpu_id = 0
49
+ if args.c2_prefix:
50
+ args.c2_init = args.c2_prefix + '.init.pb'
51
+ args.c2_predict = args.c2_prefix + '.predict.pb'
52
+
53
+ model = model_helper.ModelHelper(name="validation_net", init_params=False)
54
+
55
+ # Bring in the init net from init_net.pb
56
+ init_net_proto = caffe2_pb2.NetDef()
57
+ with open(args.c2_init, "rb") as f:
58
+ init_net_proto.ParseFromString(f.read())
59
+ model.param_init_net = core.Net(init_net_proto)
60
+
61
+ # bring in the predict net from predict_net.pb
62
+ predict_net_proto = caffe2_pb2.NetDef()
63
+ with open(args.c2_predict, "rb") as f:
64
+ predict_net_proto.ParseFromString(f.read())
65
+ model.net = core.Net(predict_net_proto)
66
+
67
+ data_config = resolve_data_config(None, args)
68
+ loader = create_loader(
69
+ Dataset(args.data, load_bytes=args.tf_preprocessing),
70
+ input_size=data_config['input_size'],
71
+ batch_size=args.batch_size,
72
+ use_prefetcher=False,
73
+ interpolation=data_config['interpolation'],
74
+ mean=data_config['mean'],
75
+ std=data_config['std'],
76
+ num_workers=args.workers,
77
+ crop_pct=data_config['crop_pct'],
78
+ tensorflow_preprocessing=args.tf_preprocessing)
79
+
80
+ # this is so obvious, wonderful interface </sarcasm>
81
+ input_blob = model.net.external_inputs[0]
82
+ output_blob = model.net.external_outputs[0]
83
+
84
+ if True:
85
+ device_opts = None
86
+ else:
87
+ # CUDA is crashing, no idea why, awesome error message, give it a try for kicks
88
+ device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
89
+ model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
90
+ model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
91
+
92
+ model.param_init_net.GaussianFill(
93
+ [], input_blob.GetUnscopedName(),
94
+ shape=(1,) + data_config['input_size'], mean=0.0, std=1.0)
95
+ workspace.RunNetOnce(model.param_init_net)
96
+ workspace.CreateNet(model.net, overwrite=True)
97
+
98
+ batch_time = AverageMeter()
99
+ top1 = AverageMeter()
100
+ top5 = AverageMeter()
101
+ end = time.time()
102
+ for i, (input, target) in enumerate(loader):
103
+ # run the net and return prediction
104
+ caffe2_in = input.data.numpy()
105
+ workspace.FeedBlob(input_blob, caffe2_in, device_opts)
106
+ workspace.RunNet(model.net, num_iter=1)
107
+ output = workspace.FetchBlob(output_blob)
108
+
109
+ # measure accuracy and record loss
110
+ prec1, prec5 = accuracy_np(output.data, target.numpy())
111
+ top1.update(prec1.item(), input.size(0))
112
+ top5.update(prec5.item(), input.size(0))
113
+
114
+ # measure elapsed time
115
+ batch_time.update(time.time() - end)
116
+ end = time.time()
117
+
118
+ if i % args.print_freq == 0:
119
+ print('Test: [{0}/{1}]\t'
120
+ 'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t'
121
+ 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
122
+ 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
123
+ i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg,
124
+ ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5))
125
+
126
+ print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
127
+ top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
128
+
129
+
130
+ def accuracy_np(output, target):
131
+ max_indices = np.argsort(output, axis=1)[:, ::-1]
132
+ top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean()
133
+ top1 = 100 * np.equal(max_indices[:, 0], target).mean()
134
+ return top1, top5
135
+
136
+
137
+ if __name__ == '__main__':
138
+ main()
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .gen_efficientnet import *
2
+ from .mobilenetv3 import *
3
+ from .model_factory import create_model
4
+ from .config import is_exportable, is_scriptable, set_exportable, set_scriptable
5
+ from .activations import *
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/__init__.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from geffnet import config
2
+ from geffnet.activations.activations_me import *
3
+ from geffnet.activations.activations_jit import *
4
+ from geffnet.activations.activations import *
5
+ import torch
6
+
7
+ _has_silu = 'silu' in dir(torch.nn.functional)
8
+
9
+ _ACT_FN_DEFAULT = dict(
10
+ silu=F.silu if _has_silu else swish,
11
+ swish=F.silu if _has_silu else swish,
12
+ mish=mish,
13
+ relu=F.relu,
14
+ relu6=F.relu6,
15
+ sigmoid=sigmoid,
16
+ tanh=tanh,
17
+ hard_sigmoid=hard_sigmoid,
18
+ hard_swish=hard_swish,
19
+ )
20
+
21
+ _ACT_FN_JIT = dict(
22
+ silu=F.silu if _has_silu else swish_jit,
23
+ swish=F.silu if _has_silu else swish_jit,
24
+ mish=mish_jit,
25
+ )
26
+
27
+ _ACT_FN_ME = dict(
28
+ silu=F.silu if _has_silu else swish_me,
29
+ swish=F.silu if _has_silu else swish_me,
30
+ mish=mish_me,
31
+ hard_swish=hard_swish_me,
32
+ hard_sigmoid_jit=hard_sigmoid_me,
33
+ )
34
+
35
+ _ACT_LAYER_DEFAULT = dict(
36
+ silu=nn.SiLU if _has_silu else Swish,
37
+ swish=nn.SiLU if _has_silu else Swish,
38
+ mish=Mish,
39
+ relu=nn.ReLU,
40
+ relu6=nn.ReLU6,
41
+ sigmoid=Sigmoid,
42
+ tanh=Tanh,
43
+ hard_sigmoid=HardSigmoid,
44
+ hard_swish=HardSwish,
45
+ )
46
+
47
+ _ACT_LAYER_JIT = dict(
48
+ silu=nn.SiLU if _has_silu else SwishJit,
49
+ swish=nn.SiLU if _has_silu else SwishJit,
50
+ mish=MishJit,
51
+ )
52
+
53
+ _ACT_LAYER_ME = dict(
54
+ silu=nn.SiLU if _has_silu else SwishMe,
55
+ swish=nn.SiLU if _has_silu else SwishMe,
56
+ mish=MishMe,
57
+ hard_swish=HardSwishMe,
58
+ hard_sigmoid=HardSigmoidMe
59
+ )
60
+
61
+ _OVERRIDE_FN = dict()
62
+ _OVERRIDE_LAYER = dict()
63
+
64
+
65
+ def add_override_act_fn(name, fn):
66
+ global _OVERRIDE_FN
67
+ _OVERRIDE_FN[name] = fn
68
+
69
+
70
+ def update_override_act_fn(overrides):
71
+ assert isinstance(overrides, dict)
72
+ global _OVERRIDE_FN
73
+ _OVERRIDE_FN.update(overrides)
74
+
75
+
76
+ def clear_override_act_fn():
77
+ global _OVERRIDE_FN
78
+ _OVERRIDE_FN = dict()
79
+
80
+
81
+ def add_override_act_layer(name, fn):
82
+ _OVERRIDE_LAYER[name] = fn
83
+
84
+
85
+ def update_override_act_layer(overrides):
86
+ assert isinstance(overrides, dict)
87
+ global _OVERRIDE_LAYER
88
+ _OVERRIDE_LAYER.update(overrides)
89
+
90
+
91
+ def clear_override_act_layer():
92
+ global _OVERRIDE_LAYER
93
+ _OVERRIDE_LAYER = dict()
94
+
95
+
96
+ def get_act_fn(name='relu'):
97
+ """ Activation Function Factory
98
+ Fetching activation fns by name with this function allows export or torch script friendly
99
+ functions to be returned dynamically based on current config.
100
+ """
101
+ if name in _OVERRIDE_FN:
102
+ return _OVERRIDE_FN[name]
103
+ use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
104
+ if use_me and name in _ACT_FN_ME:
105
+ # If not exporting or scripting the model, first look for a memory optimized version
106
+ # activation with custom autograd, then fallback to jit scripted, then a Python or Torch builtin
107
+ return _ACT_FN_ME[name]
108
+ if config.is_exportable() and name in ('silu', 'swish'):
109
+ # FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
110
+ return swish
111
+ use_jit = not (config.is_exportable() or config.is_no_jit())
112
+ # NOTE: export tracing should work with jit scripted components, but I keep running into issues
113
+ if use_jit and name in _ACT_FN_JIT: # jit scripted models should be okay for export/scripting
114
+ return _ACT_FN_JIT[name]
115
+ return _ACT_FN_DEFAULT[name]
116
+
117
+
118
+ def get_act_layer(name='relu'):
119
+ """ Activation Layer Factory
120
+ Fetching activation layers by name with this function allows export or torch script friendly
121
+ functions to be returned dynamically based on current config.
122
+ """
123
+ if name in _OVERRIDE_LAYER:
124
+ return _OVERRIDE_LAYER[name]
125
+ use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
126
+ if use_me and name in _ACT_LAYER_ME:
127
+ return _ACT_LAYER_ME[name]
128
+ if config.is_exportable() and name in ('silu', 'swish'):
129
+ # FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
130
+ return Swish
131
+ use_jit = not (config.is_exportable() or config.is_no_jit())
132
+ # NOTE: export tracing should work with jit scripted components, but I keep running into issues
133
+ if use_jit and name in _ACT_FN_JIT: # jit scripted models should be okay for export/scripting
134
+ return _ACT_LAYER_JIT[name]
135
+ return _ACT_LAYER_DEFAULT[name]
136
+
137
+
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Activations
2
+
3
+ A collection of activations fn and modules with a common interface so that they can
4
+ easily be swapped. All have an `inplace` arg even if not used.
5
+
6
+ Copyright 2020 Ross Wightman
7
+ """
8
+ from torch import nn as nn
9
+ from torch.nn import functional as F
10
+
11
+
12
+ def swish(x, inplace: bool = False):
13
+ """Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
14
+ and also as Swish (https://arxiv.org/abs/1710.05941).
15
+
16
+ TODO Rename to SiLU with addition to PyTorch
17
+ """
18
+ return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid())
19
+
20
+
21
+ class Swish(nn.Module):
22
+ def __init__(self, inplace: bool = False):
23
+ super(Swish, self).__init__()
24
+ self.inplace = inplace
25
+
26
+ def forward(self, x):
27
+ return swish(x, self.inplace)
28
+
29
+
30
+ def mish(x, inplace: bool = False):
31
+ """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
32
+ """
33
+ return x.mul(F.softplus(x).tanh())
34
+
35
+
36
+ class Mish(nn.Module):
37
+ def __init__(self, inplace: bool = False):
38
+ super(Mish, self).__init__()
39
+ self.inplace = inplace
40
+
41
+ def forward(self, x):
42
+ return mish(x, self.inplace)
43
+
44
+
45
+ def sigmoid(x, inplace: bool = False):
46
+ return x.sigmoid_() if inplace else x.sigmoid()
47
+
48
+
49
+ # PyTorch has this, but not with a consistent inplace argmument interface
50
+ class Sigmoid(nn.Module):
51
+ def __init__(self, inplace: bool = False):
52
+ super(Sigmoid, self).__init__()
53
+ self.inplace = inplace
54
+
55
+ def forward(self, x):
56
+ return x.sigmoid_() if self.inplace else x.sigmoid()
57
+
58
+
59
+ def tanh(x, inplace: bool = False):
60
+ return x.tanh_() if inplace else x.tanh()
61
+
62
+
63
+ # PyTorch has this, but not with a consistent inplace argmument interface
64
+ class Tanh(nn.Module):
65
+ def __init__(self, inplace: bool = False):
66
+ super(Tanh, self).__init__()
67
+ self.inplace = inplace
68
+
69
+ def forward(self, x):
70
+ return x.tanh_() if self.inplace else x.tanh()
71
+
72
+
73
+ def hard_swish(x, inplace: bool = False):
74
+ inner = F.relu6(x + 3.).div_(6.)
75
+ return x.mul_(inner) if inplace else x.mul(inner)
76
+
77
+
78
+ class HardSwish(nn.Module):
79
+ def __init__(self, inplace: bool = False):
80
+ super(HardSwish, self).__init__()
81
+ self.inplace = inplace
82
+
83
+ def forward(self, x):
84
+ return hard_swish(x, self.inplace)
85
+
86
+
87
+ def hard_sigmoid(x, inplace: bool = False):
88
+ if inplace:
89
+ return x.add_(3.).clamp_(0., 6.).div_(6.)
90
+ else:
91
+ return F.relu6(x + 3.) / 6.
92
+
93
+
94
+ class HardSigmoid(nn.Module):
95
+ def __init__(self, inplace: bool = False):
96
+ super(HardSigmoid, self).__init__()
97
+ self.inplace = inplace
98
+
99
+ def forward(self, x):
100
+ return hard_sigmoid(x, self.inplace)
101
+
102
+
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_jit.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Activations (jit)
2
+
3
+ A collection of jit-scripted activations fn and modules with a common interface so that they can
4
+ easily be swapped. All have an `inplace` arg even if not used.
5
+
6
+ All jit scripted activations are lacking in-place variations on purpose, scripted kernel fusion does not
7
+ currently work across in-place op boundaries, thus performance is equal to or less than the non-scripted
8
+ versions if they contain in-place ops.
9
+
10
+ Copyright 2020 Ross Wightman
11
+ """
12
+
13
+ import torch
14
+ from torch import nn as nn
15
+ from torch.nn import functional as F
16
+
17
+ __all__ = ['swish_jit', 'SwishJit', 'mish_jit', 'MishJit',
18
+ 'hard_sigmoid_jit', 'HardSigmoidJit', 'hard_swish_jit', 'HardSwishJit']
19
+
20
+
21
+ @torch.jit.script
22
+ def swish_jit(x, inplace: bool = False):
23
+ """Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
24
+ and also as Swish (https://arxiv.org/abs/1710.05941).
25
+
26
+ TODO Rename to SiLU with addition to PyTorch
27
+ """
28
+ return x.mul(x.sigmoid())
29
+
30
+
31
+ @torch.jit.script
32
+ def mish_jit(x, _inplace: bool = False):
33
+ """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
34
+ """
35
+ return x.mul(F.softplus(x).tanh())
36
+
37
+
38
+ class SwishJit(nn.Module):
39
+ def __init__(self, inplace: bool = False):
40
+ super(SwishJit, self).__init__()
41
+
42
+ def forward(self, x):
43
+ return swish_jit(x)
44
+
45
+
46
+ class MishJit(nn.Module):
47
+ def __init__(self, inplace: bool = False):
48
+ super(MishJit, self).__init__()
49
+
50
+ def forward(self, x):
51
+ return mish_jit(x)
52
+
53
+
54
+ @torch.jit.script
55
+ def hard_sigmoid_jit(x, inplace: bool = False):
56
+ # return F.relu6(x + 3.) / 6.
57
+ return (x + 3).clamp(min=0, max=6).div(6.) # clamp seems ever so slightly faster?
58
+
59
+
60
+ class HardSigmoidJit(nn.Module):
61
+ def __init__(self, inplace: bool = False):
62
+ super(HardSigmoidJit, self).__init__()
63
+
64
+ def forward(self, x):
65
+ return hard_sigmoid_jit(x)
66
+
67
+
68
+ @torch.jit.script
69
+ def hard_swish_jit(x, inplace: bool = False):
70
+ # return x * (F.relu6(x + 3.) / 6)
71
+ return x * (x + 3).clamp(min=0, max=6).div(6.) # clamp seems ever so slightly faster?
72
+
73
+
74
+ class HardSwishJit(nn.Module):
75
+ def __init__(self, inplace: bool = False):
76
+ super(HardSwishJit, self).__init__()
77
+
78
+ def forward(self, x):
79
+ return hard_swish_jit(x)
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_me.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Activations (memory-efficient w/ custom autograd)
2
+
3
+ A collection of activations fn and modules with a common interface so that they can
4
+ easily be swapped. All have an `inplace` arg even if not used.
5
+
6
+ These activations are not compatible with jit scripting or ONNX export of the model, please use either
7
+ the JIT or basic versions of the activations.
8
+
9
+ Copyright 2020 Ross Wightman
10
+ """
11
+
12
+ import torch
13
+ from torch import nn as nn
14
+ from torch.nn import functional as F
15
+
16
+
17
+ __all__ = ['swish_me', 'SwishMe', 'mish_me', 'MishMe',
18
+ 'hard_sigmoid_me', 'HardSigmoidMe', 'hard_swish_me', 'HardSwishMe']
19
+
20
+
21
+ @torch.jit.script
22
+ def swish_jit_fwd(x):
23
+ return x.mul(torch.sigmoid(x))
24
+
25
+
26
+ @torch.jit.script
27
+ def swish_jit_bwd(x, grad_output):
28
+ x_sigmoid = torch.sigmoid(x)
29
+ return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid)))
30
+
31
+
32
+ class SwishJitAutoFn(torch.autograd.Function):
33
+ """ torch.jit.script optimised Swish w/ memory-efficient checkpoint
34
+ Inspired by conversation btw Jeremy Howard & Adam Pazske
35
+ https://twitter.com/jeremyphoward/status/1188251041835315200
36
+
37
+ Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
38
+ and also as Swish (https://arxiv.org/abs/1710.05941).
39
+
40
+ TODO Rename to SiLU with addition to PyTorch
41
+ """
42
+
43
+ @staticmethod
44
+ def forward(ctx, x):
45
+ ctx.save_for_backward(x)
46
+ return swish_jit_fwd(x)
47
+
48
+ @staticmethod
49
+ def backward(ctx, grad_output):
50
+ x = ctx.saved_tensors[0]
51
+ return swish_jit_bwd(x, grad_output)
52
+
53
+
54
+ def swish_me(x, inplace=False):
55
+ return SwishJitAutoFn.apply(x)
56
+
57
+
58
+ class SwishMe(nn.Module):
59
+ def __init__(self, inplace: bool = False):
60
+ super(SwishMe, self).__init__()
61
+
62
+ def forward(self, x):
63
+ return SwishJitAutoFn.apply(x)
64
+
65
+
66
+ @torch.jit.script
67
+ def mish_jit_fwd(x):
68
+ return x.mul(torch.tanh(F.softplus(x)))
69
+
70
+
71
+ @torch.jit.script
72
+ def mish_jit_bwd(x, grad_output):
73
+ x_sigmoid = torch.sigmoid(x)
74
+ x_tanh_sp = F.softplus(x).tanh()
75
+ return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp))
76
+
77
+
78
+ class MishJitAutoFn(torch.autograd.Function):
79
+ """ Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
80
+ A memory efficient, jit scripted variant of Mish
81
+ """
82
+ @staticmethod
83
+ def forward(ctx, x):
84
+ ctx.save_for_backward(x)
85
+ return mish_jit_fwd(x)
86
+
87
+ @staticmethod
88
+ def backward(ctx, grad_output):
89
+ x = ctx.saved_tensors[0]
90
+ return mish_jit_bwd(x, grad_output)
91
+
92
+
93
+ def mish_me(x, inplace=False):
94
+ return MishJitAutoFn.apply(x)
95
+
96
+
97
+ class MishMe(nn.Module):
98
+ def __init__(self, inplace: bool = False):
99
+ super(MishMe, self).__init__()
100
+
101
+ def forward(self, x):
102
+ return MishJitAutoFn.apply(x)
103
+
104
+
105
+ @torch.jit.script
106
+ def hard_sigmoid_jit_fwd(x, inplace: bool = False):
107
+ return (x + 3).clamp(min=0, max=6).div(6.)
108
+
109
+
110
+ @torch.jit.script
111
+ def hard_sigmoid_jit_bwd(x, grad_output):
112
+ m = torch.ones_like(x) * ((x >= -3.) & (x <= 3.)) / 6.
113
+ return grad_output * m
114
+
115
+
116
+ class HardSigmoidJitAutoFn(torch.autograd.Function):
117
+ @staticmethod
118
+ def forward(ctx, x):
119
+ ctx.save_for_backward(x)
120
+ return hard_sigmoid_jit_fwd(x)
121
+
122
+ @staticmethod
123
+ def backward(ctx, grad_output):
124
+ x = ctx.saved_tensors[0]
125
+ return hard_sigmoid_jit_bwd(x, grad_output)
126
+
127
+
128
+ def hard_sigmoid_me(x, inplace: bool = False):
129
+ return HardSigmoidJitAutoFn.apply(x)
130
+
131
+
132
+ class HardSigmoidMe(nn.Module):
133
+ def __init__(self, inplace: bool = False):
134
+ super(HardSigmoidMe, self).__init__()
135
+
136
+ def forward(self, x):
137
+ return HardSigmoidJitAutoFn.apply(x)
138
+
139
+
140
+ @torch.jit.script
141
+ def hard_swish_jit_fwd(x):
142
+ return x * (x + 3).clamp(min=0, max=6).div(6.)
143
+
144
+
145
+ @torch.jit.script
146
+ def hard_swish_jit_bwd(x, grad_output):
147
+ m = torch.ones_like(x) * (x >= 3.)
148
+ m = torch.where((x >= -3.) & (x <= 3.), x / 3. + .5, m)
149
+ return grad_output * m
150
+
151
+
152
+ class HardSwishJitAutoFn(torch.autograd.Function):
153
+ """A memory efficient, jit-scripted HardSwish activation"""
154
+ @staticmethod
155
+ def forward(ctx, x):
156
+ ctx.save_for_backward(x)
157
+ return hard_swish_jit_fwd(x)
158
+
159
+ @staticmethod
160
+ def backward(ctx, grad_output):
161
+ x = ctx.saved_tensors[0]
162
+ return hard_swish_jit_bwd(x, grad_output)
163
+
164
+
165
+ def hard_swish_me(x, inplace=False):
166
+ return HardSwishJitAutoFn.apply(x)
167
+
168
+
169
+ class HardSwishMe(nn.Module):
170
+ def __init__(self, inplace: bool = False):
171
+ super(HardSwishMe, self).__init__()
172
+
173
+ def forward(self, x):
174
+ return HardSwishJitAutoFn.apply(x)
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/config.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Global layer config state
2
+ """
3
+ from typing import Any, Optional
4
+
5
+ __all__ = [
6
+ 'is_exportable', 'is_scriptable', 'is_no_jit', 'layer_config_kwargs',
7
+ 'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config'
8
+ ]
9
+
10
+ # Set to True if prefer to have layers with no jit optimization (includes activations)
11
+ _NO_JIT = False
12
+
13
+ # Set to True if prefer to have activation layers with no jit optimization
14
+ # NOTE not currently used as no difference between no_jit and no_activation jit as only layers obeying
15
+ # the jit flags so far are activations. This will change as more layers are updated and/or added.
16
+ _NO_ACTIVATION_JIT = False
17
+
18
+ # Set to True if exporting a model with Same padding via ONNX
19
+ _EXPORTABLE = False
20
+
21
+ # Set to True if wanting to use torch.jit.script on a model
22
+ _SCRIPTABLE = False
23
+
24
+
25
+ def is_no_jit():
26
+ return _NO_JIT
27
+
28
+
29
+ class set_no_jit:
30
+ def __init__(self, mode: bool) -> None:
31
+ global _NO_JIT
32
+ self.prev = _NO_JIT
33
+ _NO_JIT = mode
34
+
35
+ def __enter__(self) -> None:
36
+ pass
37
+
38
+ def __exit__(self, *args: Any) -> bool:
39
+ global _NO_JIT
40
+ _NO_JIT = self.prev
41
+ return False
42
+
43
+
44
+ def is_exportable():
45
+ return _EXPORTABLE
46
+
47
+
48
+ class set_exportable:
49
+ def __init__(self, mode: bool) -> None:
50
+ global _EXPORTABLE
51
+ self.prev = _EXPORTABLE
52
+ _EXPORTABLE = mode
53
+
54
+ def __enter__(self) -> None:
55
+ pass
56
+
57
+ def __exit__(self, *args: Any) -> bool:
58
+ global _EXPORTABLE
59
+ _EXPORTABLE = self.prev
60
+ return False
61
+
62
+
63
+ def is_scriptable():
64
+ return _SCRIPTABLE
65
+
66
+
67
+ class set_scriptable:
68
+ def __init__(self, mode: bool) -> None:
69
+ global _SCRIPTABLE
70
+ self.prev = _SCRIPTABLE
71
+ _SCRIPTABLE = mode
72
+
73
+ def __enter__(self) -> None:
74
+ pass
75
+
76
+ def __exit__(self, *args: Any) -> bool:
77
+ global _SCRIPTABLE
78
+ _SCRIPTABLE = self.prev
79
+ return False
80
+
81
+
82
+ class set_layer_config:
83
+ """ Layer config context manager that allows setting all layer config flags at once.
84
+ If a flag arg is None, it will not change the current value.
85
+ """
86
+ def __init__(
87
+ self,
88
+ scriptable: Optional[bool] = None,
89
+ exportable: Optional[bool] = None,
90
+ no_jit: Optional[bool] = None,
91
+ no_activation_jit: Optional[bool] = None):
92
+ global _SCRIPTABLE
93
+ global _EXPORTABLE
94
+ global _NO_JIT
95
+ global _NO_ACTIVATION_JIT
96
+ self.prev = _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT
97
+ if scriptable is not None:
98
+ _SCRIPTABLE = scriptable
99
+ if exportable is not None:
100
+ _EXPORTABLE = exportable
101
+ if no_jit is not None:
102
+ _NO_JIT = no_jit
103
+ if no_activation_jit is not None:
104
+ _NO_ACTIVATION_JIT = no_activation_jit
105
+
106
+ def __enter__(self) -> None:
107
+ pass
108
+
109
+ def __exit__(self, *args: Any) -> bool:
110
+ global _SCRIPTABLE
111
+ global _EXPORTABLE
112
+ global _NO_JIT
113
+ global _NO_ACTIVATION_JIT
114
+ _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT = self.prev
115
+ return False
116
+
117
+
118
+ def layer_config_kwargs(kwargs):
119
+ """ Consume config kwargs and return contextmgr obj """
120
+ return set_layer_config(
121
+ scriptable=kwargs.pop('scriptable', None),
122
+ exportable=kwargs.pop('exportable', None),
123
+ no_jit=kwargs.pop('no_jit', None))
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/conv2d_layers.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Conv2D w/ SAME padding, CondConv, MixedConv
2
+
3
+ A collection of conv layers and padding helpers needed by EfficientNet, MixNet, and
4
+ MobileNetV3 models that maintain weight compatibility with original Tensorflow models.
5
+
6
+ Copyright 2020 Ross Wightman
7
+ """
8
+ import collections.abc
9
+ import math
10
+ from functools import partial
11
+ from itertools import repeat
12
+ from typing import Tuple, Optional
13
+
14
+ import numpy as np
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.nn.functional as F
18
+
19
+ from .config import *
20
+
21
+
22
+ # From PyTorch internals
23
+ def _ntuple(n):
24
+ def parse(x):
25
+ if isinstance(x, collections.abc.Iterable):
26
+ return x
27
+ return tuple(repeat(x, n))
28
+ return parse
29
+
30
+
31
+ _single = _ntuple(1)
32
+ _pair = _ntuple(2)
33
+ _triple = _ntuple(3)
34
+ _quadruple = _ntuple(4)
35
+
36
+
37
+ def _is_static_pad(kernel_size, stride=1, dilation=1, **_):
38
+ return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0
39
+
40
+
41
+ def _get_padding(kernel_size, stride=1, dilation=1, **_):
42
+ padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
43
+ return padding
44
+
45
+
46
+ def _calc_same_pad(i: int, k: int, s: int, d: int):
47
+ return max((-(i // -s) - 1) * s + (k - 1) * d + 1 - i, 0)
48
+
49
+
50
+ def _same_pad_arg(input_size, kernel_size, stride, dilation):
51
+ ih, iw = input_size
52
+ kh, kw = kernel_size
53
+ pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
54
+ pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
55
+ return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
56
+
57
+
58
+ def _split_channels(num_chan, num_groups):
59
+ split = [num_chan // num_groups for _ in range(num_groups)]
60
+ split[0] += num_chan - sum(split)
61
+ return split
62
+
63
+
64
+ def conv2d_same(
65
+ x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1),
66
+ padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1):
67
+ ih, iw = x.size()[-2:]
68
+ kh, kw = weight.size()[-2:]
69
+ pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
70
+ pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
71
+ x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
72
+ return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
73
+
74
+
75
+ class Conv2dSame(nn.Conv2d):
76
+ """ Tensorflow like 'SAME' convolution wrapper for 2D convolutions
77
+ """
78
+
79
+ # pylint: disable=unused-argument
80
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1,
81
+ padding=0, dilation=1, groups=1, bias=True):
82
+ super(Conv2dSame, self).__init__(
83
+ in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
84
+
85
+ def forward(self, x):
86
+ return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
87
+
88
+
89
+ class Conv2dSameExport(nn.Conv2d):
90
+ """ ONNX export friendly Tensorflow like 'SAME' convolution wrapper for 2D convolutions
91
+
92
+ NOTE: This does not currently work with torch.jit.script
93
+ """
94
+
95
+ # pylint: disable=unused-argument
96
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1,
97
+ padding=0, dilation=1, groups=1, bias=True):
98
+ super(Conv2dSameExport, self).__init__(
99
+ in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
100
+ self.pad = None
101
+ self.pad_input_size = (0, 0)
102
+
103
+ def forward(self, x):
104
+ input_size = x.size()[-2:]
105
+ if self.pad is None:
106
+ pad_arg = _same_pad_arg(input_size, self.weight.size()[-2:], self.stride, self.dilation)
107
+ self.pad = nn.ZeroPad2d(pad_arg)
108
+ self.pad_input_size = input_size
109
+
110
+ if self.pad is not None:
111
+ x = self.pad(x)
112
+ return F.conv2d(
113
+ x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
114
+
115
+
116
+ def get_padding_value(padding, kernel_size, **kwargs):
117
+ dynamic = False
118
+ if isinstance(padding, str):
119
+ # for any string padding, the padding will be calculated for you, one of three ways
120
+ padding = padding.lower()
121
+ if padding == 'same':
122
+ # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
123
+ if _is_static_pad(kernel_size, **kwargs):
124
+ # static case, no extra overhead
125
+ padding = _get_padding(kernel_size, **kwargs)
126
+ else:
127
+ # dynamic padding
128
+ padding = 0
129
+ dynamic = True
130
+ elif padding == 'valid':
131
+ # 'VALID' padding, same as padding=0
132
+ padding = 0
133
+ else:
134
+ # Default to PyTorch style 'same'-ish symmetric padding
135
+ padding = _get_padding(kernel_size, **kwargs)
136
+ return padding, dynamic
137
+
138
+
139
+ def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
140
+ padding = kwargs.pop('padding', '')
141
+ kwargs.setdefault('bias', False)
142
+ padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
143
+ if is_dynamic:
144
+ if is_exportable():
145
+ assert not is_scriptable()
146
+ return Conv2dSameExport(in_chs, out_chs, kernel_size, **kwargs)
147
+ else:
148
+ return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
149
+ else:
150
+ return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)
151
+
152
+
153
+ class MixedConv2d(nn.ModuleDict):
154
+ """ Mixed Grouped Convolution
155
+ Based on MDConv and GroupedConv in MixNet impl:
156
+ https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mixnet/custom_layers.py
157
+ """
158
+
159
+ def __init__(self, in_channels, out_channels, kernel_size=3,
160
+ stride=1, padding='', dilation=1, depthwise=False, **kwargs):
161
+ super(MixedConv2d, self).__init__()
162
+
163
+ kernel_size = kernel_size if isinstance(kernel_size, list) else [kernel_size]
164
+ num_groups = len(kernel_size)
165
+ in_splits = _split_channels(in_channels, num_groups)
166
+ out_splits = _split_channels(out_channels, num_groups)
167
+ self.in_channels = sum(in_splits)
168
+ self.out_channels = sum(out_splits)
169
+ for idx, (k, in_ch, out_ch) in enumerate(zip(kernel_size, in_splits, out_splits)):
170
+ conv_groups = out_ch if depthwise else 1
171
+ self.add_module(
172
+ str(idx),
173
+ create_conv2d_pad(
174
+ in_ch, out_ch, k, stride=stride,
175
+ padding=padding, dilation=dilation, groups=conv_groups, **kwargs)
176
+ )
177
+ self.splits = in_splits
178
+
179
+ def forward(self, x):
180
+ x_split = torch.split(x, self.splits, 1)
181
+ x_out = [conv(x_split[i]) for i, conv in enumerate(self.values())]
182
+ x = torch.cat(x_out, 1)
183
+ return x
184
+
185
+
186
+ def get_condconv_initializer(initializer, num_experts, expert_shape):
187
+ def condconv_initializer(weight):
188
+ """CondConv initializer function."""
189
+ num_params = np.prod(expert_shape)
190
+ if (len(weight.shape) != 2 or weight.shape[0] != num_experts or
191
+ weight.shape[1] != num_params):
192
+ raise (ValueError(
193
+ 'CondConv variables must have shape [num_experts, num_params]'))
194
+ for i in range(num_experts):
195
+ initializer(weight[i].view(expert_shape))
196
+ return condconv_initializer
197
+
198
+
199
+ class CondConv2d(nn.Module):
200
+ """ Conditional Convolution
201
+ Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py
202
+
203
+ Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion:
204
+ https://github.com/pytorch/pytorch/issues/17983
205
+ """
206
+ __constants__ = ['bias', 'in_channels', 'out_channels', 'dynamic_padding']
207
+
208
+ def __init__(self, in_channels, out_channels, kernel_size=3,
209
+ stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4):
210
+ super(CondConv2d, self).__init__()
211
+
212
+ self.in_channels = in_channels
213
+ self.out_channels = out_channels
214
+ self.kernel_size = _pair(kernel_size)
215
+ self.stride = _pair(stride)
216
+ padding_val, is_padding_dynamic = get_padding_value(
217
+ padding, kernel_size, stride=stride, dilation=dilation)
218
+ self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript
219
+ self.padding = _pair(padding_val)
220
+ self.dilation = _pair(dilation)
221
+ self.groups = groups
222
+ self.num_experts = num_experts
223
+
224
+ self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size
225
+ weight_num_param = 1
226
+ for wd in self.weight_shape:
227
+ weight_num_param *= wd
228
+ self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param))
229
+
230
+ if bias:
231
+ self.bias_shape = (self.out_channels,)
232
+ self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels))
233
+ else:
234
+ self.register_parameter('bias', None)
235
+
236
+ self.reset_parameters()
237
+
238
+ def reset_parameters(self):
239
+ init_weight = get_condconv_initializer(
240
+ partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape)
241
+ init_weight(self.weight)
242
+ if self.bias is not None:
243
+ fan_in = np.prod(self.weight_shape[1:])
244
+ bound = 1 / math.sqrt(fan_in)
245
+ init_bias = get_condconv_initializer(
246
+ partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape)
247
+ init_bias(self.bias)
248
+
249
+ def forward(self, x, routing_weights):
250
+ B, C, H, W = x.shape
251
+ weight = torch.matmul(routing_weights, self.weight)
252
+ new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size
253
+ weight = weight.view(new_weight_shape)
254
+ bias = None
255
+ if self.bias is not None:
256
+ bias = torch.matmul(routing_weights, self.bias)
257
+ bias = bias.view(B * self.out_channels)
258
+ # move batch elements with channels so each batch element can be efficiently convolved with separate kernel
259
+ x = x.view(1, B * C, H, W)
260
+ if self.dynamic_padding:
261
+ out = conv2d_same(
262
+ x, weight, bias, stride=self.stride, padding=self.padding,
263
+ dilation=self.dilation, groups=self.groups * B)
264
+ else:
265
+ out = F.conv2d(
266
+ x, weight, bias, stride=self.stride, padding=self.padding,
267
+ dilation=self.dilation, groups=self.groups * B)
268
+ out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1])
269
+
270
+ # Literal port (from TF definition)
271
+ # x = torch.split(x, 1, 0)
272
+ # weight = torch.split(weight, 1, 0)
273
+ # if self.bias is not None:
274
+ # bias = torch.matmul(routing_weights, self.bias)
275
+ # bias = torch.split(bias, 1, 0)
276
+ # else:
277
+ # bias = [None] * B
278
+ # out = []
279
+ # for xi, wi, bi in zip(x, weight, bias):
280
+ # wi = wi.view(*self.weight_shape)
281
+ # if bi is not None:
282
+ # bi = bi.view(*self.bias_shape)
283
+ # out.append(self.conv_fn(
284
+ # xi, wi, bi, stride=self.stride, padding=self.padding,
285
+ # dilation=self.dilation, groups=self.groups))
286
+ # out = torch.cat(out, 0)
287
+ return out
288
+
289
+
290
+ def select_conv2d(in_chs, out_chs, kernel_size, **kwargs):
291
+ assert 'groups' not in kwargs # only use 'depthwise' bool arg
292
+ if isinstance(kernel_size, list):
293
+ assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently
294
+ # We're going to use only lists for defining the MixedConv2d kernel groups,
295
+ # ints, tuples, other iterables will continue to pass to normal conv and specify h, w.
296
+ m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs)
297
+ else:
298
+ depthwise = kwargs.pop('depthwise', False)
299
+ groups = out_chs if depthwise else 1
300
+ if 'num_experts' in kwargs and kwargs['num_experts'] > 0:
301
+ m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
302
+ else:
303
+ m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
304
+ return m
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/efficientnet_builder.py ADDED
@@ -0,0 +1,683 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ EfficientNet / MobileNetV3 Blocks and Builder
2
+
3
+ Copyright 2020 Ross Wightman
4
+ """
5
+ import re
6
+ from copy import deepcopy
7
+
8
+ from .conv2d_layers import *
9
+ from geffnet.activations import *
10
+
11
+ __all__ = ['get_bn_args_tf', 'resolve_bn_args', 'resolve_se_args', 'resolve_act_layer', 'make_divisible',
12
+ 'round_channels', 'drop_connect', 'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv',
13
+ 'InvertedResidual', 'CondConvResidual', 'EdgeResidual', 'EfficientNetBuilder', 'decode_arch_def',
14
+ 'initialize_weight_default', 'initialize_weight_goog', 'BN_MOMENTUM_TF_DEFAULT', 'BN_EPS_TF_DEFAULT'
15
+ ]
16
+
17
+ # Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per
18
+ # papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay)
19
+ # NOTE: momentum varies btw .99 and .9997 depending on source
20
+ # .99 in official TF TPU impl
21
+ # .9997 (/w .999 in search space) for paper
22
+ #
23
+ # PyTorch defaults are momentum = .1, eps = 1e-5
24
+ #
25
+ BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
26
+ BN_EPS_TF_DEFAULT = 1e-3
27
+ _BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT)
28
+
29
+
30
+ def get_bn_args_tf():
31
+ return _BN_ARGS_TF.copy()
32
+
33
+
34
+ def resolve_bn_args(kwargs):
35
+ bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {}
36
+ bn_momentum = kwargs.pop('bn_momentum', None)
37
+ if bn_momentum is not None:
38
+ bn_args['momentum'] = bn_momentum
39
+ bn_eps = kwargs.pop('bn_eps', None)
40
+ if bn_eps is not None:
41
+ bn_args['eps'] = bn_eps
42
+ return bn_args
43
+
44
+
45
+ _SE_ARGS_DEFAULT = dict(
46
+ gate_fn=sigmoid,
47
+ act_layer=None, # None == use containing block's activation layer
48
+ reduce_mid=False,
49
+ divisor=1)
50
+
51
+
52
+ def resolve_se_args(kwargs, in_chs, act_layer=None):
53
+ se_kwargs = kwargs.copy() if kwargs is not None else {}
54
+ # fill in args that aren't specified with the defaults
55
+ for k, v in _SE_ARGS_DEFAULT.items():
56
+ se_kwargs.setdefault(k, v)
57
+ # some models, like MobilNetV3, calculate SE reduction chs from the containing block's mid_ch instead of in_ch
58
+ if not se_kwargs.pop('reduce_mid'):
59
+ se_kwargs['reduced_base_chs'] = in_chs
60
+ # act_layer override, if it remains None, the containing block's act_layer will be used
61
+ if se_kwargs['act_layer'] is None:
62
+ assert act_layer is not None
63
+ se_kwargs['act_layer'] = act_layer
64
+ return se_kwargs
65
+
66
+
67
+ def resolve_act_layer(kwargs, default='relu'):
68
+ act_layer = kwargs.pop('act_layer', default)
69
+ if isinstance(act_layer, str):
70
+ act_layer = get_act_layer(act_layer)
71
+ return act_layer
72
+
73
+
74
+ def make_divisible(v: int, divisor: int = 8, min_value: int = None):
75
+ min_value = min_value or divisor
76
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
77
+ if new_v < 0.9 * v: # ensure round down does not go down by more than 10%.
78
+ new_v += divisor
79
+ return new_v
80
+
81
+
82
+ def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None):
83
+ """Round number of filters based on depth multiplier."""
84
+ if not multiplier:
85
+ return channels
86
+ channels *= multiplier
87
+ return make_divisible(channels, divisor, channel_min)
88
+
89
+
90
+ def drop_connect(inputs, training: bool = False, drop_connect_rate: float = 0.):
91
+ """Apply drop connect."""
92
+ if not training:
93
+ return inputs
94
+
95
+ keep_prob = 1 - drop_connect_rate
96
+ random_tensor = keep_prob + torch.rand(
97
+ (inputs.size()[0], 1, 1, 1), dtype=inputs.dtype, device=inputs.device)
98
+ random_tensor.floor_() # binarize
99
+ output = inputs.div(keep_prob) * random_tensor
100
+ return output
101
+
102
+
103
+ class SqueezeExcite(nn.Module):
104
+
105
+ def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None, act_layer=nn.ReLU, gate_fn=sigmoid, divisor=1):
106
+ super(SqueezeExcite, self).__init__()
107
+ reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
108
+ self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
109
+ self.act1 = act_layer(inplace=True)
110
+ self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
111
+ self.gate_fn = gate_fn
112
+
113
+ def forward(self, x):
114
+ x_se = x.mean((2, 3), keepdim=True)
115
+ x_se = self.conv_reduce(x_se)
116
+ x_se = self.act1(x_se)
117
+ x_se = self.conv_expand(x_se)
118
+ x = x * self.gate_fn(x_se)
119
+ return x
120
+
121
+
122
+ class ConvBnAct(nn.Module):
123
+ def __init__(self, in_chs, out_chs, kernel_size,
124
+ stride=1, pad_type='', act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None):
125
+ super(ConvBnAct, self).__init__()
126
+ assert stride in [1, 2]
127
+ norm_kwargs = norm_kwargs or {}
128
+ self.conv = select_conv2d(in_chs, out_chs, kernel_size, stride=stride, padding=pad_type)
129
+ self.bn1 = norm_layer(out_chs, **norm_kwargs)
130
+ self.act1 = act_layer(inplace=True)
131
+
132
+ def forward(self, x):
133
+ x = self.conv(x)
134
+ x = self.bn1(x)
135
+ x = self.act1(x)
136
+ return x
137
+
138
+
139
+ class DepthwiseSeparableConv(nn.Module):
140
+ """ DepthwiseSeparable block
141
+ Used for DS convs in MobileNet-V1 and in the place of IR blocks with an expansion
142
+ factor of 1.0. This is an alternative to having a IR with optional first pw conv.
143
+ """
144
+ def __init__(self, in_chs, out_chs, dw_kernel_size=3,
145
+ stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
146
+ pw_kernel_size=1, pw_act=False, se_ratio=0., se_kwargs=None,
147
+ norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
148
+ super(DepthwiseSeparableConv, self).__init__()
149
+ assert stride in [1, 2]
150
+ norm_kwargs = norm_kwargs or {}
151
+ self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
152
+ self.drop_connect_rate = drop_connect_rate
153
+
154
+ self.conv_dw = select_conv2d(
155
+ in_chs, in_chs, dw_kernel_size, stride=stride, padding=pad_type, depthwise=True)
156
+ self.bn1 = norm_layer(in_chs, **norm_kwargs)
157
+ self.act1 = act_layer(inplace=True)
158
+
159
+ # Squeeze-and-excitation
160
+ if se_ratio is not None and se_ratio > 0.:
161
+ se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
162
+ self.se = SqueezeExcite(in_chs, se_ratio=se_ratio, **se_kwargs)
163
+ else:
164
+ self.se = nn.Identity()
165
+
166
+ self.conv_pw = select_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type)
167
+ self.bn2 = norm_layer(out_chs, **norm_kwargs)
168
+ self.act2 = act_layer(inplace=True) if pw_act else nn.Identity()
169
+
170
+ def forward(self, x):
171
+ residual = x
172
+
173
+ x = self.conv_dw(x)
174
+ x = self.bn1(x)
175
+ x = self.act1(x)
176
+
177
+ x = self.se(x)
178
+
179
+ x = self.conv_pw(x)
180
+ x = self.bn2(x)
181
+ x = self.act2(x)
182
+
183
+ if self.has_residual:
184
+ if self.drop_connect_rate > 0.:
185
+ x = drop_connect(x, self.training, self.drop_connect_rate)
186
+ x += residual
187
+ return x
188
+
189
+
190
+ class InvertedResidual(nn.Module):
191
+ """ Inverted residual block w/ optional SE"""
192
+
193
+ def __init__(self, in_chs, out_chs, dw_kernel_size=3,
194
+ stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
195
+ exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
196
+ se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
197
+ conv_kwargs=None, drop_connect_rate=0.):
198
+ super(InvertedResidual, self).__init__()
199
+ norm_kwargs = norm_kwargs or {}
200
+ conv_kwargs = conv_kwargs or {}
201
+ mid_chs: int = make_divisible(in_chs * exp_ratio)
202
+ self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
203
+ self.drop_connect_rate = drop_connect_rate
204
+
205
+ # Point-wise expansion
206
+ self.conv_pw = select_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs)
207
+ self.bn1 = norm_layer(mid_chs, **norm_kwargs)
208
+ self.act1 = act_layer(inplace=True)
209
+
210
+ # Depth-wise convolution
211
+ self.conv_dw = select_conv2d(
212
+ mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=pad_type, depthwise=True, **conv_kwargs)
213
+ self.bn2 = norm_layer(mid_chs, **norm_kwargs)
214
+ self.act2 = act_layer(inplace=True)
215
+
216
+ # Squeeze-and-excitation
217
+ if se_ratio is not None and se_ratio > 0.:
218
+ se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
219
+ self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
220
+ else:
221
+ self.se = nn.Identity() # for jit.script compat
222
+
223
+ # Point-wise linear projection
224
+ self.conv_pwl = select_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
225
+ self.bn3 = norm_layer(out_chs, **norm_kwargs)
226
+
227
+ def forward(self, x):
228
+ residual = x
229
+
230
+ # Point-wise expansion
231
+ x = self.conv_pw(x)
232
+ x = self.bn1(x)
233
+ x = self.act1(x)
234
+
235
+ # Depth-wise convolution
236
+ x = self.conv_dw(x)
237
+ x = self.bn2(x)
238
+ x = self.act2(x)
239
+
240
+ # Squeeze-and-excitation
241
+ x = self.se(x)
242
+
243
+ # Point-wise linear projection
244
+ x = self.conv_pwl(x)
245
+ x = self.bn3(x)
246
+
247
+ if self.has_residual:
248
+ if self.drop_connect_rate > 0.:
249
+ x = drop_connect(x, self.training, self.drop_connect_rate)
250
+ x += residual
251
+ return x
252
+
253
+
254
+ class CondConvResidual(InvertedResidual):
255
+ """ Inverted residual block w/ CondConv routing"""
256
+
257
+ def __init__(self, in_chs, out_chs, dw_kernel_size=3,
258
+ stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
259
+ exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
260
+ se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
261
+ num_experts=0, drop_connect_rate=0.):
262
+
263
+ self.num_experts = num_experts
264
+ conv_kwargs = dict(num_experts=self.num_experts)
265
+
266
+ super(CondConvResidual, self).__init__(
267
+ in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, pad_type=pad_type,
268
+ act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size,
269
+ pw_kernel_size=pw_kernel_size, se_ratio=se_ratio, se_kwargs=se_kwargs,
270
+ norm_layer=norm_layer, norm_kwargs=norm_kwargs, conv_kwargs=conv_kwargs,
271
+ drop_connect_rate=drop_connect_rate)
272
+
273
+ self.routing_fn = nn.Linear(in_chs, self.num_experts)
274
+
275
+ def forward(self, x):
276
+ residual = x
277
+
278
+ # CondConv routing
279
+ pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)
280
+ routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs))
281
+
282
+ # Point-wise expansion
283
+ x = self.conv_pw(x, routing_weights)
284
+ x = self.bn1(x)
285
+ x = self.act1(x)
286
+
287
+ # Depth-wise convolution
288
+ x = self.conv_dw(x, routing_weights)
289
+ x = self.bn2(x)
290
+ x = self.act2(x)
291
+
292
+ # Squeeze-and-excitation
293
+ x = self.se(x)
294
+
295
+ # Point-wise linear projection
296
+ x = self.conv_pwl(x, routing_weights)
297
+ x = self.bn3(x)
298
+
299
+ if self.has_residual:
300
+ if self.drop_connect_rate > 0.:
301
+ x = drop_connect(x, self.training, self.drop_connect_rate)
302
+ x += residual
303
+ return x
304
+
305
+
306
+ class EdgeResidual(nn.Module):
307
+ """ EdgeTPU Residual block with expansion convolution followed by pointwise-linear w/ stride"""
308
+
309
+ def __init__(self, in_chs, out_chs, exp_kernel_size=3, exp_ratio=1.0, fake_in_chs=0,
310
+ stride=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1,
311
+ se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
312
+ super(EdgeResidual, self).__init__()
313
+ norm_kwargs = norm_kwargs or {}
314
+ mid_chs = make_divisible(fake_in_chs * exp_ratio) if fake_in_chs > 0 else make_divisible(in_chs * exp_ratio)
315
+ self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
316
+ self.drop_connect_rate = drop_connect_rate
317
+
318
+ # Expansion convolution
319
+ self.conv_exp = select_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type)
320
+ self.bn1 = norm_layer(mid_chs, **norm_kwargs)
321
+ self.act1 = act_layer(inplace=True)
322
+
323
+ # Squeeze-and-excitation
324
+ if se_ratio is not None and se_ratio > 0.:
325
+ se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
326
+ self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
327
+ else:
328
+ self.se = nn.Identity()
329
+
330
+ # Point-wise linear projection
331
+ self.conv_pwl = select_conv2d(mid_chs, out_chs, pw_kernel_size, stride=stride, padding=pad_type)
332
+ self.bn2 = nn.BatchNorm2d(out_chs, **norm_kwargs)
333
+
334
+ def forward(self, x):
335
+ residual = x
336
+
337
+ # Expansion convolution
338
+ x = self.conv_exp(x)
339
+ x = self.bn1(x)
340
+ x = self.act1(x)
341
+
342
+ # Squeeze-and-excitation
343
+ x = self.se(x)
344
+
345
+ # Point-wise linear projection
346
+ x = self.conv_pwl(x)
347
+ x = self.bn2(x)
348
+
349
+ if self.has_residual:
350
+ if self.drop_connect_rate > 0.:
351
+ x = drop_connect(x, self.training, self.drop_connect_rate)
352
+ x += residual
353
+
354
+ return x
355
+
356
+
357
+ class EfficientNetBuilder:
358
+ """ Build Trunk Blocks for Efficient/Mobile Networks
359
+
360
+ This ended up being somewhat of a cross between
361
+ https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
362
+ and
363
+ https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py
364
+
365
+ """
366
+
367
+ def __init__(self, channel_multiplier=1.0, channel_divisor=8, channel_min=None,
368
+ pad_type='', act_layer=None, se_kwargs=None,
369
+ norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
370
+ self.channel_multiplier = channel_multiplier
371
+ self.channel_divisor = channel_divisor
372
+ self.channel_min = channel_min
373
+ self.pad_type = pad_type
374
+ self.act_layer = act_layer
375
+ self.se_kwargs = se_kwargs
376
+ self.norm_layer = norm_layer
377
+ self.norm_kwargs = norm_kwargs
378
+ self.drop_connect_rate = drop_connect_rate
379
+
380
+ # updated during build
381
+ self.in_chs = None
382
+ self.block_idx = 0
383
+ self.block_count = 0
384
+
385
+ def _round_channels(self, chs):
386
+ return round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min)
387
+
388
+ def _make_block(self, ba):
389
+ bt = ba.pop('block_type')
390
+ ba['in_chs'] = self.in_chs
391
+ ba['out_chs'] = self._round_channels(ba['out_chs'])
392
+ if 'fake_in_chs' in ba and ba['fake_in_chs']:
393
+ # FIXME this is a hack to work around mismatch in origin impl input filters for EdgeTPU
394
+ ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs'])
395
+ ba['norm_layer'] = self.norm_layer
396
+ ba['norm_kwargs'] = self.norm_kwargs
397
+ ba['pad_type'] = self.pad_type
398
+ # block act fn overrides the model default
399
+ ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer
400
+ assert ba['act_layer'] is not None
401
+ if bt == 'ir':
402
+ ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
403
+ ba['se_kwargs'] = self.se_kwargs
404
+ if ba.get('num_experts', 0) > 0:
405
+ block = CondConvResidual(**ba)
406
+ else:
407
+ block = InvertedResidual(**ba)
408
+ elif bt == 'ds' or bt == 'dsa':
409
+ ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
410
+ ba['se_kwargs'] = self.se_kwargs
411
+ block = DepthwiseSeparableConv(**ba)
412
+ elif bt == 'er':
413
+ ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
414
+ ba['se_kwargs'] = self.se_kwargs
415
+ block = EdgeResidual(**ba)
416
+ elif bt == 'cn':
417
+ block = ConvBnAct(**ba)
418
+ else:
419
+ assert False, 'Uknkown block type (%s) while building model.' % bt
420
+ self.in_chs = ba['out_chs'] # update in_chs for arg of next block
421
+ return block
422
+
423
+ def _make_stack(self, stack_args):
424
+ blocks = []
425
+ # each stack (stage) contains a list of block arguments
426
+ for i, ba in enumerate(stack_args):
427
+ if i >= 1:
428
+ # only the first block in any stack can have a stride > 1
429
+ ba['stride'] = 1
430
+ block = self._make_block(ba)
431
+ blocks.append(block)
432
+ self.block_idx += 1 # incr global idx (across all stacks)
433
+ return nn.Sequential(*blocks)
434
+
435
+ def __call__(self, in_chs, block_args):
436
+ """ Build the blocks
437
+ Args:
438
+ in_chs: Number of input-channels passed to first block
439
+ block_args: A list of lists, outer list defines stages, inner
440
+ list contains strings defining block configuration(s)
441
+ Return:
442
+ List of block stacks (each stack wrapped in nn.Sequential)
443
+ """
444
+ self.in_chs = in_chs
445
+ self.block_count = sum([len(x) for x in block_args])
446
+ self.block_idx = 0
447
+ blocks = []
448
+ # outer list of block_args defines the stacks ('stages' by some conventions)
449
+ for stack_idx, stack in enumerate(block_args):
450
+ assert isinstance(stack, list)
451
+ stack = self._make_stack(stack)
452
+ blocks.append(stack)
453
+ return blocks
454
+
455
+
456
+ def _parse_ksize(ss):
457
+ if ss.isdigit():
458
+ return int(ss)
459
+ else:
460
+ return [int(k) for k in ss.split('.')]
461
+
462
+
463
+ def _decode_block_str(block_str):
464
+ """ Decode block definition string
465
+
466
+ Gets a list of block arg (dicts) through a string notation of arguments.
467
+ E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip
468
+
469
+ All args can exist in any order with the exception of the leading string which
470
+ is assumed to indicate the block type.
471
+
472
+ leading string - block type (
473
+ ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct)
474
+ r - number of repeat blocks,
475
+ k - kernel size,
476
+ s - strides (1-9),
477
+ e - expansion ratio,
478
+ c - output channels,
479
+ se - squeeze/excitation ratio
480
+ n - activation fn ('re', 'r6', 'hs', or 'sw')
481
+ Args:
482
+ block_str: a string representation of block arguments.
483
+ Returns:
484
+ A list of block args (dicts)
485
+ Raises:
486
+ ValueError: if the string def not properly specified (TODO)
487
+ """
488
+ assert isinstance(block_str, str)
489
+ ops = block_str.split('_')
490
+ block_type = ops[0] # take the block type off the front
491
+ ops = ops[1:]
492
+ options = {}
493
+ noskip = False
494
+ for op in ops:
495
+ # string options being checked on individual basis, combine if they grow
496
+ if op == 'noskip':
497
+ noskip = True
498
+ elif op.startswith('n'):
499
+ # activation fn
500
+ key = op[0]
501
+ v = op[1:]
502
+ if v == 're':
503
+ value = get_act_layer('relu')
504
+ elif v == 'r6':
505
+ value = get_act_layer('relu6')
506
+ elif v == 'hs':
507
+ value = get_act_layer('hard_swish')
508
+ elif v == 'sw':
509
+ value = get_act_layer('swish')
510
+ else:
511
+ continue
512
+ options[key] = value
513
+ else:
514
+ # all numeric options
515
+ splits = re.split(r'(\d.*)', op)
516
+ if len(splits) >= 2:
517
+ key, value = splits[:2]
518
+ options[key] = value
519
+
520
+ # if act_layer is None, the model default (passed to model init) will be used
521
+ act_layer = options['n'] if 'n' in options else None
522
+ exp_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1
523
+ pw_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1
524
+ fake_in_chs = int(options['fc']) if 'fc' in options else 0 # FIXME hack to deal with in_chs issue in TPU def
525
+
526
+ num_repeat = int(options['r'])
527
+ # each type of block has different valid arguments, fill accordingly
528
+ if block_type == 'ir':
529
+ block_args = dict(
530
+ block_type=block_type,
531
+ dw_kernel_size=_parse_ksize(options['k']),
532
+ exp_kernel_size=exp_kernel_size,
533
+ pw_kernel_size=pw_kernel_size,
534
+ out_chs=int(options['c']),
535
+ exp_ratio=float(options['e']),
536
+ se_ratio=float(options['se']) if 'se' in options else None,
537
+ stride=int(options['s']),
538
+ act_layer=act_layer,
539
+ noskip=noskip,
540
+ )
541
+ if 'cc' in options:
542
+ block_args['num_experts'] = int(options['cc'])
543
+ elif block_type == 'ds' or block_type == 'dsa':
544
+ block_args = dict(
545
+ block_type=block_type,
546
+ dw_kernel_size=_parse_ksize(options['k']),
547
+ pw_kernel_size=pw_kernel_size,
548
+ out_chs=int(options['c']),
549
+ se_ratio=float(options['se']) if 'se' in options else None,
550
+ stride=int(options['s']),
551
+ act_layer=act_layer,
552
+ pw_act=block_type == 'dsa',
553
+ noskip=block_type == 'dsa' or noskip,
554
+ )
555
+ elif block_type == 'er':
556
+ block_args = dict(
557
+ block_type=block_type,
558
+ exp_kernel_size=_parse_ksize(options['k']),
559
+ pw_kernel_size=pw_kernel_size,
560
+ out_chs=int(options['c']),
561
+ exp_ratio=float(options['e']),
562
+ fake_in_chs=fake_in_chs,
563
+ se_ratio=float(options['se']) if 'se' in options else None,
564
+ stride=int(options['s']),
565
+ act_layer=act_layer,
566
+ noskip=noskip,
567
+ )
568
+ elif block_type == 'cn':
569
+ block_args = dict(
570
+ block_type=block_type,
571
+ kernel_size=int(options['k']),
572
+ out_chs=int(options['c']),
573
+ stride=int(options['s']),
574
+ act_layer=act_layer,
575
+ )
576
+ else:
577
+ assert False, 'Unknown block type (%s)' % block_type
578
+
579
+ return block_args, num_repeat
580
+
581
+
582
+ def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'):
583
+ """ Per-stage depth scaling
584
+ Scales the block repeats in each stage. This depth scaling impl maintains
585
+ compatibility with the EfficientNet scaling method, while allowing sensible
586
+ scaling for other models that may have multiple block arg definitions in each stage.
587
+ """
588
+
589
+ # We scale the total repeat count for each stage, there may be multiple
590
+ # block arg defs per stage so we need to sum.
591
+ num_repeat = sum(repeats)
592
+ if depth_trunc == 'round':
593
+ # Truncating to int by rounding allows stages with few repeats to remain
594
+ # proportionally smaller for longer. This is a good choice when stage definitions
595
+ # include single repeat stages that we'd prefer to keep that way as long as possible
596
+ num_repeat_scaled = max(1, round(num_repeat * depth_multiplier))
597
+ else:
598
+ # The default for EfficientNet truncates repeats to int via 'ceil'.
599
+ # Any multiplier > 1.0 will result in an increased depth for every stage.
600
+ num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier))
601
+
602
+ # Proportionally distribute repeat count scaling to each block definition in the stage.
603
+ # Allocation is done in reverse as it results in the first block being less likely to be scaled.
604
+ # The first block makes less sense to repeat in most of the arch definitions.
605
+ repeats_scaled = []
606
+ for r in repeats[::-1]:
607
+ rs = max(1, round((r / num_repeat * num_repeat_scaled)))
608
+ repeats_scaled.append(rs)
609
+ num_repeat -= r
610
+ num_repeat_scaled -= rs
611
+ repeats_scaled = repeats_scaled[::-1]
612
+
613
+ # Apply the calculated scaling to each block arg in the stage
614
+ sa_scaled = []
615
+ for ba, rep in zip(stack_args, repeats_scaled):
616
+ sa_scaled.extend([deepcopy(ba) for _ in range(rep)])
617
+ return sa_scaled
618
+
619
+
620
+ def decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil', experts_multiplier=1, fix_first_last=False):
621
+ arch_args = []
622
+ for stack_idx, block_strings in enumerate(arch_def):
623
+ assert isinstance(block_strings, list)
624
+ stack_args = []
625
+ repeats = []
626
+ for block_str in block_strings:
627
+ assert isinstance(block_str, str)
628
+ ba, rep = _decode_block_str(block_str)
629
+ if ba.get('num_experts', 0) > 0 and experts_multiplier > 1:
630
+ ba['num_experts'] *= experts_multiplier
631
+ stack_args.append(ba)
632
+ repeats.append(rep)
633
+ if fix_first_last and (stack_idx == 0 or stack_idx == len(arch_def) - 1):
634
+ arch_args.append(_scale_stage_depth(stack_args, repeats, 1.0, depth_trunc))
635
+ else:
636
+ arch_args.append(_scale_stage_depth(stack_args, repeats, depth_multiplier, depth_trunc))
637
+ return arch_args
638
+
639
+
640
+ def initialize_weight_goog(m, n='', fix_group_fanout=True):
641
+ # weight init as per Tensorflow Official impl
642
+ # https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py
643
+ if isinstance(m, CondConv2d):
644
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
645
+ if fix_group_fanout:
646
+ fan_out //= m.groups
647
+ init_weight_fn = get_condconv_initializer(
648
+ lambda w: w.data.normal_(0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
649
+ init_weight_fn(m.weight)
650
+ if m.bias is not None:
651
+ m.bias.data.zero_()
652
+ elif isinstance(m, nn.Conv2d):
653
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
654
+ if fix_group_fanout:
655
+ fan_out //= m.groups
656
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
657
+ if m.bias is not None:
658
+ m.bias.data.zero_()
659
+ elif isinstance(m, nn.BatchNorm2d):
660
+ m.weight.data.fill_(1.0)
661
+ m.bias.data.zero_()
662
+ elif isinstance(m, nn.Linear):
663
+ fan_out = m.weight.size(0) # fan-out
664
+ fan_in = 0
665
+ if 'routing_fn' in n:
666
+ fan_in = m.weight.size(1)
667
+ init_range = 1.0 / math.sqrt(fan_in + fan_out)
668
+ m.weight.data.uniform_(-init_range, init_range)
669
+ m.bias.data.zero_()
670
+
671
+
672
+ def initialize_weight_default(m, n=''):
673
+ if isinstance(m, CondConv2d):
674
+ init_fn = get_condconv_initializer(partial(
675
+ nn.init.kaiming_normal_, mode='fan_out', nonlinearity='relu'), m.num_experts, m.weight_shape)
676
+ init_fn(m.weight)
677
+ elif isinstance(m, nn.Conv2d):
678
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
679
+ elif isinstance(m, nn.BatchNorm2d):
680
+ m.weight.data.fill_(1.0)
681
+ m.bias.data.zero_()
682
+ elif isinstance(m, nn.Linear):
683
+ nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='linear')
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/gen_efficientnet.py ADDED
@@ -0,0 +1,1450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Generic Efficient Networks
2
+
3
+ A generic MobileNet class with building blocks to support a variety of models:
4
+
5
+ * EfficientNet (B0-B8, L2 + Tensorflow pretrained AutoAug/RandAug/AdvProp/NoisyStudent ports)
6
+ - EfficientNet: Rethinking Model Scaling for CNNs - https://arxiv.org/abs/1905.11946
7
+ - CondConv: Conditionally Parameterized Convolutions for Efficient Inference - https://arxiv.org/abs/1904.04971
8
+ - Adversarial Examples Improve Image Recognition - https://arxiv.org/abs/1911.09665
9
+ - Self-training with Noisy Student improves ImageNet classification - https://arxiv.org/abs/1911.04252
10
+
11
+ * EfficientNet-Lite
12
+
13
+ * MixNet (Small, Medium, and Large)
14
+ - MixConv: Mixed Depthwise Convolutional Kernels - https://arxiv.org/abs/1907.09595
15
+
16
+ * MNasNet B1, A1 (SE), Small
17
+ - MnasNet: Platform-Aware Neural Architecture Search for Mobile - https://arxiv.org/abs/1807.11626
18
+
19
+ * FBNet-C
20
+ - FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable NAS - https://arxiv.org/abs/1812.03443
21
+
22
+ * Single-Path NAS Pixel1
23
+ - Single-Path NAS: Designing Hardware-Efficient ConvNets - https://arxiv.org/abs/1904.02877
24
+
25
+ * And likely more...
26
+
27
+ Hacked together by / Copyright 2020 Ross Wightman
28
+ """
29
+ import torch.nn as nn
30
+ import torch.nn.functional as F
31
+
32
+ from .config import layer_config_kwargs, is_scriptable
33
+ from .conv2d_layers import select_conv2d
34
+ from .helpers import load_pretrained
35
+ from .efficientnet_builder import *
36
+
37
+ __all__ = ['GenEfficientNet', 'mnasnet_050', 'mnasnet_075', 'mnasnet_100', 'mnasnet_b1', 'mnasnet_140',
38
+ 'semnasnet_050', 'semnasnet_075', 'semnasnet_100', 'mnasnet_a1', 'semnasnet_140', 'mnasnet_small',
39
+ 'mobilenetv2_100', 'mobilenetv2_140', 'mobilenetv2_110d', 'mobilenetv2_120d',
40
+ 'fbnetc_100', 'spnasnet_100', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3',
41
+ 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'efficientnet_b8',
42
+ 'efficientnet_l2', 'efficientnet_es', 'efficientnet_em', 'efficientnet_el',
43
+ 'efficientnet_cc_b0_4e', 'efficientnet_cc_b0_8e', 'efficientnet_cc_b1_8e',
44
+ 'efficientnet_lite0', 'efficientnet_lite1', 'efficientnet_lite2', 'efficientnet_lite3', 'efficientnet_lite4',
45
+ 'tf_efficientnet_b0', 'tf_efficientnet_b1', 'tf_efficientnet_b2', 'tf_efficientnet_b3',
46
+ 'tf_efficientnet_b4', 'tf_efficientnet_b5', 'tf_efficientnet_b6', 'tf_efficientnet_b7', 'tf_efficientnet_b8',
47
+ 'tf_efficientnet_b0_ap', 'tf_efficientnet_b1_ap', 'tf_efficientnet_b2_ap', 'tf_efficientnet_b3_ap',
48
+ 'tf_efficientnet_b4_ap', 'tf_efficientnet_b5_ap', 'tf_efficientnet_b6_ap', 'tf_efficientnet_b7_ap',
49
+ 'tf_efficientnet_b8_ap', 'tf_efficientnet_b0_ns', 'tf_efficientnet_b1_ns', 'tf_efficientnet_b2_ns',
50
+ 'tf_efficientnet_b3_ns', 'tf_efficientnet_b4_ns', 'tf_efficientnet_b5_ns', 'tf_efficientnet_b6_ns',
51
+ 'tf_efficientnet_b7_ns', 'tf_efficientnet_l2_ns', 'tf_efficientnet_l2_ns_475',
52
+ 'tf_efficientnet_es', 'tf_efficientnet_em', 'tf_efficientnet_el',
53
+ 'tf_efficientnet_cc_b0_4e', 'tf_efficientnet_cc_b0_8e', 'tf_efficientnet_cc_b1_8e',
54
+ 'tf_efficientnet_lite0', 'tf_efficientnet_lite1', 'tf_efficientnet_lite2', 'tf_efficientnet_lite3',
55
+ 'tf_efficientnet_lite4',
56
+ 'mixnet_s', 'mixnet_m', 'mixnet_l', 'mixnet_xl', 'tf_mixnet_s', 'tf_mixnet_m', 'tf_mixnet_l']
57
+
58
+
59
+ model_urls = {
60
+ 'mnasnet_050': None,
61
+ 'mnasnet_075': None,
62
+ 'mnasnet_100':
63
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth',
64
+ 'mnasnet_140': None,
65
+ 'mnasnet_small': None,
66
+
67
+ 'semnasnet_050': None,
68
+ 'semnasnet_075': None,
69
+ 'semnasnet_100':
70
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth',
71
+ 'semnasnet_140': None,
72
+
73
+ 'mobilenetv2_100':
74
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth',
75
+ 'mobilenetv2_110d':
76
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth',
77
+ 'mobilenetv2_120d':
78
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth',
79
+ 'mobilenetv2_140':
80
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth',
81
+
82
+ 'fbnetc_100':
83
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth',
84
+ 'spnasnet_100':
85
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth',
86
+
87
+ 'efficientnet_b0':
88
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth',
89
+ 'efficientnet_b1':
90
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth',
91
+ 'efficientnet_b2':
92
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth',
93
+ 'efficientnet_b3':
94
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth',
95
+ 'efficientnet_b4': None,
96
+ 'efficientnet_b5': None,
97
+ 'efficientnet_b6': None,
98
+ 'efficientnet_b7': None,
99
+ 'efficientnet_b8': None,
100
+ 'efficientnet_l2': None,
101
+
102
+ 'efficientnet_es':
103
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth',
104
+ 'efficientnet_em': None,
105
+ 'efficientnet_el': None,
106
+
107
+ 'efficientnet_cc_b0_4e': None,
108
+ 'efficientnet_cc_b0_8e': None,
109
+ 'efficientnet_cc_b1_8e': None,
110
+
111
+ 'efficientnet_lite0': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth',
112
+ 'efficientnet_lite1': None,
113
+ 'efficientnet_lite2': None,
114
+ 'efficientnet_lite3': None,
115
+ 'efficientnet_lite4': None,
116
+
117
+ 'tf_efficientnet_b0':
118
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth',
119
+ 'tf_efficientnet_b1':
120
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth',
121
+ 'tf_efficientnet_b2':
122
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth',
123
+ 'tf_efficientnet_b3':
124
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth',
125
+ 'tf_efficientnet_b4':
126
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth',
127
+ 'tf_efficientnet_b5':
128
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth',
129
+ 'tf_efficientnet_b6':
130
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth',
131
+ 'tf_efficientnet_b7':
132
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth',
133
+ 'tf_efficientnet_b8':
134
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth',
135
+
136
+ 'tf_efficientnet_b0_ap':
137
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth',
138
+ 'tf_efficientnet_b1_ap':
139
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth',
140
+ 'tf_efficientnet_b2_ap':
141
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth',
142
+ 'tf_efficientnet_b3_ap':
143
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth',
144
+ 'tf_efficientnet_b4_ap':
145
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth',
146
+ 'tf_efficientnet_b5_ap':
147
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth',
148
+ 'tf_efficientnet_b6_ap':
149
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth',
150
+ 'tf_efficientnet_b7_ap':
151
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth',
152
+ 'tf_efficientnet_b8_ap':
153
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth',
154
+
155
+ 'tf_efficientnet_b0_ns':
156
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth',
157
+ 'tf_efficientnet_b1_ns':
158
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth',
159
+ 'tf_efficientnet_b2_ns':
160
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth',
161
+ 'tf_efficientnet_b3_ns':
162
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth',
163
+ 'tf_efficientnet_b4_ns':
164
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth',
165
+ 'tf_efficientnet_b5_ns':
166
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth',
167
+ 'tf_efficientnet_b6_ns':
168
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth',
169
+ 'tf_efficientnet_b7_ns':
170
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth',
171
+ 'tf_efficientnet_l2_ns_475':
172
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth',
173
+ 'tf_efficientnet_l2_ns':
174
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth',
175
+
176
+ 'tf_efficientnet_es':
177
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth',
178
+ 'tf_efficientnet_em':
179
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth',
180
+ 'tf_efficientnet_el':
181
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth',
182
+
183
+ 'tf_efficientnet_cc_b0_4e':
184
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth',
185
+ 'tf_efficientnet_cc_b0_8e':
186
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth',
187
+ 'tf_efficientnet_cc_b1_8e':
188
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth',
189
+
190
+ 'tf_efficientnet_lite0':
191
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth',
192
+ 'tf_efficientnet_lite1':
193
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth',
194
+ 'tf_efficientnet_lite2':
195
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth',
196
+ 'tf_efficientnet_lite3':
197
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth',
198
+ 'tf_efficientnet_lite4':
199
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth',
200
+
201
+ 'mixnet_s': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth',
202
+ 'mixnet_m': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth',
203
+ 'mixnet_l': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth',
204
+ 'mixnet_xl': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth',
205
+
206
+ 'tf_mixnet_s':
207
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth',
208
+ 'tf_mixnet_m':
209
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth',
210
+ 'tf_mixnet_l':
211
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth',
212
+ }
213
+
214
+
215
+ class GenEfficientNet(nn.Module):
216
+ """ Generic EfficientNets
217
+
218
+ An implementation of mobile optimized networks that covers:
219
+ * EfficientNet (B0-B8, L2, CondConv, EdgeTPU)
220
+ * MixNet (Small, Medium, and Large, XL)
221
+ * MNASNet A1, B1, and small
222
+ * FBNet C
223
+ * Single-Path NAS Pixel1
224
+ """
225
+
226
+ def __init__(self, block_args, num_classes=1000, in_chans=3, num_features=1280, stem_size=32, fix_stem=False,
227
+ channel_multiplier=1.0, channel_divisor=8, channel_min=None,
228
+ pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_connect_rate=0.,
229
+ se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
230
+ weight_init='goog'):
231
+ super(GenEfficientNet, self).__init__()
232
+ self.drop_rate = drop_rate
233
+
234
+ if not fix_stem:
235
+ stem_size = round_channels(stem_size, channel_multiplier, channel_divisor, channel_min)
236
+ self.conv_stem = select_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type)
237
+ self.bn1 = norm_layer(stem_size, **norm_kwargs)
238
+ self.act1 = act_layer(inplace=True)
239
+ in_chs = stem_size
240
+
241
+ builder = EfficientNetBuilder(
242
+ channel_multiplier, channel_divisor, channel_min,
243
+ pad_type, act_layer, se_kwargs, norm_layer, norm_kwargs, drop_connect_rate)
244
+ self.blocks = nn.Sequential(*builder(in_chs, block_args))
245
+ in_chs = builder.in_chs
246
+
247
+ self.conv_head = select_conv2d(in_chs, num_features, 1, padding=pad_type)
248
+ self.bn2 = norm_layer(num_features, **norm_kwargs)
249
+ self.act2 = act_layer(inplace=True)
250
+ self.global_pool = nn.AdaptiveAvgPool2d(1)
251
+ self.classifier = nn.Linear(num_features, num_classes)
252
+
253
+ for n, m in self.named_modules():
254
+ if weight_init == 'goog':
255
+ initialize_weight_goog(m, n)
256
+ else:
257
+ initialize_weight_default(m, n)
258
+
259
+ def features(self, x):
260
+ x = self.conv_stem(x)
261
+ x = self.bn1(x)
262
+ x = self.act1(x)
263
+ x = self.blocks(x)
264
+ x = self.conv_head(x)
265
+ x = self.bn2(x)
266
+ x = self.act2(x)
267
+ return x
268
+
269
+ def as_sequential(self):
270
+ layers = [self.conv_stem, self.bn1, self.act1]
271
+ layers.extend(self.blocks)
272
+ layers.extend([
273
+ self.conv_head, self.bn2, self.act2,
274
+ self.global_pool, nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier])
275
+ return nn.Sequential(*layers)
276
+
277
+ def forward(self, x):
278
+ x = self.features(x)
279
+ x = self.global_pool(x)
280
+ x = x.flatten(1)
281
+ if self.drop_rate > 0.:
282
+ x = F.dropout(x, p=self.drop_rate, training=self.training)
283
+ return self.classifier(x)
284
+
285
+
286
+ def _create_model(model_kwargs, variant, pretrained=False):
287
+ as_sequential = model_kwargs.pop('as_sequential', False)
288
+ model = GenEfficientNet(**model_kwargs)
289
+ if pretrained:
290
+ load_pretrained(model, model_urls[variant])
291
+ if as_sequential:
292
+ model = model.as_sequential()
293
+ return model
294
+
295
+
296
+ def _gen_mnasnet_a1(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
297
+ """Creates a mnasnet-a1 model.
298
+
299
+ Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
300
+ Paper: https://arxiv.org/pdf/1807.11626.pdf.
301
+
302
+ Args:
303
+ channel_multiplier: multiplier to number of channels per layer.
304
+ """
305
+ arch_def = [
306
+ # stage 0, 112x112 in
307
+ ['ds_r1_k3_s1_e1_c16_noskip'],
308
+ # stage 1, 112x112 in
309
+ ['ir_r2_k3_s2_e6_c24'],
310
+ # stage 2, 56x56 in
311
+ ['ir_r3_k5_s2_e3_c40_se0.25'],
312
+ # stage 3, 28x28 in
313
+ ['ir_r4_k3_s2_e6_c80'],
314
+ # stage 4, 14x14in
315
+ ['ir_r2_k3_s1_e6_c112_se0.25'],
316
+ # stage 5, 14x14in
317
+ ['ir_r3_k5_s2_e6_c160_se0.25'],
318
+ # stage 6, 7x7 in
319
+ ['ir_r1_k3_s1_e6_c320'],
320
+ ]
321
+ with layer_config_kwargs(kwargs):
322
+ model_kwargs = dict(
323
+ block_args=decode_arch_def(arch_def),
324
+ stem_size=32,
325
+ channel_multiplier=channel_multiplier,
326
+ act_layer=resolve_act_layer(kwargs, 'relu'),
327
+ norm_kwargs=resolve_bn_args(kwargs),
328
+ **kwargs
329
+ )
330
+ model = _create_model(model_kwargs, variant, pretrained)
331
+ return model
332
+
333
+
334
+ def _gen_mnasnet_b1(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
335
+ """Creates a mnasnet-b1 model.
336
+
337
+ Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
338
+ Paper: https://arxiv.org/pdf/1807.11626.pdf.
339
+
340
+ Args:
341
+ channel_multiplier: multiplier to number of channels per layer.
342
+ """
343
+ arch_def = [
344
+ # stage 0, 112x112 in
345
+ ['ds_r1_k3_s1_c16_noskip'],
346
+ # stage 1, 112x112 in
347
+ ['ir_r3_k3_s2_e3_c24'],
348
+ # stage 2, 56x56 in
349
+ ['ir_r3_k5_s2_e3_c40'],
350
+ # stage 3, 28x28 in
351
+ ['ir_r3_k5_s2_e6_c80'],
352
+ # stage 4, 14x14in
353
+ ['ir_r2_k3_s1_e6_c96'],
354
+ # stage 5, 14x14in
355
+ ['ir_r4_k5_s2_e6_c192'],
356
+ # stage 6, 7x7 in
357
+ ['ir_r1_k3_s1_e6_c320_noskip']
358
+ ]
359
+ with layer_config_kwargs(kwargs):
360
+ model_kwargs = dict(
361
+ block_args=decode_arch_def(arch_def),
362
+ stem_size=32,
363
+ channel_multiplier=channel_multiplier,
364
+ act_layer=resolve_act_layer(kwargs, 'relu'),
365
+ norm_kwargs=resolve_bn_args(kwargs),
366
+ **kwargs
367
+ )
368
+ model = _create_model(model_kwargs, variant, pretrained)
369
+ return model
370
+
371
+
372
+ def _gen_mnasnet_small(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
373
+ """Creates a mnasnet-b1 model.
374
+
375
+ Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
376
+ Paper: https://arxiv.org/pdf/1807.11626.pdf.
377
+
378
+ Args:
379
+ channel_multiplier: multiplier to number of channels per layer.
380
+ """
381
+ arch_def = [
382
+ ['ds_r1_k3_s1_c8'],
383
+ ['ir_r1_k3_s2_e3_c16'],
384
+ ['ir_r2_k3_s2_e6_c16'],
385
+ ['ir_r4_k5_s2_e6_c32_se0.25'],
386
+ ['ir_r3_k3_s1_e6_c32_se0.25'],
387
+ ['ir_r3_k5_s2_e6_c88_se0.25'],
388
+ ['ir_r1_k3_s1_e6_c144']
389
+ ]
390
+ with layer_config_kwargs(kwargs):
391
+ model_kwargs = dict(
392
+ block_args=decode_arch_def(arch_def),
393
+ stem_size=8,
394
+ channel_multiplier=channel_multiplier,
395
+ act_layer=resolve_act_layer(kwargs, 'relu'),
396
+ norm_kwargs=resolve_bn_args(kwargs),
397
+ **kwargs
398
+ )
399
+ model = _create_model(model_kwargs, variant, pretrained)
400
+ return model
401
+
402
+
403
+ def _gen_mobilenet_v2(
404
+ variant, channel_multiplier=1.0, depth_multiplier=1.0, fix_stem_head=False, pretrained=False, **kwargs):
405
+ """ Generate MobileNet-V2 network
406
+ Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py
407
+ Paper: https://arxiv.org/abs/1801.04381
408
+ """
409
+ arch_def = [
410
+ ['ds_r1_k3_s1_c16'],
411
+ ['ir_r2_k3_s2_e6_c24'],
412
+ ['ir_r3_k3_s2_e6_c32'],
413
+ ['ir_r4_k3_s2_e6_c64'],
414
+ ['ir_r3_k3_s1_e6_c96'],
415
+ ['ir_r3_k3_s2_e6_c160'],
416
+ ['ir_r1_k3_s1_e6_c320'],
417
+ ]
418
+ with layer_config_kwargs(kwargs):
419
+ model_kwargs = dict(
420
+ block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, fix_first_last=fix_stem_head),
421
+ num_features=1280 if fix_stem_head else round_channels(1280, channel_multiplier, 8, None),
422
+ stem_size=32,
423
+ fix_stem=fix_stem_head,
424
+ channel_multiplier=channel_multiplier,
425
+ norm_kwargs=resolve_bn_args(kwargs),
426
+ act_layer=nn.ReLU6,
427
+ **kwargs
428
+ )
429
+ model = _create_model(model_kwargs, variant, pretrained)
430
+ return model
431
+
432
+
433
+ def _gen_fbnetc(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
434
+ """ FBNet-C
435
+
436
+ Paper: https://arxiv.org/abs/1812.03443
437
+ Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py
438
+
439
+ NOTE: the impl above does not relate to the 'C' variant here, that was derived from paper,
440
+ it was used to confirm some building block details
441
+ """
442
+ arch_def = [
443
+ ['ir_r1_k3_s1_e1_c16'],
444
+ ['ir_r1_k3_s2_e6_c24', 'ir_r2_k3_s1_e1_c24'],
445
+ ['ir_r1_k5_s2_e6_c32', 'ir_r1_k5_s1_e3_c32', 'ir_r1_k5_s1_e6_c32', 'ir_r1_k3_s1_e6_c32'],
446
+ ['ir_r1_k5_s2_e6_c64', 'ir_r1_k5_s1_e3_c64', 'ir_r2_k5_s1_e6_c64'],
447
+ ['ir_r3_k5_s1_e6_c112', 'ir_r1_k5_s1_e3_c112'],
448
+ ['ir_r4_k5_s2_e6_c184'],
449
+ ['ir_r1_k3_s1_e6_c352'],
450
+ ]
451
+ with layer_config_kwargs(kwargs):
452
+ model_kwargs = dict(
453
+ block_args=decode_arch_def(arch_def),
454
+ stem_size=16,
455
+ num_features=1984, # paper suggests this, but is not 100% clear
456
+ channel_multiplier=channel_multiplier,
457
+ act_layer=resolve_act_layer(kwargs, 'relu'),
458
+ norm_kwargs=resolve_bn_args(kwargs),
459
+ **kwargs
460
+ )
461
+ model = _create_model(model_kwargs, variant, pretrained)
462
+ return model
463
+
464
+
465
+ def _gen_spnasnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
466
+ """Creates the Single-Path NAS model from search targeted for Pixel1 phone.
467
+
468
+ Paper: https://arxiv.org/abs/1904.02877
469
+
470
+ Args:
471
+ channel_multiplier: multiplier to number of channels per layer.
472
+ """
473
+ arch_def = [
474
+ # stage 0, 112x112 in
475
+ ['ds_r1_k3_s1_c16_noskip'],
476
+ # stage 1, 112x112 in
477
+ ['ir_r3_k3_s2_e3_c24'],
478
+ # stage 2, 56x56 in
479
+ ['ir_r1_k5_s2_e6_c40', 'ir_r3_k3_s1_e3_c40'],
480
+ # stage 3, 28x28 in
481
+ ['ir_r1_k5_s2_e6_c80', 'ir_r3_k3_s1_e3_c80'],
482
+ # stage 4, 14x14in
483
+ ['ir_r1_k5_s1_e6_c96', 'ir_r3_k5_s1_e3_c96'],
484
+ # stage 5, 14x14in
485
+ ['ir_r4_k5_s2_e6_c192'],
486
+ # stage 6, 7x7 in
487
+ ['ir_r1_k3_s1_e6_c320_noskip']
488
+ ]
489
+ with layer_config_kwargs(kwargs):
490
+ model_kwargs = dict(
491
+ block_args=decode_arch_def(arch_def),
492
+ stem_size=32,
493
+ channel_multiplier=channel_multiplier,
494
+ act_layer=resolve_act_layer(kwargs, 'relu'),
495
+ norm_kwargs=resolve_bn_args(kwargs),
496
+ **kwargs
497
+ )
498
+ model = _create_model(model_kwargs, variant, pretrained)
499
+ return model
500
+
501
+
502
+ def _gen_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs):
503
+ """Creates an EfficientNet model.
504
+
505
+ Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
506
+ Paper: https://arxiv.org/abs/1905.11946
507
+
508
+ EfficientNet params
509
+ name: (channel_multiplier, depth_multiplier, resolution, dropout_rate)
510
+ 'efficientnet-b0': (1.0, 1.0, 224, 0.2),
511
+ 'efficientnet-b1': (1.0, 1.1, 240, 0.2),
512
+ 'efficientnet-b2': (1.1, 1.2, 260, 0.3),
513
+ 'efficientnet-b3': (1.2, 1.4, 300, 0.3),
514
+ 'efficientnet-b4': (1.4, 1.8, 380, 0.4),
515
+ 'efficientnet-b5': (1.6, 2.2, 456, 0.4),
516
+ 'efficientnet-b6': (1.8, 2.6, 528, 0.5),
517
+ 'efficientnet-b7': (2.0, 3.1, 600, 0.5),
518
+ 'efficientnet-b8': (2.2, 3.6, 672, 0.5),
519
+
520
+ Args:
521
+ channel_multiplier: multiplier to number of channels per layer
522
+ depth_multiplier: multiplier to number of repeats per stage
523
+
524
+ """
525
+ arch_def = [
526
+ ['ds_r1_k3_s1_e1_c16_se0.25'],
527
+ ['ir_r2_k3_s2_e6_c24_se0.25'],
528
+ ['ir_r2_k5_s2_e6_c40_se0.25'],
529
+ ['ir_r3_k3_s2_e6_c80_se0.25'],
530
+ ['ir_r3_k5_s1_e6_c112_se0.25'],
531
+ ['ir_r4_k5_s2_e6_c192_se0.25'],
532
+ ['ir_r1_k3_s1_e6_c320_se0.25'],
533
+ ]
534
+ with layer_config_kwargs(kwargs):
535
+ model_kwargs = dict(
536
+ block_args=decode_arch_def(arch_def, depth_multiplier),
537
+ num_features=round_channels(1280, channel_multiplier, 8, None),
538
+ stem_size=32,
539
+ channel_multiplier=channel_multiplier,
540
+ act_layer=resolve_act_layer(kwargs, 'swish'),
541
+ norm_kwargs=resolve_bn_args(kwargs),
542
+ **kwargs,
543
+ )
544
+ model = _create_model(model_kwargs, variant, pretrained)
545
+ return model
546
+
547
+
548
+ def _gen_efficientnet_edge(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs):
549
+ arch_def = [
550
+ # NOTE `fc` is present to override a mismatch between stem channels and in chs not
551
+ # present in other models
552
+ ['er_r1_k3_s1_e4_c24_fc24_noskip'],
553
+ ['er_r2_k3_s2_e8_c32'],
554
+ ['er_r4_k3_s2_e8_c48'],
555
+ ['ir_r5_k5_s2_e8_c96'],
556
+ ['ir_r4_k5_s1_e8_c144'],
557
+ ['ir_r2_k5_s2_e8_c192'],
558
+ ]
559
+ with layer_config_kwargs(kwargs):
560
+ model_kwargs = dict(
561
+ block_args=decode_arch_def(arch_def, depth_multiplier),
562
+ num_features=round_channels(1280, channel_multiplier, 8, None),
563
+ stem_size=32,
564
+ channel_multiplier=channel_multiplier,
565
+ act_layer=resolve_act_layer(kwargs, 'relu'),
566
+ norm_kwargs=resolve_bn_args(kwargs),
567
+ **kwargs,
568
+ )
569
+ model = _create_model(model_kwargs, variant, pretrained)
570
+ return model
571
+
572
+
573
+ def _gen_efficientnet_condconv(
574
+ variant, channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=1, pretrained=False, **kwargs):
575
+ """Creates an efficientnet-condconv model."""
576
+ arch_def = [
577
+ ['ds_r1_k3_s1_e1_c16_se0.25'],
578
+ ['ir_r2_k3_s2_e6_c24_se0.25'],
579
+ ['ir_r2_k5_s2_e6_c40_se0.25'],
580
+ ['ir_r3_k3_s2_e6_c80_se0.25'],
581
+ ['ir_r3_k5_s1_e6_c112_se0.25_cc4'],
582
+ ['ir_r4_k5_s2_e6_c192_se0.25_cc4'],
583
+ ['ir_r1_k3_s1_e6_c320_se0.25_cc4'],
584
+ ]
585
+ with layer_config_kwargs(kwargs):
586
+ model_kwargs = dict(
587
+ block_args=decode_arch_def(arch_def, depth_multiplier, experts_multiplier=experts_multiplier),
588
+ num_features=round_channels(1280, channel_multiplier, 8, None),
589
+ stem_size=32,
590
+ channel_multiplier=channel_multiplier,
591
+ act_layer=resolve_act_layer(kwargs, 'swish'),
592
+ norm_kwargs=resolve_bn_args(kwargs),
593
+ **kwargs,
594
+ )
595
+ model = _create_model(model_kwargs, variant, pretrained)
596
+ return model
597
+
598
+
599
+ def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs):
600
+ """Creates an EfficientNet-Lite model.
601
+
602
+ Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
603
+ Paper: https://arxiv.org/abs/1905.11946
604
+
605
+ EfficientNet params
606
+ name: (channel_multiplier, depth_multiplier, resolution, dropout_rate)
607
+ 'efficientnet-lite0': (1.0, 1.0, 224, 0.2),
608
+ 'efficientnet-lite1': (1.0, 1.1, 240, 0.2),
609
+ 'efficientnet-lite2': (1.1, 1.2, 260, 0.3),
610
+ 'efficientnet-lite3': (1.2, 1.4, 280, 0.3),
611
+ 'efficientnet-lite4': (1.4, 1.8, 300, 0.3),
612
+
613
+ Args:
614
+ channel_multiplier: multiplier to number of channels per layer
615
+ depth_multiplier: multiplier to number of repeats per stage
616
+ """
617
+ arch_def = [
618
+ ['ds_r1_k3_s1_e1_c16'],
619
+ ['ir_r2_k3_s2_e6_c24'],
620
+ ['ir_r2_k5_s2_e6_c40'],
621
+ ['ir_r3_k3_s2_e6_c80'],
622
+ ['ir_r3_k5_s1_e6_c112'],
623
+ ['ir_r4_k5_s2_e6_c192'],
624
+ ['ir_r1_k3_s1_e6_c320'],
625
+ ]
626
+ with layer_config_kwargs(kwargs):
627
+ model_kwargs = dict(
628
+ block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True),
629
+ num_features=1280,
630
+ stem_size=32,
631
+ fix_stem=True,
632
+ channel_multiplier=channel_multiplier,
633
+ act_layer=nn.ReLU6,
634
+ norm_kwargs=resolve_bn_args(kwargs),
635
+ **kwargs,
636
+ )
637
+ model = _create_model(model_kwargs, variant, pretrained)
638
+ return model
639
+
640
+
641
+ def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
642
+ """Creates a MixNet Small model.
643
+
644
+ Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet
645
+ Paper: https://arxiv.org/abs/1907.09595
646
+ """
647
+ arch_def = [
648
+ # stage 0, 112x112 in
649
+ ['ds_r1_k3_s1_e1_c16'], # relu
650
+ # stage 1, 112x112 in
651
+ ['ir_r1_k3_a1.1_p1.1_s2_e6_c24', 'ir_r1_k3_a1.1_p1.1_s1_e3_c24'], # relu
652
+ # stage 2, 56x56 in
653
+ ['ir_r1_k3.5.7_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish
654
+ # stage 3, 28x28 in
655
+ ['ir_r1_k3.5.7_p1.1_s2_e6_c80_se0.25_nsw', 'ir_r2_k3.5_p1.1_s1_e6_c80_se0.25_nsw'], # swish
656
+ # stage 4, 14x14in
657
+ ['ir_r1_k3.5.7_a1.1_p1.1_s1_e6_c120_se0.5_nsw', 'ir_r2_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish
658
+ # stage 5, 14x14in
659
+ ['ir_r1_k3.5.7.9.11_s2_e6_c200_se0.5_nsw', 'ir_r2_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish
660
+ # 7x7
661
+ ]
662
+ with layer_config_kwargs(kwargs):
663
+ model_kwargs = dict(
664
+ block_args=decode_arch_def(arch_def),
665
+ num_features=1536,
666
+ stem_size=16,
667
+ channel_multiplier=channel_multiplier,
668
+ act_layer=resolve_act_layer(kwargs, 'relu'),
669
+ norm_kwargs=resolve_bn_args(kwargs),
670
+ **kwargs
671
+ )
672
+ model = _create_model(model_kwargs, variant, pretrained)
673
+ return model
674
+
675
+
676
+ def _gen_mixnet_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs):
677
+ """Creates a MixNet Medium-Large model.
678
+
679
+ Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet
680
+ Paper: https://arxiv.org/abs/1907.09595
681
+ """
682
+ arch_def = [
683
+ # stage 0, 112x112 in
684
+ ['ds_r1_k3_s1_e1_c24'], # relu
685
+ # stage 1, 112x112 in
686
+ ['ir_r1_k3.5.7_a1.1_p1.1_s2_e6_c32', 'ir_r1_k3_a1.1_p1.1_s1_e3_c32'], # relu
687
+ # stage 2, 56x56 in
688
+ ['ir_r1_k3.5.7.9_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish
689
+ # stage 3, 28x28 in
690
+ ['ir_r1_k3.5.7_s2_e6_c80_se0.25_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e6_c80_se0.25_nsw'], # swish
691
+ # stage 4, 14x14in
692
+ ['ir_r1_k3_s1_e6_c120_se0.5_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish
693
+ # stage 5, 14x14in
694
+ ['ir_r1_k3.5.7.9_s2_e6_c200_se0.5_nsw', 'ir_r3_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish
695
+ # 7x7
696
+ ]
697
+ with layer_config_kwargs(kwargs):
698
+ model_kwargs = dict(
699
+ block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'),
700
+ num_features=1536,
701
+ stem_size=24,
702
+ channel_multiplier=channel_multiplier,
703
+ act_layer=resolve_act_layer(kwargs, 'relu'),
704
+ norm_kwargs=resolve_bn_args(kwargs),
705
+ **kwargs
706
+ )
707
+ model = _create_model(model_kwargs, variant, pretrained)
708
+ return model
709
+
710
+
711
+ def mnasnet_050(pretrained=False, **kwargs):
712
+ """ MNASNet B1, depth multiplier of 0.5. """
713
+ model = _gen_mnasnet_b1('mnasnet_050', 0.5, pretrained=pretrained, **kwargs)
714
+ return model
715
+
716
+
717
+ def mnasnet_075(pretrained=False, **kwargs):
718
+ """ MNASNet B1, depth multiplier of 0.75. """
719
+ model = _gen_mnasnet_b1('mnasnet_075', 0.75, pretrained=pretrained, **kwargs)
720
+ return model
721
+
722
+
723
+ def mnasnet_100(pretrained=False, **kwargs):
724
+ """ MNASNet B1, depth multiplier of 1.0. """
725
+ model = _gen_mnasnet_b1('mnasnet_100', 1.0, pretrained=pretrained, **kwargs)
726
+ return model
727
+
728
+
729
+ def mnasnet_b1(pretrained=False, **kwargs):
730
+ """ MNASNet B1, depth multiplier of 1.0. """
731
+ return mnasnet_100(pretrained, **kwargs)
732
+
733
+
734
+ def mnasnet_140(pretrained=False, **kwargs):
735
+ """ MNASNet B1, depth multiplier of 1.4 """
736
+ model = _gen_mnasnet_b1('mnasnet_140', 1.4, pretrained=pretrained, **kwargs)
737
+ return model
738
+
739
+
740
+ def semnasnet_050(pretrained=False, **kwargs):
741
+ """ MNASNet A1 (w/ SE), depth multiplier of 0.5 """
742
+ model = _gen_mnasnet_a1('semnasnet_050', 0.5, pretrained=pretrained, **kwargs)
743
+ return model
744
+
745
+
746
+ def semnasnet_075(pretrained=False, **kwargs):
747
+ """ MNASNet A1 (w/ SE), depth multiplier of 0.75. """
748
+ model = _gen_mnasnet_a1('semnasnet_075', 0.75, pretrained=pretrained, **kwargs)
749
+ return model
750
+
751
+
752
+ def semnasnet_100(pretrained=False, **kwargs):
753
+ """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """
754
+ model = _gen_mnasnet_a1('semnasnet_100', 1.0, pretrained=pretrained, **kwargs)
755
+ return model
756
+
757
+
758
+ def mnasnet_a1(pretrained=False, **kwargs):
759
+ """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """
760
+ return semnasnet_100(pretrained, **kwargs)
761
+
762
+
763
+ def semnasnet_140(pretrained=False, **kwargs):
764
+ """ MNASNet A1 (w/ SE), depth multiplier of 1.4. """
765
+ model = _gen_mnasnet_a1('semnasnet_140', 1.4, pretrained=pretrained, **kwargs)
766
+ return model
767
+
768
+
769
+ def mnasnet_small(pretrained=False, **kwargs):
770
+ """ MNASNet Small, depth multiplier of 1.0. """
771
+ model = _gen_mnasnet_small('mnasnet_small', 1.0, pretrained=pretrained, **kwargs)
772
+ return model
773
+
774
+
775
+ def mobilenetv2_100(pretrained=False, **kwargs):
776
+ """ MobileNet V2 w/ 1.0 channel multiplier """
777
+ model = _gen_mobilenet_v2('mobilenetv2_100', 1.0, pretrained=pretrained, **kwargs)
778
+ return model
779
+
780
+
781
+ def mobilenetv2_140(pretrained=False, **kwargs):
782
+ """ MobileNet V2 w/ 1.4 channel multiplier """
783
+ model = _gen_mobilenet_v2('mobilenetv2_140', 1.4, pretrained=pretrained, **kwargs)
784
+ return model
785
+
786
+
787
+ def mobilenetv2_110d(pretrained=False, **kwargs):
788
+ """ MobileNet V2 w/ 1.1 channel, 1.2 depth multipliers"""
789
+ model = _gen_mobilenet_v2(
790
+ 'mobilenetv2_110d', 1.1, depth_multiplier=1.2, fix_stem_head=True, pretrained=pretrained, **kwargs)
791
+ return model
792
+
793
+
794
+ def mobilenetv2_120d(pretrained=False, **kwargs):
795
+ """ MobileNet V2 w/ 1.2 channel, 1.4 depth multipliers """
796
+ model = _gen_mobilenet_v2(
797
+ 'mobilenetv2_120d', 1.2, depth_multiplier=1.4, fix_stem_head=True, pretrained=pretrained, **kwargs)
798
+ return model
799
+
800
+
801
+ def fbnetc_100(pretrained=False, **kwargs):
802
+ """ FBNet-C """
803
+ if pretrained:
804
+ # pretrained model trained with non-default BN epsilon
805
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
806
+ model = _gen_fbnetc('fbnetc_100', 1.0, pretrained=pretrained, **kwargs)
807
+ return model
808
+
809
+
810
+ def spnasnet_100(pretrained=False, **kwargs):
811
+ """ Single-Path NAS Pixel1"""
812
+ model = _gen_spnasnet('spnasnet_100', 1.0, pretrained=pretrained, **kwargs)
813
+ return model
814
+
815
+
816
+ def efficientnet_b0(pretrained=False, **kwargs):
817
+ """ EfficientNet-B0 """
818
+ # NOTE for train set drop_rate=0.2, drop_connect_rate=0.2
819
+ model = _gen_efficientnet(
820
+ 'efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
821
+ return model
822
+
823
+
824
+ def efficientnet_b1(pretrained=False, **kwargs):
825
+ """ EfficientNet-B1 """
826
+ # NOTE for train set drop_rate=0.2, drop_connect_rate=0.2
827
+ model = _gen_efficientnet(
828
+ 'efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs)
829
+ return model
830
+
831
+
832
+ def efficientnet_b2(pretrained=False, **kwargs):
833
+ """ EfficientNet-B2 """
834
+ # NOTE for train set drop_rate=0.3, drop_connect_rate=0.2
835
+ model = _gen_efficientnet(
836
+ 'efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs)
837
+ return model
838
+
839
+
840
+ def efficientnet_b3(pretrained=False, **kwargs):
841
+ """ EfficientNet-B3 """
842
+ # NOTE for train set drop_rate=0.3, drop_connect_rate=0.2
843
+ model = _gen_efficientnet(
844
+ 'efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs)
845
+ return model
846
+
847
+
848
+ def efficientnet_b4(pretrained=False, **kwargs):
849
+ """ EfficientNet-B4 """
850
+ # NOTE for train set drop_rate=0.4, drop_connect_rate=0.2
851
+ model = _gen_efficientnet(
852
+ 'efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs)
853
+ return model
854
+
855
+
856
+ def efficientnet_b5(pretrained=False, **kwargs):
857
+ """ EfficientNet-B5 """
858
+ # NOTE for train set drop_rate=0.4, drop_connect_rate=0.2
859
+ model = _gen_efficientnet(
860
+ 'efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs)
861
+ return model
862
+
863
+
864
+ def efficientnet_b6(pretrained=False, **kwargs):
865
+ """ EfficientNet-B6 """
866
+ # NOTE for train set drop_rate=0.5, drop_connect_rate=0.2
867
+ model = _gen_efficientnet(
868
+ 'efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs)
869
+ return model
870
+
871
+
872
+ def efficientnet_b7(pretrained=False, **kwargs):
873
+ """ EfficientNet-B7 """
874
+ # NOTE for train set drop_rate=0.5, drop_connect_rate=0.2
875
+ model = _gen_efficientnet(
876
+ 'efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs)
877
+ return model
878
+
879
+
880
+ def efficientnet_b8(pretrained=False, **kwargs):
881
+ """ EfficientNet-B8 """
882
+ # NOTE for train set drop_rate=0.5, drop_connect_rate=0.2
883
+ model = _gen_efficientnet(
884
+ 'efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs)
885
+ return model
886
+
887
+
888
+ def efficientnet_l2(pretrained=False, **kwargs):
889
+ """ EfficientNet-L2. """
890
+ # NOTE for train, drop_rate should be 0.5
891
+ model = _gen_efficientnet(
892
+ 'efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs)
893
+ return model
894
+
895
+
896
+ def efficientnet_es(pretrained=False, **kwargs):
897
+ """ EfficientNet-Edge Small. """
898
+ model = _gen_efficientnet_edge(
899
+ 'efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
900
+ return model
901
+
902
+
903
+ def efficientnet_em(pretrained=False, **kwargs):
904
+ """ EfficientNet-Edge-Medium. """
905
+ model = _gen_efficientnet_edge(
906
+ 'efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs)
907
+ return model
908
+
909
+
910
+ def efficientnet_el(pretrained=False, **kwargs):
911
+ """ EfficientNet-Edge-Large. """
912
+ model = _gen_efficientnet_edge(
913
+ 'efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs)
914
+ return model
915
+
916
+
917
+ def efficientnet_cc_b0_4e(pretrained=False, **kwargs):
918
+ """ EfficientNet-CondConv-B0 w/ 8 Experts """
919
+ # NOTE for train set drop_rate=0.25, drop_connect_rate=0.2
920
+ model = _gen_efficientnet_condconv(
921
+ 'efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
922
+ return model
923
+
924
+
925
+ def efficientnet_cc_b0_8e(pretrained=False, **kwargs):
926
+ """ EfficientNet-CondConv-B0 w/ 8 Experts """
927
+ # NOTE for train set drop_rate=0.25, drop_connect_rate=0.2
928
+ model = _gen_efficientnet_condconv(
929
+ 'efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2,
930
+ pretrained=pretrained, **kwargs)
931
+ return model
932
+
933
+
934
+ def efficientnet_cc_b1_8e(pretrained=False, **kwargs):
935
+ """ EfficientNet-CondConv-B1 w/ 8 Experts """
936
+ # NOTE for train set drop_rate=0.25, drop_connect_rate=0.2
937
+ model = _gen_efficientnet_condconv(
938
+ 'efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2,
939
+ pretrained=pretrained, **kwargs)
940
+ return model
941
+
942
+
943
+ def efficientnet_lite0(pretrained=False, **kwargs):
944
+ """ EfficientNet-Lite0 """
945
+ model = _gen_efficientnet_lite(
946
+ 'efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
947
+ return model
948
+
949
+
950
+ def efficientnet_lite1(pretrained=False, **kwargs):
951
+ """ EfficientNet-Lite1 """
952
+ model = _gen_efficientnet_lite(
953
+ 'efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs)
954
+ return model
955
+
956
+
957
+ def efficientnet_lite2(pretrained=False, **kwargs):
958
+ """ EfficientNet-Lite2 """
959
+ model = _gen_efficientnet_lite(
960
+ 'efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs)
961
+ return model
962
+
963
+
964
+ def efficientnet_lite3(pretrained=False, **kwargs):
965
+ """ EfficientNet-Lite3 """
966
+ model = _gen_efficientnet_lite(
967
+ 'efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs)
968
+ return model
969
+
970
+
971
+ def efficientnet_lite4(pretrained=False, **kwargs):
972
+ """ EfficientNet-Lite4 """
973
+ model = _gen_efficientnet_lite(
974
+ 'efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs)
975
+ return model
976
+
977
+
978
+ def tf_efficientnet_b0(pretrained=False, **kwargs):
979
+ """ EfficientNet-B0 AutoAug. Tensorflow compatible variant """
980
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
981
+ kwargs['pad_type'] = 'same'
982
+ model = _gen_efficientnet(
983
+ 'tf_efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
984
+ return model
985
+
986
+
987
+ def tf_efficientnet_b1(pretrained=False, **kwargs):
988
+ """ EfficientNet-B1 AutoAug. Tensorflow compatible variant """
989
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
990
+ kwargs['pad_type'] = 'same'
991
+ model = _gen_efficientnet(
992
+ 'tf_efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs)
993
+ return model
994
+
995
+
996
+ def tf_efficientnet_b2(pretrained=False, **kwargs):
997
+ """ EfficientNet-B2 AutoAug. Tensorflow compatible variant """
998
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
999
+ kwargs['pad_type'] = 'same'
1000
+ model = _gen_efficientnet(
1001
+ 'tf_efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs)
1002
+ return model
1003
+
1004
+
1005
+ def tf_efficientnet_b3(pretrained=False, **kwargs):
1006
+ """ EfficientNet-B3 AutoAug. Tensorflow compatible variant """
1007
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1008
+ kwargs['pad_type'] = 'same'
1009
+ model = _gen_efficientnet(
1010
+ 'tf_efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs)
1011
+ return model
1012
+
1013
+
1014
+ def tf_efficientnet_b4(pretrained=False, **kwargs):
1015
+ """ EfficientNet-B4 AutoAug. Tensorflow compatible variant """
1016
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1017
+ kwargs['pad_type'] = 'same'
1018
+ model = _gen_efficientnet(
1019
+ 'tf_efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs)
1020
+ return model
1021
+
1022
+
1023
+ def tf_efficientnet_b5(pretrained=False, **kwargs):
1024
+ """ EfficientNet-B5 RandAug. Tensorflow compatible variant """
1025
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1026
+ kwargs['pad_type'] = 'same'
1027
+ model = _gen_efficientnet(
1028
+ 'tf_efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs)
1029
+ return model
1030
+
1031
+
1032
+ def tf_efficientnet_b6(pretrained=False, **kwargs):
1033
+ """ EfficientNet-B6 AutoAug. Tensorflow compatible variant """
1034
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1035
+ kwargs['pad_type'] = 'same'
1036
+ model = _gen_efficientnet(
1037
+ 'tf_efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs)
1038
+ return model
1039
+
1040
+
1041
+ def tf_efficientnet_b7(pretrained=False, **kwargs):
1042
+ """ EfficientNet-B7 RandAug. Tensorflow compatible variant """
1043
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1044
+ kwargs['pad_type'] = 'same'
1045
+ model = _gen_efficientnet(
1046
+ 'tf_efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs)
1047
+ return model
1048
+
1049
+
1050
+ def tf_efficientnet_b8(pretrained=False, **kwargs):
1051
+ """ EfficientNet-B8 RandAug. Tensorflow compatible variant """
1052
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1053
+ kwargs['pad_type'] = 'same'
1054
+ model = _gen_efficientnet(
1055
+ 'tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs)
1056
+ return model
1057
+
1058
+
1059
+ def tf_efficientnet_b0_ap(pretrained=False, **kwargs):
1060
+ """ EfficientNet-B0 AdvProp. Tensorflow compatible variant
1061
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1062
+ """
1063
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1064
+ kwargs['pad_type'] = 'same'
1065
+ model = _gen_efficientnet(
1066
+ 'tf_efficientnet_b0_ap', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
1067
+ return model
1068
+
1069
+
1070
+ def tf_efficientnet_b1_ap(pretrained=False, **kwargs):
1071
+ """ EfficientNet-B1 AdvProp. Tensorflow compatible variant
1072
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1073
+ """
1074
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1075
+ kwargs['pad_type'] = 'same'
1076
+ model = _gen_efficientnet(
1077
+ 'tf_efficientnet_b1_ap', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs)
1078
+ return model
1079
+
1080
+
1081
+ def tf_efficientnet_b2_ap(pretrained=False, **kwargs):
1082
+ """ EfficientNet-B2 AdvProp. Tensorflow compatible variant
1083
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1084
+ """
1085
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1086
+ kwargs['pad_type'] = 'same'
1087
+ model = _gen_efficientnet(
1088
+ 'tf_efficientnet_b2_ap', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs)
1089
+ return model
1090
+
1091
+
1092
+ def tf_efficientnet_b3_ap(pretrained=False, **kwargs):
1093
+ """ EfficientNet-B3 AdvProp. Tensorflow compatible variant
1094
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1095
+ """
1096
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1097
+ kwargs['pad_type'] = 'same'
1098
+ model = _gen_efficientnet(
1099
+ 'tf_efficientnet_b3_ap', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs)
1100
+ return model
1101
+
1102
+
1103
+ def tf_efficientnet_b4_ap(pretrained=False, **kwargs):
1104
+ """ EfficientNet-B4 AdvProp. Tensorflow compatible variant
1105
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1106
+ """
1107
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1108
+ kwargs['pad_type'] = 'same'
1109
+ model = _gen_efficientnet(
1110
+ 'tf_efficientnet_b4_ap', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs)
1111
+ return model
1112
+
1113
+
1114
+ def tf_efficientnet_b5_ap(pretrained=False, **kwargs):
1115
+ """ EfficientNet-B5 AdvProp. Tensorflow compatible variant
1116
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1117
+ """
1118
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1119
+ kwargs['pad_type'] = 'same'
1120
+ model = _gen_efficientnet(
1121
+ 'tf_efficientnet_b5_ap', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs)
1122
+ return model
1123
+
1124
+
1125
+ def tf_efficientnet_b6_ap(pretrained=False, **kwargs):
1126
+ """ EfficientNet-B6 AdvProp. Tensorflow compatible variant
1127
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1128
+ """
1129
+ # NOTE for train, drop_rate should be 0.5
1130
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1131
+ kwargs['pad_type'] = 'same'
1132
+ model = _gen_efficientnet(
1133
+ 'tf_efficientnet_b6_ap', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs)
1134
+ return model
1135
+
1136
+
1137
+ def tf_efficientnet_b7_ap(pretrained=False, **kwargs):
1138
+ """ EfficientNet-B7 AdvProp. Tensorflow compatible variant
1139
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1140
+ """
1141
+ # NOTE for train, drop_rate should be 0.5
1142
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1143
+ kwargs['pad_type'] = 'same'
1144
+ model = _gen_efficientnet(
1145
+ 'tf_efficientnet_b7_ap', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs)
1146
+ return model
1147
+
1148
+
1149
+ def tf_efficientnet_b8_ap(pretrained=False, **kwargs):
1150
+ """ EfficientNet-B8 AdvProp. Tensorflow compatible variant
1151
+ Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665)
1152
+ """
1153
+ # NOTE for train, drop_rate should be 0.5
1154
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1155
+ kwargs['pad_type'] = 'same'
1156
+ model = _gen_efficientnet(
1157
+ 'tf_efficientnet_b8_ap', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs)
1158
+ return model
1159
+
1160
+
1161
+ def tf_efficientnet_b0_ns(pretrained=False, **kwargs):
1162
+ """ EfficientNet-B0 NoisyStudent. Tensorflow compatible variant
1163
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1164
+ """
1165
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1166
+ kwargs['pad_type'] = 'same'
1167
+ model = _gen_efficientnet(
1168
+ 'tf_efficientnet_b0_ns', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
1169
+ return model
1170
+
1171
+
1172
+ def tf_efficientnet_b1_ns(pretrained=False, **kwargs):
1173
+ """ EfficientNet-B1 NoisyStudent. Tensorflow compatible variant
1174
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1175
+ """
1176
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1177
+ kwargs['pad_type'] = 'same'
1178
+ model = _gen_efficientnet(
1179
+ 'tf_efficientnet_b1_ns', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs)
1180
+ return model
1181
+
1182
+
1183
+ def tf_efficientnet_b2_ns(pretrained=False, **kwargs):
1184
+ """ EfficientNet-B2 NoisyStudent. Tensorflow compatible variant
1185
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1186
+ """
1187
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1188
+ kwargs['pad_type'] = 'same'
1189
+ model = _gen_efficientnet(
1190
+ 'tf_efficientnet_b2_ns', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs)
1191
+ return model
1192
+
1193
+
1194
+ def tf_efficientnet_b3_ns(pretrained=False, **kwargs):
1195
+ """ EfficientNet-B3 NoisyStudent. Tensorflow compatible variant
1196
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1197
+ """
1198
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1199
+ kwargs['pad_type'] = 'same'
1200
+ model = _gen_efficientnet(
1201
+ 'tf_efficientnet_b3_ns', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs)
1202
+ return model
1203
+
1204
+
1205
+ def tf_efficientnet_b4_ns(pretrained=False, **kwargs):
1206
+ """ EfficientNet-B4 NoisyStudent. Tensorflow compatible variant
1207
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1208
+ """
1209
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1210
+ kwargs['pad_type'] = 'same'
1211
+ model = _gen_efficientnet(
1212
+ 'tf_efficientnet_b4_ns', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs)
1213
+ return model
1214
+
1215
+
1216
+ def tf_efficientnet_b5_ns(pretrained=False, **kwargs):
1217
+ """ EfficientNet-B5 NoisyStudent. Tensorflow compatible variant
1218
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1219
+ """
1220
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1221
+ kwargs['pad_type'] = 'same'
1222
+ model = _gen_efficientnet(
1223
+ 'tf_efficientnet_b5_ns', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs)
1224
+ return model
1225
+
1226
+
1227
+ def tf_efficientnet_b6_ns(pretrained=False, **kwargs):
1228
+ """ EfficientNet-B6 NoisyStudent. Tensorflow compatible variant
1229
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1230
+ """
1231
+ # NOTE for train, drop_rate should be 0.5
1232
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1233
+ kwargs['pad_type'] = 'same'
1234
+ model = _gen_efficientnet(
1235
+ 'tf_efficientnet_b6_ns', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs)
1236
+ return model
1237
+
1238
+
1239
+ def tf_efficientnet_b7_ns(pretrained=False, **kwargs):
1240
+ """ EfficientNet-B7 NoisyStudent. Tensorflow compatible variant
1241
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1242
+ """
1243
+ # NOTE for train, drop_rate should be 0.5
1244
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1245
+ kwargs['pad_type'] = 'same'
1246
+ model = _gen_efficientnet(
1247
+ 'tf_efficientnet_b7_ns', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs)
1248
+ return model
1249
+
1250
+
1251
+ def tf_efficientnet_l2_ns_475(pretrained=False, **kwargs):
1252
+ """ EfficientNet-L2 NoisyStudent @ 475x475. Tensorflow compatible variant
1253
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1254
+ """
1255
+ # NOTE for train, drop_rate should be 0.5
1256
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1257
+ kwargs['pad_type'] = 'same'
1258
+ model = _gen_efficientnet(
1259
+ 'tf_efficientnet_l2_ns_475', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs)
1260
+ return model
1261
+
1262
+
1263
+ def tf_efficientnet_l2_ns(pretrained=False, **kwargs):
1264
+ """ EfficientNet-L2 NoisyStudent. Tensorflow compatible variant
1265
+ Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252)
1266
+ """
1267
+ # NOTE for train, drop_rate should be 0.5
1268
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1269
+ kwargs['pad_type'] = 'same'
1270
+ model = _gen_efficientnet(
1271
+ 'tf_efficientnet_l2_ns', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs)
1272
+ return model
1273
+
1274
+
1275
+ def tf_efficientnet_es(pretrained=False, **kwargs):
1276
+ """ EfficientNet-Edge Small. Tensorflow compatible variant """
1277
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1278
+ kwargs['pad_type'] = 'same'
1279
+ model = _gen_efficientnet_edge(
1280
+ 'tf_efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
1281
+ return model
1282
+
1283
+
1284
+ def tf_efficientnet_em(pretrained=False, **kwargs):
1285
+ """ EfficientNet-Edge-Medium. Tensorflow compatible variant """
1286
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1287
+ kwargs['pad_type'] = 'same'
1288
+ model = _gen_efficientnet_edge(
1289
+ 'tf_efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs)
1290
+ return model
1291
+
1292
+
1293
+ def tf_efficientnet_el(pretrained=False, **kwargs):
1294
+ """ EfficientNet-Edge-Large. Tensorflow compatible variant """
1295
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1296
+ kwargs['pad_type'] = 'same'
1297
+ model = _gen_efficientnet_edge(
1298
+ 'tf_efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs)
1299
+ return model
1300
+
1301
+
1302
+ def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs):
1303
+ """ EfficientNet-CondConv-B0 w/ 4 Experts """
1304
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1305
+ kwargs['pad_type'] = 'same'
1306
+ model = _gen_efficientnet_condconv(
1307
+ 'tf_efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
1308
+ return model
1309
+
1310
+
1311
+ def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs):
1312
+ """ EfficientNet-CondConv-B0 w/ 8 Experts """
1313
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1314
+ kwargs['pad_type'] = 'same'
1315
+ model = _gen_efficientnet_condconv(
1316
+ 'tf_efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2,
1317
+ pretrained=pretrained, **kwargs)
1318
+ return model
1319
+
1320
+
1321
+ def tf_efficientnet_cc_b1_8e(pretrained=False, **kwargs):
1322
+ """ EfficientNet-CondConv-B1 w/ 8 Experts """
1323
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1324
+ kwargs['pad_type'] = 'same'
1325
+ model = _gen_efficientnet_condconv(
1326
+ 'tf_efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2,
1327
+ pretrained=pretrained, **kwargs)
1328
+ return model
1329
+
1330
+
1331
+ def tf_efficientnet_lite0(pretrained=False, **kwargs):
1332
+ """ EfficientNet-Lite0. Tensorflow compatible variant """
1333
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1334
+ kwargs['pad_type'] = 'same'
1335
+ model = _gen_efficientnet_lite(
1336
+ 'tf_efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
1337
+ return model
1338
+
1339
+
1340
+ def tf_efficientnet_lite1(pretrained=False, **kwargs):
1341
+ """ EfficientNet-Lite1. Tensorflow compatible variant """
1342
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1343
+ kwargs['pad_type'] = 'same'
1344
+ model = _gen_efficientnet_lite(
1345
+ 'tf_efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs)
1346
+ return model
1347
+
1348
+
1349
+ def tf_efficientnet_lite2(pretrained=False, **kwargs):
1350
+ """ EfficientNet-Lite2. Tensorflow compatible variant """
1351
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1352
+ kwargs['pad_type'] = 'same'
1353
+ model = _gen_efficientnet_lite(
1354
+ 'tf_efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs)
1355
+ return model
1356
+
1357
+
1358
+ def tf_efficientnet_lite3(pretrained=False, **kwargs):
1359
+ """ EfficientNet-Lite3. Tensorflow compatible variant """
1360
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1361
+ kwargs['pad_type'] = 'same'
1362
+ model = _gen_efficientnet_lite(
1363
+ 'tf_efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs)
1364
+ return model
1365
+
1366
+
1367
+ def tf_efficientnet_lite4(pretrained=False, **kwargs):
1368
+ """ EfficientNet-Lite4. Tensorflow compatible variant """
1369
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1370
+ kwargs['pad_type'] = 'same'
1371
+ model = _gen_efficientnet_lite(
1372
+ 'tf_efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs)
1373
+ return model
1374
+
1375
+
1376
+ def mixnet_s(pretrained=False, **kwargs):
1377
+ """Creates a MixNet Small model.
1378
+ """
1379
+ # NOTE for train set drop_rate=0.2
1380
+ model = _gen_mixnet_s(
1381
+ 'mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs)
1382
+ return model
1383
+
1384
+
1385
+ def mixnet_m(pretrained=False, **kwargs):
1386
+ """Creates a MixNet Medium model.
1387
+ """
1388
+ # NOTE for train set drop_rate=0.25
1389
+ model = _gen_mixnet_m(
1390
+ 'mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs)
1391
+ return model
1392
+
1393
+
1394
+ def mixnet_l(pretrained=False, **kwargs):
1395
+ """Creates a MixNet Large model.
1396
+ """
1397
+ # NOTE for train set drop_rate=0.25
1398
+ model = _gen_mixnet_m(
1399
+ 'mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs)
1400
+ return model
1401
+
1402
+
1403
+ def mixnet_xl(pretrained=False, **kwargs):
1404
+ """Creates a MixNet Extra-Large model.
1405
+ Not a paper spec, experimental def by RW w/ depth scaling.
1406
+ """
1407
+ # NOTE for train set drop_rate=0.25, drop_connect_rate=0.2
1408
+ model = _gen_mixnet_m(
1409
+ 'mixnet_xl', channel_multiplier=1.6, depth_multiplier=1.2, pretrained=pretrained, **kwargs)
1410
+ return model
1411
+
1412
+
1413
+ def mixnet_xxl(pretrained=False, **kwargs):
1414
+ """Creates a MixNet Double Extra Large model.
1415
+ Not a paper spec, experimental def by RW w/ depth scaling.
1416
+ """
1417
+ # NOTE for train set drop_rate=0.3, drop_connect_rate=0.2
1418
+ model = _gen_mixnet_m(
1419
+ 'mixnet_xxl', channel_multiplier=2.4, depth_multiplier=1.3, pretrained=pretrained, **kwargs)
1420
+ return model
1421
+
1422
+
1423
+ def tf_mixnet_s(pretrained=False, **kwargs):
1424
+ """Creates a MixNet Small model. Tensorflow compatible variant
1425
+ """
1426
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1427
+ kwargs['pad_type'] = 'same'
1428
+ model = _gen_mixnet_s(
1429
+ 'tf_mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs)
1430
+ return model
1431
+
1432
+
1433
+ def tf_mixnet_m(pretrained=False, **kwargs):
1434
+ """Creates a MixNet Medium model. Tensorflow compatible variant
1435
+ """
1436
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1437
+ kwargs['pad_type'] = 'same'
1438
+ model = _gen_mixnet_m(
1439
+ 'tf_mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs)
1440
+ return model
1441
+
1442
+
1443
+ def tf_mixnet_l(pretrained=False, **kwargs):
1444
+ """Creates a MixNet Large model. Tensorflow compatible variant
1445
+ """
1446
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
1447
+ kwargs['pad_type'] = 'same'
1448
+ model = _gen_mixnet_m(
1449
+ 'tf_mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs)
1450
+ return model
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/helpers.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Checkpoint loading / state_dict helpers
2
+ Copyright 2020 Ross Wightman
3
+ """
4
+ import torch
5
+ import os
6
+ from collections import OrderedDict
7
+ try:
8
+ from torch.hub import load_state_dict_from_url
9
+ except ImportError:
10
+ from torch.utils.model_zoo import load_url as load_state_dict_from_url
11
+
12
+
13
+ def load_checkpoint(model, checkpoint_path):
14
+ if checkpoint_path and os.path.isfile(checkpoint_path):
15
+ print("=> Loading checkpoint '{}'".format(checkpoint_path))
16
+ checkpoint = torch.load(checkpoint_path)
17
+ if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
18
+ new_state_dict = OrderedDict()
19
+ for k, v in checkpoint['state_dict'].items():
20
+ if k.startswith('module'):
21
+ name = k[7:] # remove `module.`
22
+ else:
23
+ name = k
24
+ new_state_dict[name] = v
25
+ model.load_state_dict(new_state_dict)
26
+ else:
27
+ model.load_state_dict(checkpoint)
28
+ print("=> Loaded checkpoint '{}'".format(checkpoint_path))
29
+ else:
30
+ print("=> Error: No checkpoint found at '{}'".format(checkpoint_path))
31
+ raise FileNotFoundError()
32
+
33
+
34
+ def load_pretrained(model, url, filter_fn=None, strict=True):
35
+ if not url:
36
+ print("=> Warning: Pretrained model URL is empty, using random initialization.")
37
+ return
38
+
39
+ state_dict = load_state_dict_from_url(url, progress=False, map_location='cpu')
40
+
41
+ input_conv = 'conv_stem'
42
+ classifier = 'classifier'
43
+ in_chans = getattr(model, input_conv).weight.shape[1]
44
+ num_classes = getattr(model, classifier).weight.shape[0]
45
+
46
+ input_conv_weight = input_conv + '.weight'
47
+ pretrained_in_chans = state_dict[input_conv_weight].shape[1]
48
+ if in_chans != pretrained_in_chans:
49
+ if in_chans == 1:
50
+ print('=> Converting pretrained input conv {} from {} to 1 channel'.format(
51
+ input_conv_weight, pretrained_in_chans))
52
+ conv1_weight = state_dict[input_conv_weight]
53
+ state_dict[input_conv_weight] = conv1_weight.sum(dim=1, keepdim=True)
54
+ else:
55
+ print('=> Discarding pretrained input conv {} since input channel count != {}'.format(
56
+ input_conv_weight, pretrained_in_chans))
57
+ del state_dict[input_conv_weight]
58
+ strict = False
59
+
60
+ classifier_weight = classifier + '.weight'
61
+ pretrained_num_classes = state_dict[classifier_weight].shape[0]
62
+ if num_classes != pretrained_num_classes:
63
+ print('=> Discarding pretrained classifier since num_classes != {}'.format(pretrained_num_classes))
64
+ del state_dict[classifier_weight]
65
+ del state_dict[classifier + '.bias']
66
+ strict = False
67
+
68
+ if filter_fn is not None:
69
+ state_dict = filter_fn(state_dict)
70
+
71
+ model.load_state_dict(state_dict, strict=strict)
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/mobilenetv3.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ MobileNet-V3
2
+
3
+ A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl.
4
+
5
+ Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244
6
+
7
+ Hacked together by / Copyright 2020 Ross Wightman
8
+ """
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+
12
+ from .activations import get_act_fn, get_act_layer, HardSwish
13
+ from .config import layer_config_kwargs
14
+ from .conv2d_layers import select_conv2d
15
+ from .helpers import load_pretrained
16
+ from .efficientnet_builder import *
17
+
18
+ __all__ = ['mobilenetv3_rw', 'mobilenetv3_large_075', 'mobilenetv3_large_100', 'mobilenetv3_large_minimal_100',
19
+ 'mobilenetv3_small_075', 'mobilenetv3_small_100', 'mobilenetv3_small_minimal_100',
20
+ 'tf_mobilenetv3_large_075', 'tf_mobilenetv3_large_100', 'tf_mobilenetv3_large_minimal_100',
21
+ 'tf_mobilenetv3_small_075', 'tf_mobilenetv3_small_100', 'tf_mobilenetv3_small_minimal_100']
22
+
23
+ model_urls = {
24
+ 'mobilenetv3_rw':
25
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth',
26
+ 'mobilenetv3_large_075': None,
27
+ 'mobilenetv3_large_100':
28
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth',
29
+ 'mobilenetv3_large_minimal_100': None,
30
+ 'mobilenetv3_small_075': None,
31
+ 'mobilenetv3_small_100': None,
32
+ 'mobilenetv3_small_minimal_100': None,
33
+ 'tf_mobilenetv3_large_075':
34
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth',
35
+ 'tf_mobilenetv3_large_100':
36
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth',
37
+ 'tf_mobilenetv3_large_minimal_100':
38
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth',
39
+ 'tf_mobilenetv3_small_075':
40
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth',
41
+ 'tf_mobilenetv3_small_100':
42
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth',
43
+ 'tf_mobilenetv3_small_minimal_100':
44
+ 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth',
45
+ }
46
+
47
+
48
+ class MobileNetV3(nn.Module):
49
+ """ MobileNet-V3
50
+
51
+ A this model utilizes the MobileNet-v3 specific 'efficient head', where global pooling is done before the
52
+ head convolution without a final batch-norm layer before the classifier.
53
+
54
+ Paper: https://arxiv.org/abs/1905.02244
55
+ """
56
+
57
+ def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True,
58
+ channel_multiplier=1.0, pad_type='', act_layer=HardSwish, drop_rate=0., drop_connect_rate=0.,
59
+ se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, weight_init='goog'):
60
+ super(MobileNetV3, self).__init__()
61
+ self.drop_rate = drop_rate
62
+
63
+ stem_size = round_channels(stem_size, channel_multiplier)
64
+ self.conv_stem = select_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type)
65
+ self.bn1 = nn.BatchNorm2d(stem_size, **norm_kwargs)
66
+ self.act1 = act_layer(inplace=True)
67
+ in_chs = stem_size
68
+
69
+ builder = EfficientNetBuilder(
70
+ channel_multiplier, pad_type=pad_type, act_layer=act_layer, se_kwargs=se_kwargs,
71
+ norm_layer=norm_layer, norm_kwargs=norm_kwargs, drop_connect_rate=drop_connect_rate)
72
+ self.blocks = nn.Sequential(*builder(in_chs, block_args))
73
+ in_chs = builder.in_chs
74
+
75
+ self.global_pool = nn.AdaptiveAvgPool2d(1)
76
+ self.conv_head = select_conv2d(in_chs, num_features, 1, padding=pad_type, bias=head_bias)
77
+ self.act2 = act_layer(inplace=True)
78
+ self.classifier = nn.Linear(num_features, num_classes)
79
+
80
+ for m in self.modules():
81
+ if weight_init == 'goog':
82
+ initialize_weight_goog(m)
83
+ else:
84
+ initialize_weight_default(m)
85
+
86
+ def as_sequential(self):
87
+ layers = [self.conv_stem, self.bn1, self.act1]
88
+ layers.extend(self.blocks)
89
+ layers.extend([
90
+ self.global_pool, self.conv_head, self.act2,
91
+ nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier])
92
+ return nn.Sequential(*layers)
93
+
94
+ def features(self, x):
95
+ x = self.conv_stem(x)
96
+ x = self.bn1(x)
97
+ x = self.act1(x)
98
+ x = self.blocks(x)
99
+ x = self.global_pool(x)
100
+ x = self.conv_head(x)
101
+ x = self.act2(x)
102
+ return x
103
+
104
+ def forward(self, x):
105
+ x = self.features(x)
106
+ x = x.flatten(1)
107
+ if self.drop_rate > 0.:
108
+ x = F.dropout(x, p=self.drop_rate, training=self.training)
109
+ return self.classifier(x)
110
+
111
+
112
+ def _create_model(model_kwargs, variant, pretrained=False):
113
+ as_sequential = model_kwargs.pop('as_sequential', False)
114
+ model = MobileNetV3(**model_kwargs)
115
+ if pretrained and model_urls[variant]:
116
+ load_pretrained(model, model_urls[variant])
117
+ if as_sequential:
118
+ model = model.as_sequential()
119
+ return model
120
+
121
+
122
+ def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
123
+ """Creates a MobileNet-V3 model (RW variant).
124
+
125
+ Paper: https://arxiv.org/abs/1905.02244
126
+
127
+ This was my first attempt at reproducing the MobileNet-V3 from paper alone. It came close to the
128
+ eventual Tensorflow reference impl but has a few differences:
129
+ 1. This model has no bias on the head convolution
130
+ 2. This model forces no residual (noskip) on the first DWS block, this is different than MnasNet
131
+ 3. This model always uses ReLU for the SE activation layer, other models in the family inherit their act layer
132
+ from their parent block
133
+ 4. This model does not enforce divisible by 8 limitation on the SE reduction channel count
134
+
135
+ Overall the changes are fairly minor and result in a very small parameter count difference and no
136
+ top-1/5
137
+
138
+ Args:
139
+ channel_multiplier: multiplier to number of channels per layer.
140
+ """
141
+ arch_def = [
142
+ # stage 0, 112x112 in
143
+ ['ds_r1_k3_s1_e1_c16_nre_noskip'], # relu
144
+ # stage 1, 112x112 in
145
+ ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
146
+ # stage 2, 56x56 in
147
+ ['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu
148
+ # stage 3, 28x28 in
149
+ ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
150
+ # stage 4, 14x14in
151
+ ['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
152
+ # stage 5, 14x14in
153
+ ['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
154
+ # stage 6, 7x7 in
155
+ ['cn_r1_k1_s1_c960'], # hard-swish
156
+ ]
157
+ with layer_config_kwargs(kwargs):
158
+ model_kwargs = dict(
159
+ block_args=decode_arch_def(arch_def),
160
+ head_bias=False, # one of my mistakes
161
+ channel_multiplier=channel_multiplier,
162
+ act_layer=resolve_act_layer(kwargs, 'hard_swish'),
163
+ se_kwargs=dict(gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True),
164
+ norm_kwargs=resolve_bn_args(kwargs),
165
+ **kwargs,
166
+ )
167
+ model = _create_model(model_kwargs, variant, pretrained)
168
+ return model
169
+
170
+
171
+ def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
172
+ """Creates a MobileNet-V3 large/small/minimal models.
173
+
174
+ Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
175
+ Paper: https://arxiv.org/abs/1905.02244
176
+
177
+ Args:
178
+ channel_multiplier: multiplier to number of channels per layer.
179
+ """
180
+ if 'small' in variant:
181
+ num_features = 1024
182
+ if 'minimal' in variant:
183
+ act_layer = 'relu'
184
+ arch_def = [
185
+ # stage 0, 112x112 in
186
+ ['ds_r1_k3_s2_e1_c16'],
187
+ # stage 1, 56x56 in
188
+ ['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'],
189
+ # stage 2, 28x28 in
190
+ ['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'],
191
+ # stage 3, 14x14 in
192
+ ['ir_r2_k3_s1_e3_c48'],
193
+ # stage 4, 14x14in
194
+ ['ir_r3_k3_s2_e6_c96'],
195
+ # stage 6, 7x7 in
196
+ ['cn_r1_k1_s1_c576'],
197
+ ]
198
+ else:
199
+ act_layer = 'hard_swish'
200
+ arch_def = [
201
+ # stage 0, 112x112 in
202
+ ['ds_r1_k3_s2_e1_c16_se0.25_nre'], # relu
203
+ # stage 1, 56x56 in
204
+ ['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu
205
+ # stage 2, 28x28 in
206
+ ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], # hard-swish
207
+ # stage 3, 14x14 in
208
+ ['ir_r2_k5_s1_e3_c48_se0.25'], # hard-swish
209
+ # stage 4, 14x14in
210
+ ['ir_r3_k5_s2_e6_c96_se0.25'], # hard-swish
211
+ # stage 6, 7x7 in
212
+ ['cn_r1_k1_s1_c576'], # hard-swish
213
+ ]
214
+ else:
215
+ num_features = 1280
216
+ if 'minimal' in variant:
217
+ act_layer = 'relu'
218
+ arch_def = [
219
+ # stage 0, 112x112 in
220
+ ['ds_r1_k3_s1_e1_c16'],
221
+ # stage 1, 112x112 in
222
+ ['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'],
223
+ # stage 2, 56x56 in
224
+ ['ir_r3_k3_s2_e3_c40'],
225
+ # stage 3, 28x28 in
226
+ ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'],
227
+ # stage 4, 14x14in
228
+ ['ir_r2_k3_s1_e6_c112'],
229
+ # stage 5, 14x14in
230
+ ['ir_r3_k3_s2_e6_c160'],
231
+ # stage 6, 7x7 in
232
+ ['cn_r1_k1_s1_c960'],
233
+ ]
234
+ else:
235
+ act_layer = 'hard_swish'
236
+ arch_def = [
237
+ # stage 0, 112x112 in
238
+ ['ds_r1_k3_s1_e1_c16_nre'], # relu
239
+ # stage 1, 112x112 in
240
+ ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
241
+ # stage 2, 56x56 in
242
+ ['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu
243
+ # stage 3, 28x28 in
244
+ ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
245
+ # stage 4, 14x14in
246
+ ['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
247
+ # stage 5, 14x14in
248
+ ['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
249
+ # stage 6, 7x7 in
250
+ ['cn_r1_k1_s1_c960'], # hard-swish
251
+ ]
252
+ with layer_config_kwargs(kwargs):
253
+ model_kwargs = dict(
254
+ block_args=decode_arch_def(arch_def),
255
+ num_features=num_features,
256
+ stem_size=16,
257
+ channel_multiplier=channel_multiplier,
258
+ act_layer=resolve_act_layer(kwargs, act_layer),
259
+ se_kwargs=dict(
260
+ act_layer=get_act_layer('relu'), gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True, divisor=8),
261
+ norm_kwargs=resolve_bn_args(kwargs),
262
+ **kwargs,
263
+ )
264
+ model = _create_model(model_kwargs, variant, pretrained)
265
+ return model
266
+
267
+
268
+ def mobilenetv3_rw(pretrained=False, **kwargs):
269
+ """ MobileNet-V3 RW
270
+ Attn: See note in gen function for this variant.
271
+ """
272
+ # NOTE for train set drop_rate=0.2
273
+ if pretrained:
274
+ # pretrained model trained with non-default BN epsilon
275
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
276
+ model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs)
277
+ return model
278
+
279
+
280
+ def mobilenetv3_large_075(pretrained=False, **kwargs):
281
+ """ MobileNet V3 Large 0.75"""
282
+ # NOTE for train set drop_rate=0.2
283
+ model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
284
+ return model
285
+
286
+
287
+ def mobilenetv3_large_100(pretrained=False, **kwargs):
288
+ """ MobileNet V3 Large 1.0 """
289
+ # NOTE for train set drop_rate=0.2
290
+ model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
291
+ return model
292
+
293
+
294
+ def mobilenetv3_large_minimal_100(pretrained=False, **kwargs):
295
+ """ MobileNet V3 Large (Minimalistic) 1.0 """
296
+ # NOTE for train set drop_rate=0.2
297
+ model = _gen_mobilenet_v3('mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs)
298
+ return model
299
+
300
+
301
+ def mobilenetv3_small_075(pretrained=False, **kwargs):
302
+ """ MobileNet V3 Small 0.75 """
303
+ model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
304
+ return model
305
+
306
+
307
+ def mobilenetv3_small_100(pretrained=False, **kwargs):
308
+ """ MobileNet V3 Small 1.0 """
309
+ model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
310
+ return model
311
+
312
+
313
+ def mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
314
+ """ MobileNet V3 Small (Minimalistic) 1.0 """
315
+ model = _gen_mobilenet_v3('mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
316
+ return model
317
+
318
+
319
+ def tf_mobilenetv3_large_075(pretrained=False, **kwargs):
320
+ """ MobileNet V3 Large 0.75. Tensorflow compat variant. """
321
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
322
+ kwargs['pad_type'] = 'same'
323
+ model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
324
+ return model
325
+
326
+
327
+ def tf_mobilenetv3_large_100(pretrained=False, **kwargs):
328
+ """ MobileNet V3 Large 1.0. Tensorflow compat variant. """
329
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
330
+ kwargs['pad_type'] = 'same'
331
+ model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
332
+ return model
333
+
334
+
335
+ def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs):
336
+ """ MobileNet V3 Large Minimalistic 1.0. Tensorflow compat variant. """
337
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
338
+ kwargs['pad_type'] = 'same'
339
+ model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs)
340
+ return model
341
+
342
+
343
+ def tf_mobilenetv3_small_075(pretrained=False, **kwargs):
344
+ """ MobileNet V3 Small 0.75. Tensorflow compat variant. """
345
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
346
+ kwargs['pad_type'] = 'same'
347
+ model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
348
+ return model
349
+
350
+
351
+ def tf_mobilenetv3_small_100(pretrained=False, **kwargs):
352
+ """ MobileNet V3 Small 1.0. Tensorflow compat variant."""
353
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
354
+ kwargs['pad_type'] = 'same'
355
+ model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
356
+ return model
357
+
358
+
359
+ def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
360
+ """ MobileNet V3 Small Minimalistic 1.0. Tensorflow compat variant. """
361
+ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
362
+ kwargs['pad_type'] = 'same'
363
+ model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
364
+ return model
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/model_factory.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .config import set_layer_config
2
+ from .helpers import load_checkpoint
3
+
4
+ from .gen_efficientnet import *
5
+ from .mobilenetv3 import *
6
+
7
+
8
+ def create_model(
9
+ model_name='mnasnet_100',
10
+ pretrained=None,
11
+ num_classes=1000,
12
+ in_chans=3,
13
+ checkpoint_path='',
14
+ **kwargs):
15
+
16
+ model_kwargs = dict(num_classes=num_classes, in_chans=in_chans, pretrained=pretrained, **kwargs)
17
+
18
+ if model_name in globals():
19
+ create_fn = globals()[model_name]
20
+ model = create_fn(**model_kwargs)
21
+ else:
22
+ raise RuntimeError('Unknown model (%s)' % model_name)
23
+
24
+ if checkpoint_path and not pretrained:
25
+ load_checkpoint(model, checkpoint_path)
26
+
27
+ return model
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/version.py ADDED
@@ -0,0 +1 @@
 
 
1
+ __version__ = '1.0.2'
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/hubconf.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dependencies = ['torch', 'math']
2
+
3
+ from geffnet import efficientnet_b0
4
+ from geffnet import efficientnet_b1
5
+ from geffnet import efficientnet_b2
6
+ from geffnet import efficientnet_b3
7
+
8
+ from geffnet import efficientnet_es
9
+
10
+ from geffnet import efficientnet_lite0
11
+
12
+ from geffnet import mixnet_s
13
+ from geffnet import mixnet_m
14
+ from geffnet import mixnet_l
15
+ from geffnet import mixnet_xl
16
+
17
+ from geffnet import mobilenetv2_100
18
+ from geffnet import mobilenetv2_110d
19
+ from geffnet import mobilenetv2_120d
20
+ from geffnet import mobilenetv2_140
21
+
22
+ from geffnet import mobilenetv3_large_100
23
+ from geffnet import mobilenetv3_rw
24
+ from geffnet import mnasnet_a1
25
+ from geffnet import mnasnet_b1
26
+ from geffnet import fbnetc_100
27
+ from geffnet import spnasnet_100
28
+
29
+ from geffnet import tf_efficientnet_b0
30
+ from geffnet import tf_efficientnet_b1
31
+ from geffnet import tf_efficientnet_b2
32
+ from geffnet import tf_efficientnet_b3
33
+ from geffnet import tf_efficientnet_b4
34
+ from geffnet import tf_efficientnet_b5
35
+ from geffnet import tf_efficientnet_b6
36
+ from geffnet import tf_efficientnet_b7
37
+ from geffnet import tf_efficientnet_b8
38
+
39
+ from geffnet import tf_efficientnet_b0_ap
40
+ from geffnet import tf_efficientnet_b1_ap
41
+ from geffnet import tf_efficientnet_b2_ap
42
+ from geffnet import tf_efficientnet_b3_ap
43
+ from geffnet import tf_efficientnet_b4_ap
44
+ from geffnet import tf_efficientnet_b5_ap
45
+ from geffnet import tf_efficientnet_b6_ap
46
+ from geffnet import tf_efficientnet_b7_ap
47
+ from geffnet import tf_efficientnet_b8_ap
48
+
49
+ from geffnet import tf_efficientnet_b0_ns
50
+ from geffnet import tf_efficientnet_b1_ns
51
+ from geffnet import tf_efficientnet_b2_ns
52
+ from geffnet import tf_efficientnet_b3_ns
53
+ from geffnet import tf_efficientnet_b4_ns
54
+ from geffnet import tf_efficientnet_b5_ns
55
+ from geffnet import tf_efficientnet_b6_ns
56
+ from geffnet import tf_efficientnet_b7_ns
57
+ from geffnet import tf_efficientnet_l2_ns_475
58
+ from geffnet import tf_efficientnet_l2_ns
59
+
60
+ from geffnet import tf_efficientnet_es
61
+ from geffnet import tf_efficientnet_em
62
+ from geffnet import tf_efficientnet_el
63
+
64
+ from geffnet import tf_efficientnet_cc_b0_4e
65
+ from geffnet import tf_efficientnet_cc_b0_8e
66
+ from geffnet import tf_efficientnet_cc_b1_8e
67
+
68
+ from geffnet import tf_efficientnet_lite0
69
+ from geffnet import tf_efficientnet_lite1
70
+ from geffnet import tf_efficientnet_lite2
71
+ from geffnet import tf_efficientnet_lite3
72
+ from geffnet import tf_efficientnet_lite4
73
+
74
+ from geffnet import tf_mixnet_s
75
+ from geffnet import tf_mixnet_m
76
+ from geffnet import tf_mixnet_l
77
+
78
+ from geffnet import tf_mobilenetv3_large_075
79
+ from geffnet import tf_mobilenetv3_large_100
80
+ from geffnet import tf_mobilenetv3_large_minimal_100
81
+ from geffnet import tf_mobilenetv3_small_075
82
+ from geffnet import tf_mobilenetv3_small_100
83
+ from geffnet import tf_mobilenetv3_small_minimal_100
84
+
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/onnx_export.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ ONNX export script
2
+
3
+ Export PyTorch models as ONNX graphs.
4
+
5
+ This export script originally started as an adaptation of code snippets found at
6
+ https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
7
+
8
+ The default parameters work with PyTorch 1.6 and ONNX 1.7 and produce an optimal ONNX graph
9
+ for hosting in the ONNX runtime (see onnx_validate.py). To export an ONNX model compatible
10
+ with caffe2 (see caffe2_benchmark.py and caffe2_validate.py), the --keep-init and --aten-fallback
11
+ flags are currently required.
12
+
13
+ Older versions of PyTorch/ONNX (tested PyTorch 1.4, ONNX 1.5) do not need extra flags for
14
+ caffe2 compatibility, but they produce a model that isn't as fast running on ONNX runtime.
15
+
16
+ Most new release of PyTorch and ONNX cause some sort of breakage in the export / usage of ONNX models.
17
+ Please do your research and search ONNX and PyTorch issue tracker before asking me. Thanks.
18
+
19
+ Copyright 2020 Ross Wightman
20
+ """
21
+ import argparse
22
+ import torch
23
+ import numpy as np
24
+
25
+ import onnx
26
+ import geffnet
27
+
28
+ parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
29
+ parser.add_argument('output', metavar='ONNX_FILE',
30
+ help='output model filename')
31
+ parser.add_argument('--model', '-m', metavar='MODEL', default='mobilenetv3_large_100',
32
+ help='model architecture (default: mobilenetv3_large_100)')
33
+ parser.add_argument('--opset', type=int, default=10,
34
+ help='ONNX opset to use (default: 10)')
35
+ parser.add_argument('--keep-init', action='store_true', default=False,
36
+ help='Keep initializers as input. Needed for Caffe2 compatible export in newer PyTorch/ONNX.')
37
+ parser.add_argument('--aten-fallback', action='store_true', default=False,
38
+ help='Fallback to ATEN ops. Helps fix AdaptiveAvgPool issue with Caffe2 in newer PyTorch/ONNX.')
39
+ parser.add_argument('--dynamic-size', action='store_true', default=False,
40
+ help='Export model width dynamic width/height. Not recommended for "tf" models with SAME padding.')
41
+ parser.add_argument('-b', '--batch-size', default=1, type=int,
42
+ metavar='N', help='mini-batch size (default: 1)')
43
+ parser.add_argument('--img-size', default=None, type=int,
44
+ metavar='N', help='Input image dimension, uses model default if empty')
45
+ parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
46
+ help='Override mean pixel value of dataset')
47
+ parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
48
+ help='Override std deviation of of dataset')
49
+ parser.add_argument('--num-classes', type=int, default=1000,
50
+ help='Number classes in dataset')
51
+ parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
52
+ help='path to checkpoint (default: none)')
53
+
54
+
55
+ def main():
56
+ args = parser.parse_args()
57
+
58
+ args.pretrained = True
59
+ if args.checkpoint:
60
+ args.pretrained = False
61
+
62
+ print("==> Creating PyTorch {} model".format(args.model))
63
+ # NOTE exportable=True flag disables autofn/jit scripted activations and uses Conv2dSameExport layers
64
+ # for models using SAME padding
65
+ model = geffnet.create_model(
66
+ args.model,
67
+ num_classes=args.num_classes,
68
+ in_chans=3,
69
+ pretrained=args.pretrained,
70
+ checkpoint_path=args.checkpoint,
71
+ exportable=True)
72
+
73
+ model.eval()
74
+
75
+ example_input = torch.randn((args.batch_size, 3, args.img_size or 224, args.img_size or 224), requires_grad=True)
76
+
77
+ # Run model once before export trace, sets padding for models with Conv2dSameExport. This means
78
+ # that the padding for models with Conv2dSameExport (most models with tf_ prefix) is fixed for
79
+ # the input img_size specified in this script.
80
+ # Opset >= 11 should allow for dynamic padding, however I cannot get it to work due to
81
+ # issues in the tracing of the dynamic padding or errors attempting to export the model after jit
82
+ # scripting it (an approach that should work). Perhaps in a future PyTorch or ONNX versions...
83
+ model(example_input)
84
+
85
+ print("==> Exporting model to ONNX format at '{}'".format(args.output))
86
+ input_names = ["input0"]
87
+ output_names = ["output0"]
88
+ dynamic_axes = {'input0': {0: 'batch'}, 'output0': {0: 'batch'}}
89
+ if args.dynamic_size:
90
+ dynamic_axes['input0'][2] = 'height'
91
+ dynamic_axes['input0'][3] = 'width'
92
+ if args.aten_fallback:
93
+ export_type = torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
94
+ else:
95
+ export_type = torch.onnx.OperatorExportTypes.ONNX
96
+
97
+ torch_out = torch.onnx._export(
98
+ model, example_input, args.output, export_params=True, verbose=True, input_names=input_names,
99
+ output_names=output_names, keep_initializers_as_inputs=args.keep_init, dynamic_axes=dynamic_axes,
100
+ opset_version=args.opset, operator_export_type=export_type)
101
+
102
+ print("==> Loading and checking exported model from '{}'".format(args.output))
103
+ onnx_model = onnx.load(args.output)
104
+ onnx.checker.check_model(onnx_model) # assuming throw on error
105
+ print("==> Passed")
106
+
107
+ if args.keep_init and args.aten_fallback:
108
+ import caffe2.python.onnx.backend as onnx_caffe2
109
+ # Caffe2 loading only works properly in newer PyTorch/ONNX combos when
110
+ # keep_initializers_as_inputs and aten_fallback are set to True.
111
+ print("==> Loading model into Caffe2 backend and comparing forward pass.".format(args.output))
112
+ caffe2_backend = onnx_caffe2.prepare(onnx_model)
113
+ B = {onnx_model.graph.input[0].name: x.data.numpy()}
114
+ c2_out = caffe2_backend.run(B)[0]
115
+ np.testing.assert_almost_equal(torch_out.data.numpy(), c2_out, decimal=5)
116
+ print("==> Passed")
117
+
118
+
119
+ if __name__ == '__main__':
120
+ main()
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/onnx_optimize.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ ONNX optimization script
2
+
3
+ Run ONNX models through the optimizer to prune unneeded nodes, fuse batchnorm layers into conv, etc.
4
+
5
+ NOTE: This isn't working consistently in recent PyTorch/ONNX combos (ie PyTorch 1.6 and ONNX 1.7),
6
+ it seems time to switch to using the onnxruntime online optimizer (can also be saved for offline).
7
+
8
+ Copyright 2020 Ross Wightman
9
+ """
10
+ import argparse
11
+ import warnings
12
+
13
+ import onnx
14
+ from onnx import optimizer
15
+
16
+
17
+ parser = argparse.ArgumentParser(description="Optimize ONNX model")
18
+
19
+ parser.add_argument("model", help="The ONNX model")
20
+ parser.add_argument("--output", required=True, help="The optimized model output filename")
21
+
22
+
23
+ def traverse_graph(graph, prefix=''):
24
+ content = []
25
+ indent = prefix + ' '
26
+ graphs = []
27
+ num_nodes = 0
28
+ for node in graph.node:
29
+ pn, gs = onnx.helper.printable_node(node, indent, subgraphs=True)
30
+ assert isinstance(gs, list)
31
+ content.append(pn)
32
+ graphs.extend(gs)
33
+ num_nodes += 1
34
+ for g in graphs:
35
+ g_count, g_str = traverse_graph(g)
36
+ content.append('\n' + g_str)
37
+ num_nodes += g_count
38
+ return num_nodes, '\n'.join(content)
39
+
40
+
41
+ def main():
42
+ args = parser.parse_args()
43
+ onnx_model = onnx.load(args.model)
44
+ num_original_nodes, original_graph_str = traverse_graph(onnx_model.graph)
45
+
46
+ # Optimizer passes to perform
47
+ passes = [
48
+ #'eliminate_deadend',
49
+ 'eliminate_identity',
50
+ 'eliminate_nop_dropout',
51
+ 'eliminate_nop_pad',
52
+ 'eliminate_nop_transpose',
53
+ 'eliminate_unused_initializer',
54
+ 'extract_constant_to_initializer',
55
+ 'fuse_add_bias_into_conv',
56
+ 'fuse_bn_into_conv',
57
+ 'fuse_consecutive_concats',
58
+ 'fuse_consecutive_reduce_unsqueeze',
59
+ 'fuse_consecutive_squeezes',
60
+ 'fuse_consecutive_transposes',
61
+ #'fuse_matmul_add_bias_into_gemm',
62
+ 'fuse_pad_into_conv',
63
+ #'fuse_transpose_into_gemm',
64
+ #'lift_lexical_references',
65
+ ]
66
+
67
+ # Apply the optimization on the original serialized model
68
+ # WARNING I've had issues with optimizer in recent versions of PyTorch / ONNX causing
69
+ # 'duplicate definition of name' errors, see: https://github.com/onnx/onnx/issues/2401
70
+ # It may be better to rely on onnxruntime optimizations, see onnx_validate.py script.
71
+ warnings.warn("I've had issues with optimizer in recent versions of PyTorch / ONNX."
72
+ "Try onnxruntime optimization if this doesn't work.")
73
+ optimized_model = optimizer.optimize(onnx_model, passes)
74
+
75
+ num_optimized_nodes, optimzied_graph_str = traverse_graph(optimized_model.graph)
76
+ print('==> The model after optimization:\n{}\n'.format(optimzied_graph_str))
77
+ print('==> The optimized model has {} nodes, the original had {}.'.format(num_optimized_nodes, num_original_nodes))
78
+
79
+ # Save the ONNX model
80
+ onnx.save(optimized_model, args.output)
81
+
82
+
83
+ if __name__ == "__main__":
84
+ main()
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/onnx_to_caffe.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
+ import onnx
4
+ from caffe2.python.onnx.backend import Caffe2Backend
5
+
6
+
7
+ parser = argparse.ArgumentParser(description="Convert ONNX to Caffe2")
8
+
9
+ parser.add_argument("model", help="The ONNX model")
10
+ parser.add_argument("--c2-prefix", required=True,
11
+ help="The output file prefix for the caffe2 model init and predict file. ")
12
+
13
+
14
+ def main():
15
+ args = parser.parse_args()
16
+ onnx_model = onnx.load(args.model)
17
+ caffe2_init, caffe2_predict = Caffe2Backend.onnx_graph_to_caffe2_net(onnx_model)
18
+ caffe2_init_str = caffe2_init.SerializeToString()
19
+ with open(args.c2_prefix + '.init.pb', "wb") as f:
20
+ f.write(caffe2_init_str)
21
+ caffe2_predict_str = caffe2_predict.SerializeToString()
22
+ with open(args.c2_prefix + '.predict.pb', "wb") as f:
23
+ f.write(caffe2_predict_str)
24
+
25
+
26
+ if __name__ == "__main__":
27
+ main()
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/onnx_validate.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ ONNX-runtime validation script
2
+
3
+ This script was created to verify accuracy and performance of exported ONNX
4
+ models running with the onnxruntime. It utilizes the PyTorch dataloader/processing
5
+ pipeline for a fair comparison against the originals.
6
+
7
+ Copyright 2020 Ross Wightman
8
+ """
9
+ import argparse
10
+ import numpy as np
11
+ import onnxruntime
12
+ from data import create_loader, resolve_data_config, Dataset
13
+ from utils import AverageMeter
14
+ import time
15
+
16
+ parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation')
17
+ parser.add_argument('data', metavar='DIR',
18
+ help='path to dataset')
19
+ parser.add_argument('--onnx-input', default='', type=str, metavar='PATH',
20
+ help='path to onnx model/weights file')
21
+ parser.add_argument('--onnx-output-opt', default='', type=str, metavar='PATH',
22
+ help='path to output optimized onnx graph')
23
+ parser.add_argument('--profile', action='store_true', default=False,
24
+ help='Enable profiler output.')
25
+ parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
26
+ help='number of data loading workers (default: 2)')
27
+ parser.add_argument('-b', '--batch-size', default=256, type=int,
28
+ metavar='N', help='mini-batch size (default: 256)')
29
+ parser.add_argument('--img-size', default=None, type=int,
30
+ metavar='N', help='Input image dimension, uses model default if empty')
31
+ parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
32
+ help='Override mean pixel value of dataset')
33
+ parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
34
+ help='Override std deviation of of dataset')
35
+ parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT',
36
+ help='Override default crop pct of 0.875')
37
+ parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
38
+ help='Image resize interpolation type (overrides model)')
39
+ parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
40
+ help='use tensorflow mnasnet preporcessing')
41
+ parser.add_argument('--print-freq', '-p', default=10, type=int,
42
+ metavar='N', help='print frequency (default: 10)')
43
+
44
+
45
+ def main():
46
+ args = parser.parse_args()
47
+ args.gpu_id = 0
48
+
49
+ # Set graph optimization level
50
+ sess_options = onnxruntime.SessionOptions()
51
+ sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
52
+ if args.profile:
53
+ sess_options.enable_profiling = True
54
+ if args.onnx_output_opt:
55
+ sess_options.optimized_model_filepath = args.onnx_output_opt
56
+
57
+ session = onnxruntime.InferenceSession(args.onnx_input, sess_options)
58
+
59
+ data_config = resolve_data_config(None, args)
60
+ loader = create_loader(
61
+ Dataset(args.data, load_bytes=args.tf_preprocessing),
62
+ input_size=data_config['input_size'],
63
+ batch_size=args.batch_size,
64
+ use_prefetcher=False,
65
+ interpolation=data_config['interpolation'],
66
+ mean=data_config['mean'],
67
+ std=data_config['std'],
68
+ num_workers=args.workers,
69
+ crop_pct=data_config['crop_pct'],
70
+ tensorflow_preprocessing=args.tf_preprocessing)
71
+
72
+ input_name = session.get_inputs()[0].name
73
+
74
+ batch_time = AverageMeter()
75
+ top1 = AverageMeter()
76
+ top5 = AverageMeter()
77
+ end = time.time()
78
+ for i, (input, target) in enumerate(loader):
79
+ # run the net and return prediction
80
+ output = session.run([], {input_name: input.data.numpy()})
81
+ output = output[0]
82
+
83
+ # measure accuracy and record loss
84
+ prec1, prec5 = accuracy_np(output, target.numpy())
85
+ top1.update(prec1.item(), input.size(0))
86
+ top5.update(prec5.item(), input.size(0))
87
+
88
+ # measure elapsed time
89
+ batch_time.update(time.time() - end)
90
+ end = time.time()
91
+
92
+ if i % args.print_freq == 0:
93
+ print('Test: [{0}/{1}]\t'
94
+ 'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t'
95
+ 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
96
+ 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
97
+ i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg,
98
+ ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5))
99
+
100
+ print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
101
+ top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
102
+
103
+
104
+ def accuracy_np(output, target):
105
+ max_indices = np.argsort(output, axis=1)[:, ::-1]
106
+ top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean()
107
+ top1 = 100 * np.equal(max_indices[:, 0], target).mean()
108
+ return top1, top5
109
+
110
+
111
+ if __name__ == '__main__':
112
+ main()
extensions/microsoftexcel-controlnet/annotator/normalbae/models/submodules/efficientnet_repo/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch>=1.2.0
2
+ torchvision>=0.4.0