toto10 commited on
Commit
2c93839
1 Parent(s): 7b641e8

1af29e4a2e648127c5236914996e822389508dcfbc7ba8919ea3fe390311ea16

Browse files
Files changed (50) hide show
  1. repositories/stable-diffusion-stability-ai/ldm/models/diffusion/ddpm.py +1873 -0
  2. repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
  3. repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/dpm_solver.py +1163 -0
  4. repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/sampler.py +96 -0
  5. repositories/stable-diffusion-stability-ai/ldm/models/diffusion/plms.py +245 -0
  6. repositories/stable-diffusion-stability-ai/ldm/models/diffusion/sampling_util.py +22 -0
  7. repositories/stable-diffusion-stability-ai/ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
  8. repositories/stable-diffusion-stability-ai/ldm/modules/__pycache__/ema.cpython-310.pyc +0 -0
  9. repositories/stable-diffusion-stability-ai/ldm/modules/attention.py +341 -0
  10. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__init__.py +0 -0
  11. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc +0 -0
  12. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc +0 -0
  13. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc +0 -0
  14. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc +0 -0
  15. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc +0 -0
  16. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/model.py +852 -0
  17. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/openaimodel.py +807 -0
  18. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/upscaling.py +81 -0
  19. repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/util.py +278 -0
  20. repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__init__.py +0 -0
  21. repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc +0 -0
  22. repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc +0 -0
  23. repositories/stable-diffusion-stability-ai/ldm/modules/distributions/distributions.py +92 -0
  24. repositories/stable-diffusion-stability-ai/ldm/modules/ema.py +80 -0
  25. repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__init__.py +0 -0
  26. repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc +0 -0
  27. repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__pycache__/modules.cpython-310.pyc +0 -0
  28. repositories/stable-diffusion-stability-ai/ldm/modules/encoders/modules.py +350 -0
  29. repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/__init__.py +2 -0
  30. repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/bsrgan.py +730 -0
  31. repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/bsrgan_light.py +651 -0
  32. repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/utils/test.png +0 -0
  33. repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/utils_image.py +916 -0
  34. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/__init__.py +0 -0
  35. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/diffusers_pipeline.py +512 -0
  36. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/__init__.py +0 -0
  37. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/__init__.py +0 -0
  38. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/clip.py +182 -0
  39. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/decoder_model.py +193 -0
  40. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/prior_model.py +138 -0
  41. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/sr_256_1k.py +10 -0
  42. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/sr_64_256.py +88 -0
  43. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/__init__.py +49 -0
  44. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/diffusion/gaussian_diffusion.py +828 -0
  45. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/diffusion/respace.py +112 -0
  46. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/nn.py +114 -0
  47. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/resample.py +68 -0
  48. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/unet.py +792 -0
  49. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/xf.py +231 -0
  50. repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/sampler.py +272 -0
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/ddpm.py ADDED
@@ -0,0 +1,1873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import numpy as np
12
+ import pytorch_lightning as pl
13
+ from torch.optim.lr_scheduler import LambdaLR
14
+ from einops import rearrange, repeat
15
+ from contextlib import contextmanager, nullcontext
16
+ from functools import partial
17
+ import itertools
18
+ from tqdm import tqdm
19
+ from torchvision.utils import make_grid
20
+ from pytorch_lightning.utilities.distributed import rank_zero_only
21
+ from omegaconf import ListConfig
22
+
23
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
24
+ from ldm.modules.ema import LitEma
25
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
26
+ from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
27
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
28
+ from ldm.models.diffusion.ddim import DDIMSampler
29
+
30
+
31
+ __conditioning_keys__ = {'concat': 'c_concat',
32
+ 'crossattn': 'c_crossattn',
33
+ 'adm': 'y'}
34
+
35
+
36
+ def disabled_train(self, mode=True):
37
+ """Overwrite model.train with this function to make sure train/eval mode
38
+ does not change anymore."""
39
+ return self
40
+
41
+
42
+ def uniform_on_device(r1, r2, shape, device):
43
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
44
+
45
+
46
+ class DDPM(pl.LightningModule):
47
+ # classic DDPM with Gaussian diffusion, in image space
48
+ def __init__(self,
49
+ unet_config,
50
+ timesteps=1000,
51
+ beta_schedule="linear",
52
+ loss_type="l2",
53
+ ckpt_path=None,
54
+ ignore_keys=[],
55
+ load_only_unet=False,
56
+ monitor="val/loss",
57
+ use_ema=True,
58
+ first_stage_key="image",
59
+ image_size=256,
60
+ channels=3,
61
+ log_every_t=100,
62
+ clip_denoised=True,
63
+ linear_start=1e-4,
64
+ linear_end=2e-2,
65
+ cosine_s=8e-3,
66
+ given_betas=None,
67
+ original_elbo_weight=0.,
68
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
69
+ l_simple_weight=1.,
70
+ conditioning_key=None,
71
+ parameterization="eps", # all assuming fixed variance schedules
72
+ scheduler_config=None,
73
+ use_positional_encodings=False,
74
+ learn_logvar=False,
75
+ logvar_init=0.,
76
+ make_it_fit=False,
77
+ ucg_training=None,
78
+ reset_ema=False,
79
+ reset_num_ema_updates=False,
80
+ ):
81
+ super().__init__()
82
+ assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
83
+ self.parameterization = parameterization
84
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
85
+ self.cond_stage_model = None
86
+ self.clip_denoised = clip_denoised
87
+ self.log_every_t = log_every_t
88
+ self.first_stage_key = first_stage_key
89
+ self.image_size = image_size # try conv?
90
+ self.channels = channels
91
+ self.use_positional_encodings = use_positional_encodings
92
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
93
+ count_params(self.model, verbose=True)
94
+ self.use_ema = use_ema
95
+ if self.use_ema:
96
+ self.model_ema = LitEma(self.model)
97
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
98
+
99
+ self.use_scheduler = scheduler_config is not None
100
+ if self.use_scheduler:
101
+ self.scheduler_config = scheduler_config
102
+
103
+ self.v_posterior = v_posterior
104
+ self.original_elbo_weight = original_elbo_weight
105
+ self.l_simple_weight = l_simple_weight
106
+
107
+ if monitor is not None:
108
+ self.monitor = monitor
109
+ self.make_it_fit = make_it_fit
110
+ if reset_ema: assert exists(ckpt_path)
111
+ if ckpt_path is not None:
112
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
113
+ if reset_ema:
114
+ assert self.use_ema
115
+ print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
116
+ self.model_ema = LitEma(self.model)
117
+ if reset_num_ema_updates:
118
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
119
+ assert self.use_ema
120
+ self.model_ema.reset_num_updates()
121
+
122
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
123
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
124
+
125
+ self.loss_type = loss_type
126
+
127
+ self.learn_logvar = learn_logvar
128
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
129
+ if self.learn_logvar:
130
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
131
+
132
+ self.ucg_training = ucg_training or dict()
133
+ if self.ucg_training:
134
+ self.ucg_prng = np.random.RandomState()
135
+
136
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
137
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
138
+ if exists(given_betas):
139
+ betas = given_betas
140
+ else:
141
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
142
+ cosine_s=cosine_s)
143
+ alphas = 1. - betas
144
+ alphas_cumprod = np.cumprod(alphas, axis=0)
145
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
146
+
147
+ timesteps, = betas.shape
148
+ self.num_timesteps = int(timesteps)
149
+ self.linear_start = linear_start
150
+ self.linear_end = linear_end
151
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
152
+
153
+ to_torch = partial(torch.tensor, dtype=torch.float32)
154
+
155
+ self.register_buffer('betas', to_torch(betas))
156
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
157
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
158
+
159
+ # calculations for diffusion q(x_t | x_{t-1}) and others
160
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
161
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
162
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
163
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
164
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
165
+
166
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
167
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
168
+ 1. - alphas_cumprod) + self.v_posterior * betas
169
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
170
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
171
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
172
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
173
+ self.register_buffer('posterior_mean_coef1', to_torch(
174
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
175
+ self.register_buffer('posterior_mean_coef2', to_torch(
176
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
177
+
178
+ if self.parameterization == "eps":
179
+ lvlb_weights = self.betas ** 2 / (
180
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
181
+ elif self.parameterization == "x0":
182
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
183
+ elif self.parameterization == "v":
184
+ lvlb_weights = torch.ones_like(self.betas ** 2 / (
185
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
186
+ else:
187
+ raise NotImplementedError("mu not supported")
188
+ lvlb_weights[0] = lvlb_weights[1]
189
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
190
+ assert not torch.isnan(self.lvlb_weights).all()
191
+
192
+ @contextmanager
193
+ def ema_scope(self, context=None):
194
+ if self.use_ema:
195
+ self.model_ema.store(self.model.parameters())
196
+ self.model_ema.copy_to(self.model)
197
+ if context is not None:
198
+ print(f"{context}: Switched to EMA weights")
199
+ try:
200
+ yield None
201
+ finally:
202
+ if self.use_ema:
203
+ self.model_ema.restore(self.model.parameters())
204
+ if context is not None:
205
+ print(f"{context}: Restored training weights")
206
+
207
+ @torch.no_grad()
208
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
209
+ sd = torch.load(path, map_location="cpu")
210
+ if "state_dict" in list(sd.keys()):
211
+ sd = sd["state_dict"]
212
+ keys = list(sd.keys())
213
+ for k in keys:
214
+ for ik in ignore_keys:
215
+ if k.startswith(ik):
216
+ print("Deleting key {} from state_dict.".format(k))
217
+ del sd[k]
218
+ if self.make_it_fit:
219
+ n_params = len([name for name, _ in
220
+ itertools.chain(self.named_parameters(),
221
+ self.named_buffers())])
222
+ for name, param in tqdm(
223
+ itertools.chain(self.named_parameters(),
224
+ self.named_buffers()),
225
+ desc="Fitting old weights to new weights",
226
+ total=n_params
227
+ ):
228
+ if not name in sd:
229
+ continue
230
+ old_shape = sd[name].shape
231
+ new_shape = param.shape
232
+ assert len(old_shape) == len(new_shape)
233
+ if len(new_shape) > 2:
234
+ # we only modify first two axes
235
+ assert new_shape[2:] == old_shape[2:]
236
+ # assumes first axis corresponds to output dim
237
+ if not new_shape == old_shape:
238
+ new_param = param.clone()
239
+ old_param = sd[name]
240
+ if len(new_shape) == 1:
241
+ for i in range(new_param.shape[0]):
242
+ new_param[i] = old_param[i % old_shape[0]]
243
+ elif len(new_shape) >= 2:
244
+ for i in range(new_param.shape[0]):
245
+ for j in range(new_param.shape[1]):
246
+ new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
247
+
248
+ n_used_old = torch.ones(old_shape[1])
249
+ for j in range(new_param.shape[1]):
250
+ n_used_old[j % old_shape[1]] += 1
251
+ n_used_new = torch.zeros(new_shape[1])
252
+ for j in range(new_param.shape[1]):
253
+ n_used_new[j] = n_used_old[j % old_shape[1]]
254
+
255
+ n_used_new = n_used_new[None, :]
256
+ while len(n_used_new.shape) < len(new_shape):
257
+ n_used_new = n_used_new.unsqueeze(-1)
258
+ new_param /= n_used_new
259
+
260
+ sd[name] = new_param
261
+
262
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
263
+ sd, strict=False)
264
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
265
+ if len(missing) > 0:
266
+ print(f"Missing Keys:\n {missing}")
267
+ if len(unexpected) > 0:
268
+ print(f"\nUnexpected Keys:\n {unexpected}")
269
+
270
+ def q_mean_variance(self, x_start, t):
271
+ """
272
+ Get the distribution q(x_t | x_0).
273
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
274
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
275
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
276
+ """
277
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
278
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
279
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
280
+ return mean, variance, log_variance
281
+
282
+ def predict_start_from_noise(self, x_t, t, noise):
283
+ return (
284
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
285
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
286
+ )
287
+
288
+ def predict_start_from_z_and_v(self, x_t, t, v):
289
+ # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
290
+ # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
291
+ return (
292
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
293
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
294
+ )
295
+
296
+ def predict_eps_from_z_and_v(self, x_t, t, v):
297
+ return (
298
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
299
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
300
+ )
301
+
302
+ def q_posterior(self, x_start, x_t, t):
303
+ posterior_mean = (
304
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
305
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
306
+ )
307
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
308
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
309
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
310
+
311
+ def p_mean_variance(self, x, t, clip_denoised: bool):
312
+ model_out = self.model(x, t)
313
+ if self.parameterization == "eps":
314
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
315
+ elif self.parameterization == "x0":
316
+ x_recon = model_out
317
+ if clip_denoised:
318
+ x_recon.clamp_(-1., 1.)
319
+
320
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
321
+ return model_mean, posterior_variance, posterior_log_variance
322
+
323
+ @torch.no_grad()
324
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
325
+ b, *_, device = *x.shape, x.device
326
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
327
+ noise = noise_like(x.shape, device, repeat_noise)
328
+ # no noise when t == 0
329
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
330
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
331
+
332
+ @torch.no_grad()
333
+ def p_sample_loop(self, shape, return_intermediates=False):
334
+ device = self.betas.device
335
+ b = shape[0]
336
+ img = torch.randn(shape, device=device)
337
+ intermediates = [img]
338
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
339
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
340
+ clip_denoised=self.clip_denoised)
341
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
342
+ intermediates.append(img)
343
+ if return_intermediates:
344
+ return img, intermediates
345
+ return img
346
+
347
+ @torch.no_grad()
348
+ def sample(self, batch_size=16, return_intermediates=False):
349
+ image_size = self.image_size
350
+ channels = self.channels
351
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
352
+ return_intermediates=return_intermediates)
353
+
354
+ def q_sample(self, x_start, t, noise=None):
355
+ noise = default(noise, lambda: torch.randn_like(x_start))
356
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
357
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
358
+
359
+ def get_v(self, x, noise, t):
360
+ return (
361
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
362
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
363
+ )
364
+
365
+ def get_loss(self, pred, target, mean=True):
366
+ if self.loss_type == 'l1':
367
+ loss = (target - pred).abs()
368
+ if mean:
369
+ loss = loss.mean()
370
+ elif self.loss_type == 'l2':
371
+ if mean:
372
+ loss = torch.nn.functional.mse_loss(target, pred)
373
+ else:
374
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
375
+ else:
376
+ raise NotImplementedError("unknown loss type '{loss_type}'")
377
+
378
+ return loss
379
+
380
+ def p_losses(self, x_start, t, noise=None):
381
+ noise = default(noise, lambda: torch.randn_like(x_start))
382
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
383
+ model_out = self.model(x_noisy, t)
384
+
385
+ loss_dict = {}
386
+ if self.parameterization == "eps":
387
+ target = noise
388
+ elif self.parameterization == "x0":
389
+ target = x_start
390
+ elif self.parameterization == "v":
391
+ target = self.get_v(x_start, noise, t)
392
+ else:
393
+ raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
394
+
395
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
396
+
397
+ log_prefix = 'train' if self.training else 'val'
398
+
399
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
400
+ loss_simple = loss.mean() * self.l_simple_weight
401
+
402
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
403
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
404
+
405
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
406
+
407
+ loss_dict.update({f'{log_prefix}/loss': loss})
408
+
409
+ return loss, loss_dict
410
+
411
+ def forward(self, x, *args, **kwargs):
412
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
413
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
414
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
415
+ return self.p_losses(x, t, *args, **kwargs)
416
+
417
+ def get_input(self, batch, k):
418
+ x = batch[k]
419
+ if len(x.shape) == 3:
420
+ x = x[..., None]
421
+ x = rearrange(x, 'b h w c -> b c h w')
422
+ x = x.to(memory_format=torch.contiguous_format).float()
423
+ return x
424
+
425
+ def shared_step(self, batch):
426
+ x = self.get_input(batch, self.first_stage_key)
427
+ loss, loss_dict = self(x)
428
+ return loss, loss_dict
429
+
430
+ def training_step(self, batch, batch_idx):
431
+ for k in self.ucg_training:
432
+ p = self.ucg_training[k]["p"]
433
+ val = self.ucg_training[k]["val"]
434
+ if val is None:
435
+ val = ""
436
+ for i in range(len(batch[k])):
437
+ if self.ucg_prng.choice(2, p=[1 - p, p]):
438
+ batch[k][i] = val
439
+
440
+ loss, loss_dict = self.shared_step(batch)
441
+
442
+ self.log_dict(loss_dict, prog_bar=True,
443
+ logger=True, on_step=True, on_epoch=True)
444
+
445
+ self.log("global_step", self.global_step,
446
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
447
+
448
+ if self.use_scheduler:
449
+ lr = self.optimizers().param_groups[0]['lr']
450
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
451
+
452
+ return loss
453
+
454
+ @torch.no_grad()
455
+ def validation_step(self, batch, batch_idx):
456
+ _, loss_dict_no_ema = self.shared_step(batch)
457
+ with self.ema_scope():
458
+ _, loss_dict_ema = self.shared_step(batch)
459
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
460
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
461
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
462
+
463
+ def on_train_batch_end(self, *args, **kwargs):
464
+ if self.use_ema:
465
+ self.model_ema(self.model)
466
+
467
+ def _get_rows_from_list(self, samples):
468
+ n_imgs_per_row = len(samples)
469
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
470
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
471
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
472
+ return denoise_grid
473
+
474
+ @torch.no_grad()
475
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
476
+ log = dict()
477
+ x = self.get_input(batch, self.first_stage_key)
478
+ N = min(x.shape[0], N)
479
+ n_row = min(x.shape[0], n_row)
480
+ x = x.to(self.device)[:N]
481
+ log["inputs"] = x
482
+
483
+ # get diffusion row
484
+ diffusion_row = list()
485
+ x_start = x[:n_row]
486
+
487
+ for t in range(self.num_timesteps):
488
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
489
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
490
+ t = t.to(self.device).long()
491
+ noise = torch.randn_like(x_start)
492
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
493
+ diffusion_row.append(x_noisy)
494
+
495
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
496
+
497
+ if sample:
498
+ # get denoise row
499
+ with self.ema_scope("Plotting"):
500
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
501
+
502
+ log["samples"] = samples
503
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
504
+
505
+ if return_keys:
506
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
507
+ return log
508
+ else:
509
+ return {key: log[key] for key in return_keys}
510
+ return log
511
+
512
+ def configure_optimizers(self):
513
+ lr = self.learning_rate
514
+ params = list(self.model.parameters())
515
+ if self.learn_logvar:
516
+ params = params + [self.logvar]
517
+ opt = torch.optim.AdamW(params, lr=lr)
518
+ return opt
519
+
520
+
521
+ class LatentDiffusion(DDPM):
522
+ """main class"""
523
+
524
+ def __init__(self,
525
+ first_stage_config,
526
+ cond_stage_config,
527
+ num_timesteps_cond=None,
528
+ cond_stage_key="image",
529
+ cond_stage_trainable=False,
530
+ concat_mode=True,
531
+ cond_stage_forward=None,
532
+ conditioning_key=None,
533
+ scale_factor=1.0,
534
+ scale_by_std=False,
535
+ force_null_conditioning=False,
536
+ *args, **kwargs):
537
+ self.force_null_conditioning = force_null_conditioning
538
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
539
+ self.scale_by_std = scale_by_std
540
+ assert self.num_timesteps_cond <= kwargs['timesteps']
541
+ # for backwards compatibility after implementation of DiffusionWrapper
542
+ if conditioning_key is None:
543
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
544
+ if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
545
+ conditioning_key = None
546
+ ckpt_path = kwargs.pop("ckpt_path", None)
547
+ reset_ema = kwargs.pop("reset_ema", False)
548
+ reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
549
+ ignore_keys = kwargs.pop("ignore_keys", [])
550
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
551
+ self.concat_mode = concat_mode
552
+ self.cond_stage_trainable = cond_stage_trainable
553
+ self.cond_stage_key = cond_stage_key
554
+ try:
555
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
556
+ except:
557
+ self.num_downs = 0
558
+ if not scale_by_std:
559
+ self.scale_factor = scale_factor
560
+ else:
561
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
562
+ self.instantiate_first_stage(first_stage_config)
563
+ self.instantiate_cond_stage(cond_stage_config)
564
+ self.cond_stage_forward = cond_stage_forward
565
+ self.clip_denoised = False
566
+ self.bbox_tokenizer = None
567
+
568
+ self.restarted_from_ckpt = False
569
+ if ckpt_path is not None:
570
+ self.init_from_ckpt(ckpt_path, ignore_keys)
571
+ self.restarted_from_ckpt = True
572
+ if reset_ema:
573
+ assert self.use_ema
574
+ print(
575
+ f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
576
+ self.model_ema = LitEma(self.model)
577
+ if reset_num_ema_updates:
578
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
579
+ assert self.use_ema
580
+ self.model_ema.reset_num_updates()
581
+
582
+ def make_cond_schedule(self, ):
583
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
584
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
585
+ self.cond_ids[:self.num_timesteps_cond] = ids
586
+
587
+ @rank_zero_only
588
+ @torch.no_grad()
589
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
590
+ # only for very first batch
591
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
592
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
593
+ # set rescale weight to 1./std of encodings
594
+ print("### USING STD-RESCALING ###")
595
+ x = super().get_input(batch, self.first_stage_key)
596
+ x = x.to(self.device)
597
+ encoder_posterior = self.encode_first_stage(x)
598
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
599
+ del self.scale_factor
600
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
601
+ print(f"setting self.scale_factor to {self.scale_factor}")
602
+ print("### USING STD-RESCALING ###")
603
+
604
+ def register_schedule(self,
605
+ given_betas=None, beta_schedule="linear", timesteps=1000,
606
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
607
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
608
+
609
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
610
+ if self.shorten_cond_schedule:
611
+ self.make_cond_schedule()
612
+
613
+ def instantiate_first_stage(self, config):
614
+ model = instantiate_from_config(config)
615
+ self.first_stage_model = model.eval()
616
+ self.first_stage_model.train = disabled_train
617
+ for param in self.first_stage_model.parameters():
618
+ param.requires_grad = False
619
+
620
+ def instantiate_cond_stage(self, config):
621
+ if not self.cond_stage_trainable:
622
+ if config == "__is_first_stage__":
623
+ print("Using first stage also as cond stage.")
624
+ self.cond_stage_model = self.first_stage_model
625
+ elif config == "__is_unconditional__":
626
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
627
+ self.cond_stage_model = None
628
+ # self.be_unconditional = True
629
+ else:
630
+ model = instantiate_from_config(config)
631
+ self.cond_stage_model = model.eval()
632
+ self.cond_stage_model.train = disabled_train
633
+ for param in self.cond_stage_model.parameters():
634
+ param.requires_grad = False
635
+ else:
636
+ assert config != '__is_first_stage__'
637
+ assert config != '__is_unconditional__'
638
+ model = instantiate_from_config(config)
639
+ self.cond_stage_model = model
640
+
641
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
642
+ denoise_row = []
643
+ for zd in tqdm(samples, desc=desc):
644
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
645
+ force_not_quantize=force_no_decoder_quantization))
646
+ n_imgs_per_row = len(denoise_row)
647
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
648
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
649
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
650
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
651
+ return denoise_grid
652
+
653
+ def get_first_stage_encoding(self, encoder_posterior):
654
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
655
+ z = encoder_posterior.sample()
656
+ elif isinstance(encoder_posterior, torch.Tensor):
657
+ z = encoder_posterior
658
+ else:
659
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
660
+ return self.scale_factor * z
661
+
662
+ def get_learned_conditioning(self, c):
663
+ if self.cond_stage_forward is None:
664
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
665
+ c = self.cond_stage_model.encode(c)
666
+ if isinstance(c, DiagonalGaussianDistribution):
667
+ c = c.mode()
668
+ else:
669
+ c = self.cond_stage_model(c)
670
+ else:
671
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
672
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
673
+ return c
674
+
675
+ def meshgrid(self, h, w):
676
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
677
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
678
+
679
+ arr = torch.cat([y, x], dim=-1)
680
+ return arr
681
+
682
+ def delta_border(self, h, w):
683
+ """
684
+ :param h: height
685
+ :param w: width
686
+ :return: normalized distance to image border,
687
+ wtith min distance = 0 at border and max dist = 0.5 at image center
688
+ """
689
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
690
+ arr = self.meshgrid(h, w) / lower_right_corner
691
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
692
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
693
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
694
+ return edge_dist
695
+
696
+ def get_weighting(self, h, w, Ly, Lx, device):
697
+ weighting = self.delta_border(h, w)
698
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
699
+ self.split_input_params["clip_max_weight"], )
700
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
701
+
702
+ if self.split_input_params["tie_braker"]:
703
+ L_weighting = self.delta_border(Ly, Lx)
704
+ L_weighting = torch.clip(L_weighting,
705
+ self.split_input_params["clip_min_tie_weight"],
706
+ self.split_input_params["clip_max_tie_weight"])
707
+
708
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
709
+ weighting = weighting * L_weighting
710
+ return weighting
711
+
712
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
713
+ """
714
+ :param x: img of size (bs, c, h, w)
715
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
716
+ """
717
+ bs, nc, h, w = x.shape
718
+
719
+ # number of crops in image
720
+ Ly = (h - kernel_size[0]) // stride[0] + 1
721
+ Lx = (w - kernel_size[1]) // stride[1] + 1
722
+
723
+ if uf == 1 and df == 1:
724
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
725
+ unfold = torch.nn.Unfold(**fold_params)
726
+
727
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
728
+
729
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
730
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
731
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
732
+
733
+ elif uf > 1 and df == 1:
734
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
735
+ unfold = torch.nn.Unfold(**fold_params)
736
+
737
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
738
+ dilation=1, padding=0,
739
+ stride=(stride[0] * uf, stride[1] * uf))
740
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
741
+
742
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
743
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
744
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
745
+
746
+ elif df > 1 and uf == 1:
747
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
748
+ unfold = torch.nn.Unfold(**fold_params)
749
+
750
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
751
+ dilation=1, padding=0,
752
+ stride=(stride[0] // df, stride[1] // df))
753
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
754
+
755
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
756
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
757
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
758
+
759
+ else:
760
+ raise NotImplementedError
761
+
762
+ return fold, unfold, normalization, weighting
763
+
764
+ @torch.no_grad()
765
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
766
+ cond_key=None, return_original_cond=False, bs=None, return_x=False):
767
+ x = super().get_input(batch, k)
768
+ if bs is not None:
769
+ x = x[:bs]
770
+ x = x.to(self.device)
771
+ encoder_posterior = self.encode_first_stage(x)
772
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
773
+
774
+ if self.model.conditioning_key is not None and not self.force_null_conditioning:
775
+ if cond_key is None:
776
+ cond_key = self.cond_stage_key
777
+ if cond_key != self.first_stage_key:
778
+ if cond_key in ['caption', 'coordinates_bbox', "txt"]:
779
+ xc = batch[cond_key]
780
+ elif cond_key in ['class_label', 'cls']:
781
+ xc = batch
782
+ else:
783
+ xc = super().get_input(batch, cond_key).to(self.device)
784
+ else:
785
+ xc = x
786
+ if not self.cond_stage_trainable or force_c_encode:
787
+ if isinstance(xc, dict) or isinstance(xc, list):
788
+ c = self.get_learned_conditioning(xc)
789
+ else:
790
+ c = self.get_learned_conditioning(xc.to(self.device))
791
+ else:
792
+ c = xc
793
+ if bs is not None:
794
+ c = c[:bs]
795
+
796
+ if self.use_positional_encodings:
797
+ pos_x, pos_y = self.compute_latent_shifts(batch)
798
+ ckey = __conditioning_keys__[self.model.conditioning_key]
799
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
800
+
801
+ else:
802
+ c = None
803
+ xc = None
804
+ if self.use_positional_encodings:
805
+ pos_x, pos_y = self.compute_latent_shifts(batch)
806
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
807
+ out = [z, c]
808
+ if return_first_stage_outputs:
809
+ xrec = self.decode_first_stage(z)
810
+ out.extend([x, xrec])
811
+ if return_x:
812
+ out.extend([x])
813
+ if return_original_cond:
814
+ out.append(xc)
815
+ return out
816
+
817
+ @torch.no_grad()
818
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
819
+ if predict_cids:
820
+ if z.dim() == 4:
821
+ z = torch.argmax(z.exp(), dim=1).long()
822
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
823
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
824
+
825
+ z = 1. / self.scale_factor * z
826
+ return self.first_stage_model.decode(z)
827
+
828
+ @torch.no_grad()
829
+ def encode_first_stage(self, x):
830
+ return self.first_stage_model.encode(x)
831
+
832
+ def shared_step(self, batch, **kwargs):
833
+ x, c = self.get_input(batch, self.first_stage_key)
834
+ loss = self(x, c)
835
+ return loss
836
+
837
+ def forward(self, x, c, *args, **kwargs):
838
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
839
+ if self.model.conditioning_key is not None:
840
+ assert c is not None
841
+ if self.cond_stage_trainable:
842
+ c = self.get_learned_conditioning(c)
843
+ if self.shorten_cond_schedule: # TODO: drop this option
844
+ tc = self.cond_ids[t].to(self.device)
845
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
846
+ return self.p_losses(x, c, t, *args, **kwargs)
847
+
848
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
849
+ if isinstance(cond, dict):
850
+ # hybrid case, cond is expected to be a dict
851
+ pass
852
+ else:
853
+ if not isinstance(cond, list):
854
+ cond = [cond]
855
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
856
+ cond = {key: cond}
857
+
858
+ x_recon = self.model(x_noisy, t, **cond)
859
+
860
+ if isinstance(x_recon, tuple) and not return_ids:
861
+ return x_recon[0]
862
+ else:
863
+ return x_recon
864
+
865
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
866
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
867
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
868
+
869
+ def _prior_bpd(self, x_start):
870
+ """
871
+ Get the prior KL term for the variational lower-bound, measured in
872
+ bits-per-dim.
873
+ This term can't be optimized, as it only depends on the encoder.
874
+ :param x_start: the [N x C x ...] tensor of inputs.
875
+ :return: a batch of [N] KL values (in bits), one per batch element.
876
+ """
877
+ batch_size = x_start.shape[0]
878
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
879
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
880
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
881
+ return mean_flat(kl_prior) / np.log(2.0)
882
+
883
+ def p_losses(self, x_start, cond, t, noise=None):
884
+ noise = default(noise, lambda: torch.randn_like(x_start))
885
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
886
+ model_output = self.apply_model(x_noisy, t, cond)
887
+
888
+ loss_dict = {}
889
+ prefix = 'train' if self.training else 'val'
890
+
891
+ if self.parameterization == "x0":
892
+ target = x_start
893
+ elif self.parameterization == "eps":
894
+ target = noise
895
+ elif self.parameterization == "v":
896
+ target = self.get_v(x_start, noise, t)
897
+ else:
898
+ raise NotImplementedError()
899
+
900
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
901
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
902
+
903
+ logvar_t = self.logvar[t].to(self.device)
904
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
905
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
906
+ if self.learn_logvar:
907
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
908
+ loss_dict.update({'logvar': self.logvar.data.mean()})
909
+
910
+ loss = self.l_simple_weight * loss.mean()
911
+
912
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
913
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
914
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
915
+ loss += (self.original_elbo_weight * loss_vlb)
916
+ loss_dict.update({f'{prefix}/loss': loss})
917
+
918
+ return loss, loss_dict
919
+
920
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
921
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
922
+ t_in = t
923
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
924
+
925
+ if score_corrector is not None:
926
+ assert self.parameterization == "eps"
927
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
928
+
929
+ if return_codebook_ids:
930
+ model_out, logits = model_out
931
+
932
+ if self.parameterization == "eps":
933
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
934
+ elif self.parameterization == "x0":
935
+ x_recon = model_out
936
+ else:
937
+ raise NotImplementedError()
938
+
939
+ if clip_denoised:
940
+ x_recon.clamp_(-1., 1.)
941
+ if quantize_denoised:
942
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
943
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
944
+ if return_codebook_ids:
945
+ return model_mean, posterior_variance, posterior_log_variance, logits
946
+ elif return_x0:
947
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
948
+ else:
949
+ return model_mean, posterior_variance, posterior_log_variance
950
+
951
+ @torch.no_grad()
952
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
953
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
954
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
955
+ b, *_, device = *x.shape, x.device
956
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
957
+ return_codebook_ids=return_codebook_ids,
958
+ quantize_denoised=quantize_denoised,
959
+ return_x0=return_x0,
960
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
961
+ if return_codebook_ids:
962
+ raise DeprecationWarning("Support dropped.")
963
+ model_mean, _, model_log_variance, logits = outputs
964
+ elif return_x0:
965
+ model_mean, _, model_log_variance, x0 = outputs
966
+ else:
967
+ model_mean, _, model_log_variance = outputs
968
+
969
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
970
+ if noise_dropout > 0.:
971
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
972
+ # no noise when t == 0
973
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
974
+
975
+ if return_codebook_ids:
976
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
977
+ if return_x0:
978
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
979
+ else:
980
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
981
+
982
+ @torch.no_grad()
983
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
984
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
985
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
986
+ log_every_t=None):
987
+ if not log_every_t:
988
+ log_every_t = self.log_every_t
989
+ timesteps = self.num_timesteps
990
+ if batch_size is not None:
991
+ b = batch_size if batch_size is not None else shape[0]
992
+ shape = [batch_size] + list(shape)
993
+ else:
994
+ b = batch_size = shape[0]
995
+ if x_T is None:
996
+ img = torch.randn(shape, device=self.device)
997
+ else:
998
+ img = x_T
999
+ intermediates = []
1000
+ if cond is not None:
1001
+ if isinstance(cond, dict):
1002
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1003
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1004
+ else:
1005
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1006
+
1007
+ if start_T is not None:
1008
+ timesteps = min(timesteps, start_T)
1009
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1010
+ total=timesteps) if verbose else reversed(
1011
+ range(0, timesteps))
1012
+ if type(temperature) == float:
1013
+ temperature = [temperature] * timesteps
1014
+
1015
+ for i in iterator:
1016
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1017
+ if self.shorten_cond_schedule:
1018
+ assert self.model.conditioning_key != 'hybrid'
1019
+ tc = self.cond_ids[ts].to(cond.device)
1020
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1021
+
1022
+ img, x0_partial = self.p_sample(img, cond, ts,
1023
+ clip_denoised=self.clip_denoised,
1024
+ quantize_denoised=quantize_denoised, return_x0=True,
1025
+ temperature=temperature[i], noise_dropout=noise_dropout,
1026
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1027
+ if mask is not None:
1028
+ assert x0 is not None
1029
+ img_orig = self.q_sample(x0, ts)
1030
+ img = img_orig * mask + (1. - mask) * img
1031
+
1032
+ if i % log_every_t == 0 or i == timesteps - 1:
1033
+ intermediates.append(x0_partial)
1034
+ if callback: callback(i)
1035
+ if img_callback: img_callback(img, i)
1036
+ return img, intermediates
1037
+
1038
+ @torch.no_grad()
1039
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1040
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1041
+ mask=None, x0=None, img_callback=None, start_T=None,
1042
+ log_every_t=None):
1043
+
1044
+ if not log_every_t:
1045
+ log_every_t = self.log_every_t
1046
+ device = self.betas.device
1047
+ b = shape[0]
1048
+ if x_T is None:
1049
+ img = torch.randn(shape, device=device)
1050
+ else:
1051
+ img = x_T
1052
+
1053
+ intermediates = [img]
1054
+ if timesteps is None:
1055
+ timesteps = self.num_timesteps
1056
+
1057
+ if start_T is not None:
1058
+ timesteps = min(timesteps, start_T)
1059
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1060
+ range(0, timesteps))
1061
+
1062
+ if mask is not None:
1063
+ assert x0 is not None
1064
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1065
+
1066
+ for i in iterator:
1067
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1068
+ if self.shorten_cond_schedule:
1069
+ assert self.model.conditioning_key != 'hybrid'
1070
+ tc = self.cond_ids[ts].to(cond.device)
1071
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1072
+
1073
+ img = self.p_sample(img, cond, ts,
1074
+ clip_denoised=self.clip_denoised,
1075
+ quantize_denoised=quantize_denoised)
1076
+ if mask is not None:
1077
+ img_orig = self.q_sample(x0, ts)
1078
+ img = img_orig * mask + (1. - mask) * img
1079
+
1080
+ if i % log_every_t == 0 or i == timesteps - 1:
1081
+ intermediates.append(img)
1082
+ if callback: callback(i)
1083
+ if img_callback: img_callback(img, i)
1084
+
1085
+ if return_intermediates:
1086
+ return img, intermediates
1087
+ return img
1088
+
1089
+ @torch.no_grad()
1090
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1091
+ verbose=True, timesteps=None, quantize_denoised=False,
1092
+ mask=None, x0=None, shape=None, **kwargs):
1093
+ if shape is None:
1094
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1095
+ if cond is not None:
1096
+ if isinstance(cond, dict):
1097
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1098
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1099
+ else:
1100
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1101
+ return self.p_sample_loop(cond,
1102
+ shape,
1103
+ return_intermediates=return_intermediates, x_T=x_T,
1104
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1105
+ mask=mask, x0=x0)
1106
+
1107
+ @torch.no_grad()
1108
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1109
+ if ddim:
1110
+ ddim_sampler = DDIMSampler(self)
1111
+ shape = (self.channels, self.image_size, self.image_size)
1112
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1113
+ shape, cond, verbose=False, **kwargs)
1114
+
1115
+ else:
1116
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1117
+ return_intermediates=True, **kwargs)
1118
+
1119
+ return samples, intermediates
1120
+
1121
+ @torch.no_grad()
1122
+ def get_unconditional_conditioning(self, batch_size, null_label=None):
1123
+ if null_label is not None:
1124
+ xc = null_label
1125
+ if isinstance(xc, ListConfig):
1126
+ xc = list(xc)
1127
+ if isinstance(xc, dict) or isinstance(xc, list):
1128
+ c = self.get_learned_conditioning(xc)
1129
+ else:
1130
+ if hasattr(xc, "to"):
1131
+ xc = xc.to(self.device)
1132
+ c = self.get_learned_conditioning(xc)
1133
+ else:
1134
+ if self.cond_stage_key in ["class_label", "cls"]:
1135
+ xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
1136
+ return self.get_learned_conditioning(xc)
1137
+ else:
1138
+ raise NotImplementedError("todo")
1139
+ if isinstance(c, list): # in case the encoder gives us a list
1140
+ for i in range(len(c)):
1141
+ c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
1142
+ else:
1143
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1144
+ return c
1145
+
1146
+ @torch.no_grad()
1147
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
1148
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1149
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1150
+ use_ema_scope=True,
1151
+ **kwargs):
1152
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1153
+ use_ddim = ddim_steps is not None
1154
+
1155
+ log = dict()
1156
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1157
+ return_first_stage_outputs=True,
1158
+ force_c_encode=True,
1159
+ return_original_cond=True,
1160
+ bs=N)
1161
+ N = min(x.shape[0], N)
1162
+ n_row = min(x.shape[0], n_row)
1163
+ log["inputs"] = x
1164
+ log["reconstruction"] = xrec
1165
+ if self.model.conditioning_key is not None:
1166
+ if hasattr(self.cond_stage_model, "decode"):
1167
+ xc = self.cond_stage_model.decode(c)
1168
+ log["conditioning"] = xc
1169
+ elif self.cond_stage_key in ["caption", "txt"]:
1170
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1171
+ log["conditioning"] = xc
1172
+ elif self.cond_stage_key in ['class_label', "cls"]:
1173
+ try:
1174
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1175
+ log['conditioning'] = xc
1176
+ except KeyError:
1177
+ # probably no "human_label" in batch
1178
+ pass
1179
+ elif isimage(xc):
1180
+ log["conditioning"] = xc
1181
+ if ismap(xc):
1182
+ log["original_conditioning"] = self.to_rgb(xc)
1183
+
1184
+ if plot_diffusion_rows:
1185
+ # get diffusion row
1186
+ diffusion_row = list()
1187
+ z_start = z[:n_row]
1188
+ for t in range(self.num_timesteps):
1189
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1190
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1191
+ t = t.to(self.device).long()
1192
+ noise = torch.randn_like(z_start)
1193
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1194
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1195
+
1196
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1197
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1198
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1199
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1200
+ log["diffusion_row"] = diffusion_grid
1201
+
1202
+ if sample:
1203
+ # get denoise row
1204
+ with ema_scope("Sampling"):
1205
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1206
+ ddim_steps=ddim_steps, eta=ddim_eta)
1207
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1208
+ x_samples = self.decode_first_stage(samples)
1209
+ log["samples"] = x_samples
1210
+ if plot_denoise_rows:
1211
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1212
+ log["denoise_row"] = denoise_grid
1213
+
1214
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1215
+ self.first_stage_model, IdentityFirstStage):
1216
+ # also display when quantizing x0 while sampling
1217
+ with ema_scope("Plotting Quantized Denoised"):
1218
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1219
+ ddim_steps=ddim_steps, eta=ddim_eta,
1220
+ quantize_denoised=True)
1221
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1222
+ # quantize_denoised=True)
1223
+ x_samples = self.decode_first_stage(samples.to(self.device))
1224
+ log["samples_x0_quantized"] = x_samples
1225
+
1226
+ if unconditional_guidance_scale > 1.0:
1227
+ uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1228
+ if self.model.conditioning_key == "crossattn-adm":
1229
+ uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
1230
+ with ema_scope("Sampling with classifier-free guidance"):
1231
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1232
+ ddim_steps=ddim_steps, eta=ddim_eta,
1233
+ unconditional_guidance_scale=unconditional_guidance_scale,
1234
+ unconditional_conditioning=uc,
1235
+ )
1236
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1237
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1238
+
1239
+ if inpaint:
1240
+ # make a simple center square
1241
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1242
+ mask = torch.ones(N, h, w).to(self.device)
1243
+ # zeros will be filled in
1244
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1245
+ mask = mask[:, None, ...]
1246
+ with ema_scope("Plotting Inpaint"):
1247
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1248
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1249
+ x_samples = self.decode_first_stage(samples.to(self.device))
1250
+ log["samples_inpainting"] = x_samples
1251
+ log["mask"] = mask
1252
+
1253
+ # outpaint
1254
+ mask = 1. - mask
1255
+ with ema_scope("Plotting Outpaint"):
1256
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1257
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1258
+ x_samples = self.decode_first_stage(samples.to(self.device))
1259
+ log["samples_outpainting"] = x_samples
1260
+
1261
+ if plot_progressive_rows:
1262
+ with ema_scope("Plotting Progressives"):
1263
+ img, progressives = self.progressive_denoising(c,
1264
+ shape=(self.channels, self.image_size, self.image_size),
1265
+ batch_size=N)
1266
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1267
+ log["progressive_row"] = prog_row
1268
+
1269
+ if return_keys:
1270
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1271
+ return log
1272
+ else:
1273
+ return {key: log[key] for key in return_keys}
1274
+ return log
1275
+
1276
+ def configure_optimizers(self):
1277
+ lr = self.learning_rate
1278
+ params = list(self.model.parameters())
1279
+ if self.cond_stage_trainable:
1280
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1281
+ params = params + list(self.cond_stage_model.parameters())
1282
+ if self.learn_logvar:
1283
+ print('Diffusion model optimizing logvar')
1284
+ params.append(self.logvar)
1285
+ opt = torch.optim.AdamW(params, lr=lr)
1286
+ if self.use_scheduler:
1287
+ assert 'target' in self.scheduler_config
1288
+ scheduler = instantiate_from_config(self.scheduler_config)
1289
+
1290
+ print("Setting up LambdaLR scheduler...")
1291
+ scheduler = [
1292
+ {
1293
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1294
+ 'interval': 'step',
1295
+ 'frequency': 1
1296
+ }]
1297
+ return [opt], scheduler
1298
+ return opt
1299
+
1300
+ @torch.no_grad()
1301
+ def to_rgb(self, x):
1302
+ x = x.float()
1303
+ if not hasattr(self, "colorize"):
1304
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1305
+ x = nn.functional.conv2d(x, weight=self.colorize)
1306
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1307
+ return x
1308
+
1309
+
1310
+ class DiffusionWrapper(pl.LightningModule):
1311
+ def __init__(self, diff_model_config, conditioning_key):
1312
+ super().__init__()
1313
+ self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
1314
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1315
+ self.conditioning_key = conditioning_key
1316
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
1317
+
1318
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1319
+ if self.conditioning_key is None:
1320
+ out = self.diffusion_model(x, t)
1321
+ elif self.conditioning_key == 'concat':
1322
+ xc = torch.cat([x] + c_concat, dim=1)
1323
+ out = self.diffusion_model(xc, t)
1324
+ elif self.conditioning_key == 'crossattn':
1325
+ if not self.sequential_cross_attn:
1326
+ cc = torch.cat(c_crossattn, 1)
1327
+ else:
1328
+ cc = c_crossattn
1329
+ if hasattr(self, "scripted_diffusion_model"):
1330
+ # TorchScript changes names of the arguments
1331
+ # with argument cc defined as context=cc scripted model will produce
1332
+ # an error: RuntimeError: forward() is missing value for argument 'argument_3'.
1333
+ out = self.scripted_diffusion_model(x, t, cc)
1334
+ else:
1335
+ out = self.diffusion_model(x, t, context=cc)
1336
+ elif self.conditioning_key == 'hybrid':
1337
+ xc = torch.cat([x] + c_concat, dim=1)
1338
+ cc = torch.cat(c_crossattn, 1)
1339
+ out = self.diffusion_model(xc, t, context=cc)
1340
+ elif self.conditioning_key == 'hybrid-adm':
1341
+ assert c_adm is not None
1342
+ xc = torch.cat([x] + c_concat, dim=1)
1343
+ cc = torch.cat(c_crossattn, 1)
1344
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1345
+ elif self.conditioning_key == 'crossattn-adm':
1346
+ assert c_adm is not None
1347
+ cc = torch.cat(c_crossattn, 1)
1348
+ out = self.diffusion_model(x, t, context=cc, y=c_adm)
1349
+ elif self.conditioning_key == 'adm':
1350
+ cc = c_crossattn[0]
1351
+ out = self.diffusion_model(x, t, y=cc)
1352
+ else:
1353
+ raise NotImplementedError()
1354
+
1355
+ return out
1356
+
1357
+
1358
+ class LatentUpscaleDiffusion(LatentDiffusion):
1359
+ def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
1360
+ super().__init__(*args, **kwargs)
1361
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1362
+ assert not self.cond_stage_trainable
1363
+ self.instantiate_low_stage(low_scale_config)
1364
+ self.low_scale_key = low_scale_key
1365
+ self.noise_level_key = noise_level_key
1366
+
1367
+ def instantiate_low_stage(self, config):
1368
+ model = instantiate_from_config(config)
1369
+ self.low_scale_model = model.eval()
1370
+ self.low_scale_model.train = disabled_train
1371
+ for param in self.low_scale_model.parameters():
1372
+ param.requires_grad = False
1373
+
1374
+ @torch.no_grad()
1375
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1376
+ if not log_mode:
1377
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1378
+ else:
1379
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1380
+ force_c_encode=True, return_original_cond=True, bs=bs)
1381
+ x_low = batch[self.low_scale_key][:bs]
1382
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1383
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1384
+ zx, noise_level = self.low_scale_model(x_low)
1385
+ if self.noise_level_key is not None:
1386
+ # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
1387
+ raise NotImplementedError('TODO')
1388
+
1389
+ all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1390
+ if log_mode:
1391
+ # TODO: maybe disable if too expensive
1392
+ x_low_rec = self.low_scale_model.decode(zx)
1393
+ return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1394
+ return z, all_conds
1395
+
1396
+ @torch.no_grad()
1397
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1398
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1399
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1400
+ **kwargs):
1401
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1402
+ use_ddim = ddim_steps is not None
1403
+
1404
+ log = dict()
1405
+ z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1406
+ log_mode=True)
1407
+ N = min(x.shape[0], N)
1408
+ n_row = min(x.shape[0], n_row)
1409
+ log["inputs"] = x
1410
+ log["reconstruction"] = xrec
1411
+ log["x_lr"] = x_low
1412
+ log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1413
+ if self.model.conditioning_key is not None:
1414
+ if hasattr(self.cond_stage_model, "decode"):
1415
+ xc = self.cond_stage_model.decode(c)
1416
+ log["conditioning"] = xc
1417
+ elif self.cond_stage_key in ["caption", "txt"]:
1418
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1419
+ log["conditioning"] = xc
1420
+ elif self.cond_stage_key in ['class_label', 'cls']:
1421
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1422
+ log['conditioning'] = xc
1423
+ elif isimage(xc):
1424
+ log["conditioning"] = xc
1425
+ if ismap(xc):
1426
+ log["original_conditioning"] = self.to_rgb(xc)
1427
+
1428
+ if plot_diffusion_rows:
1429
+ # get diffusion row
1430
+ diffusion_row = list()
1431
+ z_start = z[:n_row]
1432
+ for t in range(self.num_timesteps):
1433
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1434
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1435
+ t = t.to(self.device).long()
1436
+ noise = torch.randn_like(z_start)
1437
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1438
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1439
+
1440
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1441
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1442
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1443
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1444
+ log["diffusion_row"] = diffusion_grid
1445
+
1446
+ if sample:
1447
+ # get denoise row
1448
+ with ema_scope("Sampling"):
1449
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1450
+ ddim_steps=ddim_steps, eta=ddim_eta)
1451
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1452
+ x_samples = self.decode_first_stage(samples)
1453
+ log["samples"] = x_samples
1454
+ if plot_denoise_rows:
1455
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1456
+ log["denoise_row"] = denoise_grid
1457
+
1458
+ if unconditional_guidance_scale > 1.0:
1459
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1460
+ # TODO explore better "unconditional" choices for the other keys
1461
+ # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1462
+ uc = dict()
1463
+ for k in c:
1464
+ if k == "c_crossattn":
1465
+ assert isinstance(c[k], list) and len(c[k]) == 1
1466
+ uc[k] = [uc_tmp]
1467
+ elif k == "c_adm": # todo: only run with text-based guidance?
1468
+ assert isinstance(c[k], torch.Tensor)
1469
+ #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1470
+ uc[k] = c[k]
1471
+ elif isinstance(c[k], list):
1472
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
1473
+ else:
1474
+ uc[k] = c[k]
1475
+
1476
+ with ema_scope("Sampling with classifier-free guidance"):
1477
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1478
+ ddim_steps=ddim_steps, eta=ddim_eta,
1479
+ unconditional_guidance_scale=unconditional_guidance_scale,
1480
+ unconditional_conditioning=uc,
1481
+ )
1482
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1483
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1484
+
1485
+ if plot_progressive_rows:
1486
+ with ema_scope("Plotting Progressives"):
1487
+ img, progressives = self.progressive_denoising(c,
1488
+ shape=(self.channels, self.image_size, self.image_size),
1489
+ batch_size=N)
1490
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1491
+ log["progressive_row"] = prog_row
1492
+
1493
+ return log
1494
+
1495
+
1496
+ class LatentFinetuneDiffusion(LatentDiffusion):
1497
+ """
1498
+ Basis for different finetunas, such as inpainting or depth2image
1499
+ To disable finetuning mode, set finetune_keys to None
1500
+ """
1501
+
1502
+ def __init__(self,
1503
+ concat_keys: tuple,
1504
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1505
+ "model_ema.diffusion_modelinput_blocks00weight"
1506
+ ),
1507
+ keep_finetune_dims=4,
1508
+ # if model was trained without concat mode before and we would like to keep these channels
1509
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
1510
+ c_concat_log_end=None,
1511
+ *args, **kwargs
1512
+ ):
1513
+ ckpt_path = kwargs.pop("ckpt_path", None)
1514
+ ignore_keys = kwargs.pop("ignore_keys", list())
1515
+ super().__init__(*args, **kwargs)
1516
+ self.finetune_keys = finetune_keys
1517
+ self.concat_keys = concat_keys
1518
+ self.keep_dims = keep_finetune_dims
1519
+ self.c_concat_log_start = c_concat_log_start
1520
+ self.c_concat_log_end = c_concat_log_end
1521
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1522
+ if exists(ckpt_path):
1523
+ self.init_from_ckpt(ckpt_path, ignore_keys)
1524
+
1525
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1526
+ sd = torch.load(path, map_location="cpu")
1527
+ if "state_dict" in list(sd.keys()):
1528
+ sd = sd["state_dict"]
1529
+ keys = list(sd.keys())
1530
+ for k in keys:
1531
+ for ik in ignore_keys:
1532
+ if k.startswith(ik):
1533
+ print("Deleting key {} from state_dict.".format(k))
1534
+ del sd[k]
1535
+
1536
+ # make it explicit, finetune by including extra input channels
1537
+ if exists(self.finetune_keys) and k in self.finetune_keys:
1538
+ new_entry = None
1539
+ for name, param in self.named_parameters():
1540
+ if name in self.finetune_keys:
1541
+ print(
1542
+ f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1543
+ new_entry = torch.zeros_like(param) # zero init
1544
+ assert exists(new_entry), 'did not find matching parameter to modify'
1545
+ new_entry[:, :self.keep_dims, ...] = sd[k]
1546
+ sd[k] = new_entry
1547
+
1548
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
1549
+ sd, strict=False)
1550
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1551
+ if len(missing) > 0:
1552
+ print(f"Missing Keys: {missing}")
1553
+ if len(unexpected) > 0:
1554
+ print(f"Unexpected Keys: {unexpected}")
1555
+
1556
+ @torch.no_grad()
1557
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1558
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1559
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1560
+ use_ema_scope=True,
1561
+ **kwargs):
1562
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1563
+ use_ddim = ddim_steps is not None
1564
+
1565
+ log = dict()
1566
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1567
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1568
+ N = min(x.shape[0], N)
1569
+ n_row = min(x.shape[0], n_row)
1570
+ log["inputs"] = x
1571
+ log["reconstruction"] = xrec
1572
+ if self.model.conditioning_key is not None:
1573
+ if hasattr(self.cond_stage_model, "decode"):
1574
+ xc = self.cond_stage_model.decode(c)
1575
+ log["conditioning"] = xc
1576
+ elif self.cond_stage_key in ["caption", "txt"]:
1577
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1578
+ log["conditioning"] = xc
1579
+ elif self.cond_stage_key in ['class_label', 'cls']:
1580
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1581
+ log['conditioning'] = xc
1582
+ elif isimage(xc):
1583
+ log["conditioning"] = xc
1584
+ if ismap(xc):
1585
+ log["original_conditioning"] = self.to_rgb(xc)
1586
+
1587
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1588
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
1589
+
1590
+ if plot_diffusion_rows:
1591
+ # get diffusion row
1592
+ diffusion_row = list()
1593
+ z_start = z[:n_row]
1594
+ for t in range(self.num_timesteps):
1595
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1596
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1597
+ t = t.to(self.device).long()
1598
+ noise = torch.randn_like(z_start)
1599
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1600
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1601
+
1602
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1603
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1604
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1605
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1606
+ log["diffusion_row"] = diffusion_grid
1607
+
1608
+ if sample:
1609
+ # get denoise row
1610
+ with ema_scope("Sampling"):
1611
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1612
+ batch_size=N, ddim=use_ddim,
1613
+ ddim_steps=ddim_steps, eta=ddim_eta)
1614
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1615
+ x_samples = self.decode_first_stage(samples)
1616
+ log["samples"] = x_samples
1617
+ if plot_denoise_rows:
1618
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1619
+ log["denoise_row"] = denoise_grid
1620
+
1621
+ if unconditional_guidance_scale > 1.0:
1622
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1623
+ uc_cat = c_cat
1624
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1625
+ with ema_scope("Sampling with classifier-free guidance"):
1626
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1627
+ batch_size=N, ddim=use_ddim,
1628
+ ddim_steps=ddim_steps, eta=ddim_eta,
1629
+ unconditional_guidance_scale=unconditional_guidance_scale,
1630
+ unconditional_conditioning=uc_full,
1631
+ )
1632
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1633
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1634
+
1635
+ return log
1636
+
1637
+
1638
+ class LatentInpaintDiffusion(LatentFinetuneDiffusion):
1639
+ """
1640
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1641
+ e.g. mask as concat and text via cross-attn.
1642
+ To disable finetuning mode, set finetune_keys to None
1643
+ """
1644
+
1645
+ def __init__(self,
1646
+ concat_keys=("mask", "masked_image"),
1647
+ masked_image_key="masked_image",
1648
+ *args, **kwargs
1649
+ ):
1650
+ super().__init__(concat_keys, *args, **kwargs)
1651
+ self.masked_image_key = masked_image_key
1652
+ assert self.masked_image_key in concat_keys
1653
+
1654
+ @torch.no_grad()
1655
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1656
+ # note: restricted to non-trainable encoders currently
1657
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1658
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1659
+ force_c_encode=True, return_original_cond=True, bs=bs)
1660
+
1661
+ assert exists(self.concat_keys)
1662
+ c_cat = list()
1663
+ for ck in self.concat_keys:
1664
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1665
+ if bs is not None:
1666
+ cc = cc[:bs]
1667
+ cc = cc.to(self.device)
1668
+ bchw = z.shape
1669
+ if ck != self.masked_image_key:
1670
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1671
+ else:
1672
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1673
+ c_cat.append(cc)
1674
+ c_cat = torch.cat(c_cat, dim=1)
1675
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1676
+ if return_first_stage_outputs:
1677
+ return z, all_conds, x, xrec, xc
1678
+ return z, all_conds
1679
+
1680
+ @torch.no_grad()
1681
+ def log_images(self, *args, **kwargs):
1682
+ log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
1683
+ log["masked_image"] = rearrange(args[0]["masked_image"],
1684
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1685
+ return log
1686
+
1687
+
1688
+ class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
1689
+ """
1690
+ condition on monocular depth estimation
1691
+ """
1692
+
1693
+ def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
1694
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
1695
+ self.depth_model = instantiate_from_config(depth_stage_config)
1696
+ self.depth_stage_key = concat_keys[0]
1697
+
1698
+ @torch.no_grad()
1699
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1700
+ # note: restricted to non-trainable encoders currently
1701
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
1702
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1703
+ force_c_encode=True, return_original_cond=True, bs=bs)
1704
+
1705
+ assert exists(self.concat_keys)
1706
+ assert len(self.concat_keys) == 1
1707
+ c_cat = list()
1708
+ for ck in self.concat_keys:
1709
+ cc = batch[ck]
1710
+ if bs is not None:
1711
+ cc = cc[:bs]
1712
+ cc = cc.to(self.device)
1713
+ cc = self.depth_model(cc)
1714
+ cc = torch.nn.functional.interpolate(
1715
+ cc,
1716
+ size=z.shape[2:],
1717
+ mode="bicubic",
1718
+ align_corners=False,
1719
+ )
1720
+
1721
+ depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
1722
+ keepdim=True)
1723
+ cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
1724
+ c_cat.append(cc)
1725
+ c_cat = torch.cat(c_cat, dim=1)
1726
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1727
+ if return_first_stage_outputs:
1728
+ return z, all_conds, x, xrec, xc
1729
+ return z, all_conds
1730
+
1731
+ @torch.no_grad()
1732
+ def log_images(self, *args, **kwargs):
1733
+ log = super().log_images(*args, **kwargs)
1734
+ depth = self.depth_model(args[0][self.depth_stage_key])
1735
+ depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
1736
+ torch.amax(depth, dim=[1, 2, 3], keepdim=True)
1737
+ log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
1738
+ return log
1739
+
1740
+
1741
+ class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
1742
+ """
1743
+ condition on low-res image (and optionally on some spatial noise augmentation)
1744
+ """
1745
+ def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
1746
+ low_scale_config=None, low_scale_key=None, *args, **kwargs):
1747
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
1748
+ self.reshuffle_patch_size = reshuffle_patch_size
1749
+ self.low_scale_model = None
1750
+ if low_scale_config is not None:
1751
+ print("Initializing a low-scale model")
1752
+ assert exists(low_scale_key)
1753
+ self.instantiate_low_stage(low_scale_config)
1754
+ self.low_scale_key = low_scale_key
1755
+
1756
+ def instantiate_low_stage(self, config):
1757
+ model = instantiate_from_config(config)
1758
+ self.low_scale_model = model.eval()
1759
+ self.low_scale_model.train = disabled_train
1760
+ for param in self.low_scale_model.parameters():
1761
+ param.requires_grad = False
1762
+
1763
+ @torch.no_grad()
1764
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1765
+ # note: restricted to non-trainable encoders currently
1766
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
1767
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1768
+ force_c_encode=True, return_original_cond=True, bs=bs)
1769
+
1770
+ assert exists(self.concat_keys)
1771
+ assert len(self.concat_keys) == 1
1772
+ # optionally make spatial noise_level here
1773
+ c_cat = list()
1774
+ noise_level = None
1775
+ for ck in self.concat_keys:
1776
+ cc = batch[ck]
1777
+ cc = rearrange(cc, 'b h w c -> b c h w')
1778
+ if exists(self.reshuffle_patch_size):
1779
+ assert isinstance(self.reshuffle_patch_size, int)
1780
+ cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
1781
+ p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
1782
+ if bs is not None:
1783
+ cc = cc[:bs]
1784
+ cc = cc.to(self.device)
1785
+ if exists(self.low_scale_model) and ck == self.low_scale_key:
1786
+ cc, noise_level = self.low_scale_model(cc)
1787
+ c_cat.append(cc)
1788
+ c_cat = torch.cat(c_cat, dim=1)
1789
+ if exists(noise_level):
1790
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
1791
+ else:
1792
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1793
+ if return_first_stage_outputs:
1794
+ return z, all_conds, x, xrec, xc
1795
+ return z, all_conds
1796
+
1797
+ @torch.no_grad()
1798
+ def log_images(self, *args, **kwargs):
1799
+ log = super().log_images(*args, **kwargs)
1800
+ log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
1801
+ return log
1802
+
1803
+
1804
+ class ImageEmbeddingConditionedLatentDiffusion(LatentDiffusion):
1805
+ def __init__(self, embedder_config, embedding_key="jpg", embedding_dropout=0.5,
1806
+ freeze_embedder=True, noise_aug_config=None, *args, **kwargs):
1807
+ super().__init__(*args, **kwargs)
1808
+ self.embed_key = embedding_key
1809
+ self.embedding_dropout = embedding_dropout
1810
+ self._init_embedder(embedder_config, freeze_embedder)
1811
+ self._init_noise_aug(noise_aug_config)
1812
+
1813
+ def _init_embedder(self, config, freeze=True):
1814
+ embedder = instantiate_from_config(config)
1815
+ if freeze:
1816
+ self.embedder = embedder.eval()
1817
+ self.embedder.train = disabled_train
1818
+ for param in self.embedder.parameters():
1819
+ param.requires_grad = False
1820
+
1821
+ def _init_noise_aug(self, config):
1822
+ if config is not None:
1823
+ # use the KARLO schedule for noise augmentation on CLIP image embeddings
1824
+ noise_augmentor = instantiate_from_config(config)
1825
+ assert isinstance(noise_augmentor, nn.Module)
1826
+ noise_augmentor = noise_augmentor.eval()
1827
+ noise_augmentor.train = disabled_train
1828
+ self.noise_augmentor = noise_augmentor
1829
+ else:
1830
+ self.noise_augmentor = None
1831
+
1832
+ def get_input(self, batch, k, cond_key=None, bs=None, **kwargs):
1833
+ outputs = LatentDiffusion.get_input(self, batch, k, bs=bs, **kwargs)
1834
+ z, c = outputs[0], outputs[1]
1835
+ img = batch[self.embed_key][:bs]
1836
+ img = rearrange(img, 'b h w c -> b c h w')
1837
+ c_adm = self.embedder(img)
1838
+ if self.noise_augmentor is not None:
1839
+ c_adm, noise_level_emb = self.noise_augmentor(c_adm)
1840
+ # assume this gives embeddings of noise levels
1841
+ c_adm = torch.cat((c_adm, noise_level_emb), 1)
1842
+ if self.training:
1843
+ c_adm = torch.bernoulli((1. - self.embedding_dropout) * torch.ones(c_adm.shape[0],
1844
+ device=c_adm.device)[:, None]) * c_adm
1845
+ all_conds = {"c_crossattn": [c], "c_adm": c_adm}
1846
+ noutputs = [z, all_conds]
1847
+ noutputs.extend(outputs[2:])
1848
+ return noutputs
1849
+
1850
+ @torch.no_grad()
1851
+ def log_images(self, batch, N=8, n_row=4, **kwargs):
1852
+ log = dict()
1853
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True,
1854
+ return_original_cond=True)
1855
+ log["inputs"] = x
1856
+ log["reconstruction"] = xrec
1857
+ assert self.model.conditioning_key is not None
1858
+ assert self.cond_stage_key in ["caption", "txt"]
1859
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1860
+ log["conditioning"] = xc
1861
+ uc = self.get_unconditional_conditioning(N, kwargs.get('unconditional_guidance_label', ''))
1862
+ unconditional_guidance_scale = kwargs.get('unconditional_guidance_scale', 5.)
1863
+
1864
+ uc_ = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
1865
+ ema_scope = self.ema_scope if kwargs.get('use_ema_scope', True) else nullcontext
1866
+ with ema_scope(f"Sampling"):
1867
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=True,
1868
+ ddim_steps=kwargs.get('ddim_steps', 50), eta=kwargs.get('ddim_eta', 0.),
1869
+ unconditional_guidance_scale=unconditional_guidance_scale,
1870
+ unconditional_conditioning=uc_, )
1871
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1872
+ log[f"samplescfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1873
+ return log
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sampler import DPMSolverSampler
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/dpm_solver.py ADDED
@@ -0,0 +1,1163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import math
4
+ from tqdm import tqdm
5
+
6
+
7
+ class NoiseScheduleVP:
8
+ def __init__(
9
+ self,
10
+ schedule='discrete',
11
+ betas=None,
12
+ alphas_cumprod=None,
13
+ continuous_beta_0=0.1,
14
+ continuous_beta_1=20.,
15
+ ):
16
+ """Create a wrapper class for the forward SDE (VP type).
17
+ ***
18
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
+ ***
21
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
22
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
23
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
24
+ log_alpha_t = self.marginal_log_mean_coeff(t)
25
+ sigma_t = self.marginal_std(t)
26
+ lambda_t = self.marginal_lambda(t)
27
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
28
+ t = self.inverse_lambda(lambda_t)
29
+ ===============================================================
30
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
31
+ 1. For discrete-time DPMs:
32
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
33
+ t_i = (i + 1) / N
34
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
35
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
36
+ Args:
37
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
38
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
39
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
40
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
41
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
42
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
43
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
44
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
45
+ and
46
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
47
+ 2. For continuous-time DPMs:
48
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
49
+ schedule are the default settings in DDPM and improved-DDPM:
50
+ Args:
51
+ beta_min: A `float` number. The smallest beta for the linear schedule.
52
+ beta_max: A `float` number. The largest beta for the linear schedule.
53
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
54
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
55
+ T: A `float` number. The ending time of the forward process.
56
+ ===============================================================
57
+ Args:
58
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
59
+ 'linear' or 'cosine' for continuous-time DPMs.
60
+ Returns:
61
+ A wrapper object of the forward SDE (VP type).
62
+
63
+ ===============================================================
64
+ Example:
65
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
66
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
67
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
68
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
69
+ # For continuous-time DPMs (VPSDE), linear schedule:
70
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
71
+ """
72
+
73
+ if schedule not in ['discrete', 'linear', 'cosine']:
74
+ raise ValueError(
75
+ "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
76
+ schedule))
77
+
78
+ self.schedule = schedule
79
+ if schedule == 'discrete':
80
+ if betas is not None:
81
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
82
+ else:
83
+ assert alphas_cumprod is not None
84
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
85
+ self.total_N = len(log_alphas)
86
+ self.T = 1.
87
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
88
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
89
+ else:
90
+ self.total_N = 1000
91
+ self.beta_0 = continuous_beta_0
92
+ self.beta_1 = continuous_beta_1
93
+ self.cosine_s = 0.008
94
+ self.cosine_beta_max = 999.
95
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
96
+ 1. + self.cosine_s) / math.pi - self.cosine_s
97
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
98
+ self.schedule = schedule
99
+ if schedule == 'cosine':
100
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
101
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
102
+ self.T = 0.9946
103
+ else:
104
+ self.T = 1.
105
+
106
+ def marginal_log_mean_coeff(self, t):
107
+ """
108
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
109
+ """
110
+ if self.schedule == 'discrete':
111
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
112
+ self.log_alpha_array.to(t.device)).reshape((-1))
113
+ elif self.schedule == 'linear':
114
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
115
+ elif self.schedule == 'cosine':
116
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
117
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
118
+ return log_alpha_t
119
+
120
+ def marginal_alpha(self, t):
121
+ """
122
+ Compute alpha_t of a given continuous-time label t in [0, T].
123
+ """
124
+ return torch.exp(self.marginal_log_mean_coeff(t))
125
+
126
+ def marginal_std(self, t):
127
+ """
128
+ Compute sigma_t of a given continuous-time label t in [0, T].
129
+ """
130
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
131
+
132
+ def marginal_lambda(self, t):
133
+ """
134
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
135
+ """
136
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
137
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
138
+ return log_mean_coeff - log_std
139
+
140
+ def inverse_lambda(self, lamb):
141
+ """
142
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
143
+ """
144
+ if self.schedule == 'linear':
145
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
146
+ Delta = self.beta_0 ** 2 + tmp
147
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
148
+ elif self.schedule == 'discrete':
149
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
150
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
151
+ torch.flip(self.t_array.to(lamb.device), [1]))
152
+ return t.reshape((-1,))
153
+ else:
154
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
155
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
156
+ 1. + self.cosine_s) / math.pi - self.cosine_s
157
+ t = t_fn(log_alpha)
158
+ return t
159
+
160
+
161
+ def model_wrapper(
162
+ model,
163
+ noise_schedule,
164
+ model_type="noise",
165
+ model_kwargs={},
166
+ guidance_type="uncond",
167
+ condition=None,
168
+ unconditional_condition=None,
169
+ guidance_scale=1.,
170
+ classifier_fn=None,
171
+ classifier_kwargs={},
172
+ ):
173
+ """Create a wrapper function for the noise prediction model.
174
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
175
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
176
+ We support four types of the diffusion model by setting `model_type`:
177
+ 1. "noise": noise prediction model. (Trained by predicting noise).
178
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
179
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
180
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
181
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
182
+ arXiv preprint arXiv:2202.00512 (2022).
183
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
184
+ arXiv preprint arXiv:2210.02303 (2022).
185
+
186
+ 4. "score": marginal score function. (Trained by denoising score matching).
187
+ Note that the score function and the noise prediction model follows a simple relationship:
188
+ ```
189
+ noise(x_t, t) = -sigma_t * score(x_t, t)
190
+ ```
191
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
192
+ 1. "uncond": unconditional sampling by DPMs.
193
+ The input `model` has the following format:
194
+ ``
195
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
196
+ ``
197
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
198
+ The input `model` has the following format:
199
+ ``
200
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
201
+ ``
202
+ The input `classifier_fn` has the following format:
203
+ ``
204
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
205
+ ``
206
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
207
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
208
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
209
+ The input `model` has the following format:
210
+ ``
211
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
212
+ ``
213
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
214
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
215
+ arXiv preprint arXiv:2207.12598 (2022).
216
+
217
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
218
+ or continuous-time labels (i.e. epsilon to T).
219
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
220
+ ``
221
+ def model_fn(x, t_continuous) -> noise:
222
+ t_input = get_model_input_time(t_continuous)
223
+ return noise_pred(model, x, t_input, **model_kwargs)
224
+ ``
225
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
226
+ ===============================================================
227
+ Args:
228
+ model: A diffusion model with the corresponding format described above.
229
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
230
+ model_type: A `str`. The parameterization type of the diffusion model.
231
+ "noise" or "x_start" or "v" or "score".
232
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
233
+ guidance_type: A `str`. The type of the guidance for sampling.
234
+ "uncond" or "classifier" or "classifier-free".
235
+ condition: A pytorch tensor. The condition for the guided sampling.
236
+ Only used for "classifier" or "classifier-free" guidance type.
237
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
238
+ Only used for "classifier-free" guidance type.
239
+ guidance_scale: A `float`. The scale for the guided sampling.
240
+ classifier_fn: A classifier function. Only used for the classifier guidance.
241
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
242
+ Returns:
243
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
244
+ """
245
+
246
+ def get_model_input_time(t_continuous):
247
+ """
248
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
249
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
250
+ For continuous-time DPMs, we just use `t_continuous`.
251
+ """
252
+ if noise_schedule.schedule == 'discrete':
253
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
254
+ else:
255
+ return t_continuous
256
+
257
+ def noise_pred_fn(x, t_continuous, cond=None):
258
+ if t_continuous.reshape((-1,)).shape[0] == 1:
259
+ t_continuous = t_continuous.expand((x.shape[0]))
260
+ t_input = get_model_input_time(t_continuous)
261
+ if cond is None:
262
+ output = model(x, t_input, **model_kwargs)
263
+ else:
264
+ output = model(x, t_input, cond, **model_kwargs)
265
+ if model_type == "noise":
266
+ return output
267
+ elif model_type == "x_start":
268
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
269
+ dims = x.dim()
270
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
271
+ elif model_type == "v":
272
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
273
+ dims = x.dim()
274
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
275
+ elif model_type == "score":
276
+ sigma_t = noise_schedule.marginal_std(t_continuous)
277
+ dims = x.dim()
278
+ return -expand_dims(sigma_t, dims) * output
279
+
280
+ def cond_grad_fn(x, t_input):
281
+ """
282
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
283
+ """
284
+ with torch.enable_grad():
285
+ x_in = x.detach().requires_grad_(True)
286
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
287
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
288
+
289
+ def model_fn(x, t_continuous):
290
+ """
291
+ The noise predicition model function that is used for DPM-Solver.
292
+ """
293
+ if t_continuous.reshape((-1,)).shape[0] == 1:
294
+ t_continuous = t_continuous.expand((x.shape[0]))
295
+ if guidance_type == "uncond":
296
+ return noise_pred_fn(x, t_continuous)
297
+ elif guidance_type == "classifier":
298
+ assert classifier_fn is not None
299
+ t_input = get_model_input_time(t_continuous)
300
+ cond_grad = cond_grad_fn(x, t_input)
301
+ sigma_t = noise_schedule.marginal_std(t_continuous)
302
+ noise = noise_pred_fn(x, t_continuous)
303
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
304
+ elif guidance_type == "classifier-free":
305
+ if guidance_scale == 1. or unconditional_condition is None:
306
+ return noise_pred_fn(x, t_continuous, cond=condition)
307
+ else:
308
+ x_in = torch.cat([x] * 2)
309
+ t_in = torch.cat([t_continuous] * 2)
310
+ if isinstance(condition, dict):
311
+ assert isinstance(unconditional_condition, dict)
312
+ c_in = dict()
313
+ for k in condition:
314
+ if isinstance(condition[k], list):
315
+ c_in[k] = [torch.cat([unconditional_condition[k][i], condition[k][i]]) for i in range(len(condition[k]))]
316
+ else:
317
+ c_in[k] = torch.cat([unconditional_condition[k], condition[k]])
318
+ else:
319
+ c_in = torch.cat([unconditional_condition, condition])
320
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
321
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
322
+
323
+ assert model_type in ["noise", "x_start", "v"]
324
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
325
+ return model_fn
326
+
327
+
328
+ class DPM_Solver:
329
+ def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
330
+ """Construct a DPM-Solver.
331
+ We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
332
+ If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
333
+ If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
334
+ In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
335
+ The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
336
+ Args:
337
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
338
+ ``
339
+ def model_fn(x, t_continuous):
340
+ return noise
341
+ ``
342
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
343
+ predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
344
+ thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
345
+ max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
346
+
347
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
348
+ """
349
+ self.model = model_fn
350
+ self.noise_schedule = noise_schedule
351
+ self.predict_x0 = predict_x0
352
+ self.thresholding = thresholding
353
+ self.max_val = max_val
354
+
355
+ def noise_prediction_fn(self, x, t):
356
+ """
357
+ Return the noise prediction model.
358
+ """
359
+ return self.model(x, t)
360
+
361
+ def data_prediction_fn(self, x, t):
362
+ """
363
+ Return the data prediction model (with thresholding).
364
+ """
365
+ noise = self.noise_prediction_fn(x, t)
366
+ dims = x.dim()
367
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
368
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
369
+ if self.thresholding:
370
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
371
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
372
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
373
+ x0 = torch.clamp(x0, -s, s) / s
374
+ return x0
375
+
376
+ def model_fn(self, x, t):
377
+ """
378
+ Convert the model to the noise prediction model or the data prediction model.
379
+ """
380
+ if self.predict_x0:
381
+ return self.data_prediction_fn(x, t)
382
+ else:
383
+ return self.noise_prediction_fn(x, t)
384
+
385
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
386
+ """Compute the intermediate time steps for sampling.
387
+ Args:
388
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
389
+ - 'logSNR': uniform logSNR for the time steps.
390
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
391
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
392
+ t_T: A `float`. The starting time of the sampling (default is T).
393
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
394
+ N: A `int`. The total number of the spacing of the time steps.
395
+ device: A torch device.
396
+ Returns:
397
+ A pytorch tensor of the time steps, with the shape (N + 1,).
398
+ """
399
+ if skip_type == 'logSNR':
400
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
401
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
402
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
403
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
404
+ elif skip_type == 'time_uniform':
405
+ return torch.linspace(t_T, t_0, N + 1).to(device)
406
+ elif skip_type == 'time_quadratic':
407
+ t_order = 2
408
+ t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
409
+ return t
410
+ else:
411
+ raise ValueError(
412
+ "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
413
+
414
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
415
+ """
416
+ Get the order of each step for sampling by the singlestep DPM-Solver.
417
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
418
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
419
+ - If order == 1:
420
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
421
+ - If order == 2:
422
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
423
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
424
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
425
+ - If order == 3:
426
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
427
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
428
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
429
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
430
+ ============================================
431
+ Args:
432
+ order: A `int`. The max order for the solver (2 or 3).
433
+ steps: A `int`. The total number of function evaluations (NFE).
434
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
435
+ - 'logSNR': uniform logSNR for the time steps.
436
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
437
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
438
+ t_T: A `float`. The starting time of the sampling (default is T).
439
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
440
+ device: A torch device.
441
+ Returns:
442
+ orders: A list of the solver order of each step.
443
+ """
444
+ if order == 3:
445
+ K = steps // 3 + 1
446
+ if steps % 3 == 0:
447
+ orders = [3, ] * (K - 2) + [2, 1]
448
+ elif steps % 3 == 1:
449
+ orders = [3, ] * (K - 1) + [1]
450
+ else:
451
+ orders = [3, ] * (K - 1) + [2]
452
+ elif order == 2:
453
+ if steps % 2 == 0:
454
+ K = steps // 2
455
+ orders = [2, ] * K
456
+ else:
457
+ K = steps // 2 + 1
458
+ orders = [2, ] * (K - 1) + [1]
459
+ elif order == 1:
460
+ K = 1
461
+ orders = [1, ] * steps
462
+ else:
463
+ raise ValueError("'order' must be '1' or '2' or '3'.")
464
+ if skip_type == 'logSNR':
465
+ # To reproduce the results in DPM-Solver paper
466
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
467
+ else:
468
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
469
+ torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
470
+ return timesteps_outer, orders
471
+
472
+ def denoise_to_zero_fn(self, x, s):
473
+ """
474
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
475
+ """
476
+ return self.data_prediction_fn(x, s)
477
+
478
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
479
+ """
480
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
481
+ Args:
482
+ x: A pytorch tensor. The initial value at time `s`.
483
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
484
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
485
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
486
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
487
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
488
+ Returns:
489
+ x_t: A pytorch tensor. The approximated solution at time `t`.
490
+ """
491
+ ns = self.noise_schedule
492
+ dims = x.dim()
493
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
494
+ h = lambda_t - lambda_s
495
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
496
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
497
+ alpha_t = torch.exp(log_alpha_t)
498
+
499
+ if self.predict_x0:
500
+ phi_1 = torch.expm1(-h)
501
+ if model_s is None:
502
+ model_s = self.model_fn(x, s)
503
+ x_t = (
504
+ expand_dims(sigma_t / sigma_s, dims) * x
505
+ - expand_dims(alpha_t * phi_1, dims) * model_s
506
+ )
507
+ if return_intermediate:
508
+ return x_t, {'model_s': model_s}
509
+ else:
510
+ return x_t
511
+ else:
512
+ phi_1 = torch.expm1(h)
513
+ if model_s is None:
514
+ model_s = self.model_fn(x, s)
515
+ x_t = (
516
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
517
+ - expand_dims(sigma_t * phi_1, dims) * model_s
518
+ )
519
+ if return_intermediate:
520
+ return x_t, {'model_s': model_s}
521
+ else:
522
+ return x_t
523
+
524
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
525
+ solver_type='dpm_solver'):
526
+ """
527
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
528
+ Args:
529
+ x: A pytorch tensor. The initial value at time `s`.
530
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
531
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
532
+ r1: A `float`. The hyperparameter of the second-order solver.
533
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
534
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
535
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
536
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
537
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
538
+ Returns:
539
+ x_t: A pytorch tensor. The approximated solution at time `t`.
540
+ """
541
+ if solver_type not in ['dpm_solver', 'taylor']:
542
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
543
+ if r1 is None:
544
+ r1 = 0.5
545
+ ns = self.noise_schedule
546
+ dims = x.dim()
547
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
548
+ h = lambda_t - lambda_s
549
+ lambda_s1 = lambda_s + r1 * h
550
+ s1 = ns.inverse_lambda(lambda_s1)
551
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
552
+ s1), ns.marginal_log_mean_coeff(t)
553
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
554
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
555
+
556
+ if self.predict_x0:
557
+ phi_11 = torch.expm1(-r1 * h)
558
+ phi_1 = torch.expm1(-h)
559
+
560
+ if model_s is None:
561
+ model_s = self.model_fn(x, s)
562
+ x_s1 = (
563
+ expand_dims(sigma_s1 / sigma_s, dims) * x
564
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
565
+ )
566
+ model_s1 = self.model_fn(x_s1, s1)
567
+ if solver_type == 'dpm_solver':
568
+ x_t = (
569
+ expand_dims(sigma_t / sigma_s, dims) * x
570
+ - expand_dims(alpha_t * phi_1, dims) * model_s
571
+ - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
572
+ )
573
+ elif solver_type == 'taylor':
574
+ x_t = (
575
+ expand_dims(sigma_t / sigma_s, dims) * x
576
+ - expand_dims(alpha_t * phi_1, dims) * model_s
577
+ + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
578
+ model_s1 - model_s)
579
+ )
580
+ else:
581
+ phi_11 = torch.expm1(r1 * h)
582
+ phi_1 = torch.expm1(h)
583
+
584
+ if model_s is None:
585
+ model_s = self.model_fn(x, s)
586
+ x_s1 = (
587
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
588
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
589
+ )
590
+ model_s1 = self.model_fn(x_s1, s1)
591
+ if solver_type == 'dpm_solver':
592
+ x_t = (
593
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
594
+ - expand_dims(sigma_t * phi_1, dims) * model_s
595
+ - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
596
+ )
597
+ elif solver_type == 'taylor':
598
+ x_t = (
599
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
600
+ - expand_dims(sigma_t * phi_1, dims) * model_s
601
+ - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
602
+ )
603
+ if return_intermediate:
604
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
605
+ else:
606
+ return x_t
607
+
608
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
609
+ return_intermediate=False, solver_type='dpm_solver'):
610
+ """
611
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
612
+ Args:
613
+ x: A pytorch tensor. The initial value at time `s`.
614
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
615
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
616
+ r1: A `float`. The hyperparameter of the third-order solver.
617
+ r2: A `float`. The hyperparameter of the third-order solver.
618
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
619
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
620
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
621
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
622
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
623
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
624
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
625
+ Returns:
626
+ x_t: A pytorch tensor. The approximated solution at time `t`.
627
+ """
628
+ if solver_type not in ['dpm_solver', 'taylor']:
629
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
630
+ if r1 is None:
631
+ r1 = 1. / 3.
632
+ if r2 is None:
633
+ r2 = 2. / 3.
634
+ ns = self.noise_schedule
635
+ dims = x.dim()
636
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
637
+ h = lambda_t - lambda_s
638
+ lambda_s1 = lambda_s + r1 * h
639
+ lambda_s2 = lambda_s + r2 * h
640
+ s1 = ns.inverse_lambda(lambda_s1)
641
+ s2 = ns.inverse_lambda(lambda_s2)
642
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
643
+ s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
644
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
645
+ s2), ns.marginal_std(t)
646
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
647
+
648
+ if self.predict_x0:
649
+ phi_11 = torch.expm1(-r1 * h)
650
+ phi_12 = torch.expm1(-r2 * h)
651
+ phi_1 = torch.expm1(-h)
652
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
653
+ phi_2 = phi_1 / h + 1.
654
+ phi_3 = phi_2 / h - 0.5
655
+
656
+ if model_s is None:
657
+ model_s = self.model_fn(x, s)
658
+ if model_s1 is None:
659
+ x_s1 = (
660
+ expand_dims(sigma_s1 / sigma_s, dims) * x
661
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
662
+ )
663
+ model_s1 = self.model_fn(x_s1, s1)
664
+ x_s2 = (
665
+ expand_dims(sigma_s2 / sigma_s, dims) * x
666
+ - expand_dims(alpha_s2 * phi_12, dims) * model_s
667
+ + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
668
+ )
669
+ model_s2 = self.model_fn(x_s2, s2)
670
+ if solver_type == 'dpm_solver':
671
+ x_t = (
672
+ expand_dims(sigma_t / sigma_s, dims) * x
673
+ - expand_dims(alpha_t * phi_1, dims) * model_s
674
+ + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
675
+ )
676
+ elif solver_type == 'taylor':
677
+ D1_0 = (1. / r1) * (model_s1 - model_s)
678
+ D1_1 = (1. / r2) * (model_s2 - model_s)
679
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
680
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
681
+ x_t = (
682
+ expand_dims(sigma_t / sigma_s, dims) * x
683
+ - expand_dims(alpha_t * phi_1, dims) * model_s
684
+ + expand_dims(alpha_t * phi_2, dims) * D1
685
+ - expand_dims(alpha_t * phi_3, dims) * D2
686
+ )
687
+ else:
688
+ phi_11 = torch.expm1(r1 * h)
689
+ phi_12 = torch.expm1(r2 * h)
690
+ phi_1 = torch.expm1(h)
691
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
692
+ phi_2 = phi_1 / h - 1.
693
+ phi_3 = phi_2 / h - 0.5
694
+
695
+ if model_s is None:
696
+ model_s = self.model_fn(x, s)
697
+ if model_s1 is None:
698
+ x_s1 = (
699
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
700
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
701
+ )
702
+ model_s1 = self.model_fn(x_s1, s1)
703
+ x_s2 = (
704
+ expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
705
+ - expand_dims(sigma_s2 * phi_12, dims) * model_s
706
+ - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
707
+ )
708
+ model_s2 = self.model_fn(x_s2, s2)
709
+ if solver_type == 'dpm_solver':
710
+ x_t = (
711
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
712
+ - expand_dims(sigma_t * phi_1, dims) * model_s
713
+ - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
714
+ )
715
+ elif solver_type == 'taylor':
716
+ D1_0 = (1. / r1) * (model_s1 - model_s)
717
+ D1_1 = (1. / r2) * (model_s2 - model_s)
718
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
719
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
720
+ x_t = (
721
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
722
+ - expand_dims(sigma_t * phi_1, dims) * model_s
723
+ - expand_dims(sigma_t * phi_2, dims) * D1
724
+ - expand_dims(sigma_t * phi_3, dims) * D2
725
+ )
726
+
727
+ if return_intermediate:
728
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
729
+ else:
730
+ return x_t
731
+
732
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
733
+ """
734
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
735
+ Args:
736
+ x: A pytorch tensor. The initial value at time `s`.
737
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
738
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
739
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
740
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
741
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
742
+ Returns:
743
+ x_t: A pytorch tensor. The approximated solution at time `t`.
744
+ """
745
+ if solver_type not in ['dpm_solver', 'taylor']:
746
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
747
+ ns = self.noise_schedule
748
+ dims = x.dim()
749
+ model_prev_1, model_prev_0 = model_prev_list
750
+ t_prev_1, t_prev_0 = t_prev_list
751
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
752
+ t_prev_0), ns.marginal_lambda(t)
753
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
754
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
755
+ alpha_t = torch.exp(log_alpha_t)
756
+
757
+ h_0 = lambda_prev_0 - lambda_prev_1
758
+ h = lambda_t - lambda_prev_0
759
+ r0 = h_0 / h
760
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
761
+ if self.predict_x0:
762
+ if solver_type == 'dpm_solver':
763
+ x_t = (
764
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
765
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
766
+ - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
767
+ )
768
+ elif solver_type == 'taylor':
769
+ x_t = (
770
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
771
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
772
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
773
+ )
774
+ else:
775
+ if solver_type == 'dpm_solver':
776
+ x_t = (
777
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
778
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
779
+ - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
780
+ )
781
+ elif solver_type == 'taylor':
782
+ x_t = (
783
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
784
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
785
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
786
+ )
787
+ return x_t
788
+
789
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
790
+ """
791
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
792
+ Args:
793
+ x: A pytorch tensor. The initial value at time `s`.
794
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
795
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
796
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
797
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
798
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
799
+ Returns:
800
+ x_t: A pytorch tensor. The approximated solution at time `t`.
801
+ """
802
+ ns = self.noise_schedule
803
+ dims = x.dim()
804
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
805
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
806
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
807
+ t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
808
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
809
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
810
+ alpha_t = torch.exp(log_alpha_t)
811
+
812
+ h_1 = lambda_prev_1 - lambda_prev_2
813
+ h_0 = lambda_prev_0 - lambda_prev_1
814
+ h = lambda_t - lambda_prev_0
815
+ r0, r1 = h_0 / h, h_1 / h
816
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
817
+ D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
818
+ D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
819
+ D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
820
+ if self.predict_x0:
821
+ x_t = (
822
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
823
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
824
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
825
+ - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
826
+ )
827
+ else:
828
+ x_t = (
829
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
830
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
831
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
832
+ - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
833
+ )
834
+ return x_t
835
+
836
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
837
+ r2=None):
838
+ """
839
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
840
+ Args:
841
+ x: A pytorch tensor. The initial value at time `s`.
842
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
843
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
844
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
845
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
846
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
847
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
848
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
849
+ r2: A `float`. The hyperparameter of the third-order solver.
850
+ Returns:
851
+ x_t: A pytorch tensor. The approximated solution at time `t`.
852
+ """
853
+ if order == 1:
854
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
855
+ elif order == 2:
856
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
857
+ solver_type=solver_type, r1=r1)
858
+ elif order == 3:
859
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
860
+ solver_type=solver_type, r1=r1, r2=r2)
861
+ else:
862
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
863
+
864
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
865
+ """
866
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
867
+ Args:
868
+ x: A pytorch tensor. The initial value at time `s`.
869
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
870
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
871
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
872
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
873
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
874
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
875
+ Returns:
876
+ x_t: A pytorch tensor. The approximated solution at time `t`.
877
+ """
878
+ if order == 1:
879
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
880
+ elif order == 2:
881
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
882
+ elif order == 3:
883
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
884
+ else:
885
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
886
+
887
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
888
+ solver_type='dpm_solver'):
889
+ """
890
+ The adaptive step size solver based on singlestep DPM-Solver.
891
+ Args:
892
+ x: A pytorch tensor. The initial value at time `t_T`.
893
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
894
+ t_T: A `float`. The starting time of the sampling (default is T).
895
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
896
+ h_init: A `float`. The initial step size (for logSNR).
897
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
898
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
899
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
900
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
901
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
902
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
903
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
904
+ Returns:
905
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
906
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
907
+ """
908
+ ns = self.noise_schedule
909
+ s = t_T * torch.ones((x.shape[0],)).to(x)
910
+ lambda_s = ns.marginal_lambda(s)
911
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
912
+ h = h_init * torch.ones_like(s).to(x)
913
+ x_prev = x
914
+ nfe = 0
915
+ if order == 2:
916
+ r1 = 0.5
917
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
918
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
919
+ solver_type=solver_type,
920
+ **kwargs)
921
+ elif order == 3:
922
+ r1, r2 = 1. / 3., 2. / 3.
923
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
924
+ return_intermediate=True,
925
+ solver_type=solver_type)
926
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
927
+ solver_type=solver_type,
928
+ **kwargs)
929
+ else:
930
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
931
+ while torch.abs((s - t_0)).mean() > t_err:
932
+ t = ns.inverse_lambda(lambda_s + h)
933
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
934
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
935
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
936
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
937
+ E = norm_fn((x_higher - x_lower) / delta).max()
938
+ if torch.all(E <= 1.):
939
+ x = x_higher
940
+ s = t
941
+ x_prev = x_lower
942
+ lambda_s = ns.marginal_lambda(s)
943
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
944
+ nfe += order
945
+ print('adaptive solver nfe', nfe)
946
+ return x
947
+
948
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
949
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
950
+ atol=0.0078, rtol=0.05,
951
+ ):
952
+ """
953
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
954
+ =====================================================
955
+ We support the following algorithms for both noise prediction model and data prediction model:
956
+ - 'singlestep':
957
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
958
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
959
+ The total number of function evaluations (NFE) == `steps`.
960
+ Given a fixed NFE == `steps`, the sampling procedure is:
961
+ - If `order` == 1:
962
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
963
+ - If `order` == 2:
964
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
965
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
966
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
967
+ - If `order` == 3:
968
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
969
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
970
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
971
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
972
+ - 'multistep':
973
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
974
+ We initialize the first `order` values by lower order multistep solvers.
975
+ Given a fixed NFE == `steps`, the sampling procedure is:
976
+ Denote K = steps.
977
+ - If `order` == 1:
978
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
979
+ - If `order` == 2:
980
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
981
+ - If `order` == 3:
982
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
983
+ - 'singlestep_fixed':
984
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
985
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
986
+ - 'adaptive':
987
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
988
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
989
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
990
+ (NFE) and the sample quality.
991
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
992
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
993
+ =====================================================
994
+ Some advices for choosing the algorithm:
995
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
996
+ Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
997
+ e.g.
998
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
999
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1000
+ skip_type='time_uniform', method='singlestep')
1001
+ - For **guided sampling with large guidance scale** by DPMs:
1002
+ Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
1003
+ e.g.
1004
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
1005
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
1006
+ skip_type='time_uniform', method='multistep')
1007
+ We support three types of `skip_type`:
1008
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1009
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1010
+ - 'time_quadratic': quadratic time for the time steps.
1011
+ =====================================================
1012
+ Args:
1013
+ x: A pytorch tensor. The initial value at time `t_start`
1014
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1015
+ steps: A `int`. The total number of function evaluations (NFE).
1016
+ t_start: A `float`. The starting time of the sampling.
1017
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
1018
+ t_end: A `float`. The ending time of the sampling.
1019
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1020
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
1021
+ For discrete-time DPMs:
1022
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1023
+ For continuous-time DPMs:
1024
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1025
+ order: A `int`. The order of DPM-Solver.
1026
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1027
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1028
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1029
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1030
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1031
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1032
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
1033
+ (such as CIFAR-10). However, we observed that such trick does not matter for
1034
+ high-resolutional images. As it needs an additional NFE, we do not recommend
1035
+ it for high-resolutional images.
1036
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1037
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
1038
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1039
+ (especially for steps <= 10). So we recommend to set it to be `True`.
1040
+ solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1041
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1042
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1043
+ Returns:
1044
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
1045
+ """
1046
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1047
+ t_T = self.noise_schedule.T if t_start is None else t_start
1048
+ device = x.device
1049
+ if method == 'adaptive':
1050
+ with torch.no_grad():
1051
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
1052
+ solver_type=solver_type)
1053
+ elif method == 'multistep':
1054
+ assert steps >= order
1055
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1056
+ assert timesteps.shape[0] - 1 == steps
1057
+ with torch.no_grad():
1058
+ vec_t = timesteps[0].expand((x.shape[0]))
1059
+ model_prev_list = [self.model_fn(x, vec_t)]
1060
+ t_prev_list = [vec_t]
1061
+ # Init the first `order` values by lower order multistep DPM-Solver.
1062
+ for init_order in tqdm(range(1, order), desc="DPM init order"):
1063
+ vec_t = timesteps[init_order].expand(x.shape[0])
1064
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
1065
+ solver_type=solver_type)
1066
+ model_prev_list.append(self.model_fn(x, vec_t))
1067
+ t_prev_list.append(vec_t)
1068
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
1069
+ for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
1070
+ vec_t = timesteps[step].expand(x.shape[0])
1071
+ if lower_order_final and steps < 15:
1072
+ step_order = min(order, steps + 1 - step)
1073
+ else:
1074
+ step_order = order
1075
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
1076
+ solver_type=solver_type)
1077
+ for i in range(order - 1):
1078
+ t_prev_list[i] = t_prev_list[i + 1]
1079
+ model_prev_list[i] = model_prev_list[i + 1]
1080
+ t_prev_list[-1] = vec_t
1081
+ # We do not need to evaluate the final model value.
1082
+ if step < steps:
1083
+ model_prev_list[-1] = self.model_fn(x, vec_t)
1084
+ elif method in ['singlestep', 'singlestep_fixed']:
1085
+ if method == 'singlestep':
1086
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
1087
+ skip_type=skip_type,
1088
+ t_T=t_T, t_0=t_0,
1089
+ device=device)
1090
+ elif method == 'singlestep_fixed':
1091
+ K = steps // order
1092
+ orders = [order, ] * K
1093
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1094
+ for i, order in enumerate(orders):
1095
+ t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1096
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
1097
+ N=order, device=device)
1098
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1099
+ vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
1100
+ h = lambda_inner[-1] - lambda_inner[0]
1101
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1102
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1103
+ x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1104
+ if denoise_to_zero:
1105
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1106
+ return x
1107
+
1108
+
1109
+ #############################################################
1110
+ # other utility functions
1111
+ #############################################################
1112
+
1113
+ def interpolate_fn(x, xp, yp):
1114
+ """
1115
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
1116
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
1117
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1118
+ Args:
1119
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1120
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1121
+ yp: PyTorch tensor with shape [C, K].
1122
+ Returns:
1123
+ The function values f(x), with shape [N, C].
1124
+ """
1125
+ N, K = x.shape[0], xp.shape[1]
1126
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1127
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1128
+ x_idx = torch.argmin(x_indices, dim=2)
1129
+ cand_start_idx = x_idx - 1
1130
+ start_idx = torch.where(
1131
+ torch.eq(x_idx, 0),
1132
+ torch.tensor(1, device=x.device),
1133
+ torch.where(
1134
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1135
+ ),
1136
+ )
1137
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1138
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1139
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1140
+ start_idx2 = torch.where(
1141
+ torch.eq(x_idx, 0),
1142
+ torch.tensor(0, device=x.device),
1143
+ torch.where(
1144
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1145
+ ),
1146
+ )
1147
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1148
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1149
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1150
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1151
+ return cand
1152
+
1153
+
1154
+ def expand_dims(v, dims):
1155
+ """
1156
+ Expand the tensor `v` to the dim `dims`.
1157
+ Args:
1158
+ `v`: a PyTorch tensor with shape [N].
1159
+ `dim`: a `int`.
1160
+ Returns:
1161
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1162
+ """
1163
+ return v[(...,) + (None,) * (dims - 1)]
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/sampler.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+ import torch
3
+
4
+ from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
5
+
6
+ MODEL_TYPES = {
7
+ "eps": "noise",
8
+ "v": "v"
9
+ }
10
+
11
+
12
+ class DPMSolverSampler(object):
13
+ def __init__(self, model, device=torch.device("cuda"), **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.device = device
17
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
18
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
19
+
20
+ def register_buffer(self, name, attr):
21
+ if type(attr) == torch.Tensor:
22
+ if attr.device != self.device:
23
+ attr = attr.to(self.device)
24
+ setattr(self, name, attr)
25
+
26
+ @torch.no_grad()
27
+ def sample(self,
28
+ S,
29
+ batch_size,
30
+ shape,
31
+ conditioning=None,
32
+ callback=None,
33
+ normals_sequence=None,
34
+ img_callback=None,
35
+ quantize_x0=False,
36
+ eta=0.,
37
+ mask=None,
38
+ x0=None,
39
+ temperature=1.,
40
+ noise_dropout=0.,
41
+ score_corrector=None,
42
+ corrector_kwargs=None,
43
+ verbose=True,
44
+ x_T=None,
45
+ log_every_t=100,
46
+ unconditional_guidance_scale=1.,
47
+ unconditional_conditioning=None,
48
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
49
+ **kwargs
50
+ ):
51
+ if conditioning is not None:
52
+ if isinstance(conditioning, dict):
53
+ ctmp = conditioning[list(conditioning.keys())[0]]
54
+ while isinstance(ctmp, list): ctmp = ctmp[0]
55
+ if isinstance(ctmp, torch.Tensor):
56
+ cbs = ctmp.shape[0]
57
+ if cbs != batch_size:
58
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
59
+ elif isinstance(conditioning, list):
60
+ for ctmp in conditioning:
61
+ if ctmp.shape[0] != batch_size:
62
+ print(f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}")
63
+ else:
64
+ if isinstance(conditioning, torch.Tensor):
65
+ if conditioning.shape[0] != batch_size:
66
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
67
+
68
+ # sampling
69
+ C, H, W = shape
70
+ size = (batch_size, C, H, W)
71
+
72
+ print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
73
+
74
+ device = self.model.betas.device
75
+ if x_T is None:
76
+ img = torch.randn(size, device=device)
77
+ else:
78
+ img = x_T
79
+
80
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
81
+
82
+ model_fn = model_wrapper(
83
+ lambda x, t, c: self.model.apply_model(x, t, c),
84
+ ns,
85
+ model_type=MODEL_TYPES[self.model.parameterization],
86
+ guidance_type="classifier-free",
87
+ condition=conditioning,
88
+ unconditional_condition=unconditional_conditioning,
89
+ guidance_scale=unconditional_guidance_scale,
90
+ )
91
+
92
+ dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
93
+ x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2,
94
+ lower_order_final=True)
95
+
96
+ return x.to(device), None
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/plms.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+ from ldm.models.diffusion.sampling_util import norm_thresholding
10
+
11
+
12
+ class PLMSSampler(object):
13
+ def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.ddpm_num_timesteps = model.num_timesteps
17
+ self.schedule = schedule
18
+ self.device = device
19
+
20
+ def register_buffer(self, name, attr):
21
+ if type(attr) == torch.Tensor:
22
+ if attr.device != self.device:
23
+ attr = attr.to(self.device)
24
+ setattr(self, name, attr)
25
+
26
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
27
+ if ddim_eta != 0:
28
+ raise ValueError('ddim_eta must be 0 for PLMS')
29
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
30
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
31
+ alphas_cumprod = self.model.alphas_cumprod
32
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
33
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
34
+
35
+ self.register_buffer('betas', to_torch(self.model.betas))
36
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
37
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
38
+
39
+ # calculations for diffusion q(x_t | x_{t-1}) and others
40
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
41
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
44
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
45
+
46
+ # ddim sampling parameters
47
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
48
+ ddim_timesteps=self.ddim_timesteps,
49
+ eta=ddim_eta,verbose=verbose)
50
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
51
+ self.register_buffer('ddim_alphas', ddim_alphas)
52
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
53
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
54
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
55
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
56
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
57
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
58
+
59
+ @torch.no_grad()
60
+ def sample(self,
61
+ S,
62
+ batch_size,
63
+ shape,
64
+ conditioning=None,
65
+ callback=None,
66
+ normals_sequence=None,
67
+ img_callback=None,
68
+ quantize_x0=False,
69
+ eta=0.,
70
+ mask=None,
71
+ x0=None,
72
+ temperature=1.,
73
+ noise_dropout=0.,
74
+ score_corrector=None,
75
+ corrector_kwargs=None,
76
+ verbose=True,
77
+ x_T=None,
78
+ log_every_t=100,
79
+ unconditional_guidance_scale=1.,
80
+ unconditional_conditioning=None,
81
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
82
+ dynamic_threshold=None,
83
+ **kwargs
84
+ ):
85
+ if conditioning is not None:
86
+ if isinstance(conditioning, dict):
87
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
88
+ if cbs != batch_size:
89
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
90
+ else:
91
+ if conditioning.shape[0] != batch_size:
92
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
93
+
94
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
95
+ # sampling
96
+ C, H, W = shape
97
+ size = (batch_size, C, H, W)
98
+ print(f'Data shape for PLMS sampling is {size}')
99
+
100
+ samples, intermediates = self.plms_sampling(conditioning, size,
101
+ callback=callback,
102
+ img_callback=img_callback,
103
+ quantize_denoised=quantize_x0,
104
+ mask=mask, x0=x0,
105
+ ddim_use_original_steps=False,
106
+ noise_dropout=noise_dropout,
107
+ temperature=temperature,
108
+ score_corrector=score_corrector,
109
+ corrector_kwargs=corrector_kwargs,
110
+ x_T=x_T,
111
+ log_every_t=log_every_t,
112
+ unconditional_guidance_scale=unconditional_guidance_scale,
113
+ unconditional_conditioning=unconditional_conditioning,
114
+ dynamic_threshold=dynamic_threshold,
115
+ )
116
+ return samples, intermediates
117
+
118
+ @torch.no_grad()
119
+ def plms_sampling(self, cond, shape,
120
+ x_T=None, ddim_use_original_steps=False,
121
+ callback=None, timesteps=None, quantize_denoised=False,
122
+ mask=None, x0=None, img_callback=None, log_every_t=100,
123
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
124
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
125
+ dynamic_threshold=None):
126
+ device = self.model.betas.device
127
+ b = shape[0]
128
+ if x_T is None:
129
+ img = torch.randn(shape, device=device)
130
+ else:
131
+ img = x_T
132
+
133
+ if timesteps is None:
134
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
135
+ elif timesteps is not None and not ddim_use_original_steps:
136
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
137
+ timesteps = self.ddim_timesteps[:subset_end]
138
+
139
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
140
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
141
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
142
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
143
+
144
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
145
+ old_eps = []
146
+
147
+ for i, step in enumerate(iterator):
148
+ index = total_steps - i - 1
149
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
150
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
151
+
152
+ if mask is not None:
153
+ assert x0 is not None
154
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
155
+ img = img_orig * mask + (1. - mask) * img
156
+
157
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
158
+ quantize_denoised=quantize_denoised, temperature=temperature,
159
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
160
+ corrector_kwargs=corrector_kwargs,
161
+ unconditional_guidance_scale=unconditional_guidance_scale,
162
+ unconditional_conditioning=unconditional_conditioning,
163
+ old_eps=old_eps, t_next=ts_next,
164
+ dynamic_threshold=dynamic_threshold)
165
+ img, pred_x0, e_t = outs
166
+ old_eps.append(e_t)
167
+ if len(old_eps) >= 4:
168
+ old_eps.pop(0)
169
+ if callback: callback(i)
170
+ if img_callback: img_callback(pred_x0, i)
171
+
172
+ if index % log_every_t == 0 or index == total_steps - 1:
173
+ intermediates['x_inter'].append(img)
174
+ intermediates['pred_x0'].append(pred_x0)
175
+
176
+ return img, intermediates
177
+
178
+ @torch.no_grad()
179
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
180
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
181
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
182
+ dynamic_threshold=None):
183
+ b, *_, device = *x.shape, x.device
184
+
185
+ def get_model_output(x, t):
186
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
187
+ e_t = self.model.apply_model(x, t, c)
188
+ else:
189
+ x_in = torch.cat([x] * 2)
190
+ t_in = torch.cat([t] * 2)
191
+ c_in = torch.cat([unconditional_conditioning, c])
192
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
193
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
194
+
195
+ if score_corrector is not None:
196
+ assert self.model.parameterization == "eps"
197
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
198
+
199
+ return e_t
200
+
201
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
202
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
203
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
204
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
205
+
206
+ def get_x_prev_and_pred_x0(e_t, index):
207
+ # select parameters corresponding to the currently considered timestep
208
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
209
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
210
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
211
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
212
+
213
+ # current prediction for x_0
214
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
215
+ if quantize_denoised:
216
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
217
+ if dynamic_threshold is not None:
218
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
219
+ # direction pointing to x_t
220
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
221
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
222
+ if noise_dropout > 0.:
223
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
224
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
225
+ return x_prev, pred_x0
226
+
227
+ e_t = get_model_output(x, t)
228
+ if len(old_eps) == 0:
229
+ # Pseudo Improved Euler (2nd order)
230
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
231
+ e_t_next = get_model_output(x_prev, t_next)
232
+ e_t_prime = (e_t + e_t_next) / 2
233
+ elif len(old_eps) == 1:
234
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
235
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
236
+ elif len(old_eps) == 2:
237
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
238
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
239
+ elif len(old_eps) >= 3:
240
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
241
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
242
+
243
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
244
+
245
+ return x_prev, pred_x0, e_t
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/sampling_util.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ def append_dims(x, target_dims):
6
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions.
7
+ From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
8
+ dims_to_append = target_dims - x.ndim
9
+ if dims_to_append < 0:
10
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
11
+ return x[(...,) + (None,) * dims_to_append]
12
+
13
+
14
+ def norm_thresholding(x0, value):
15
+ s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
16
+ return x0 * (value / s)
17
+
18
+
19
+ def spatial_norm_thresholding(x0, value):
20
+ # b c h w
21
+ s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
22
+ return x0 * (value / s)
repositories/stable-diffusion-stability-ai/ldm/modules/__pycache__/attention.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/__pycache__/ema.cpython-310.pyc ADDED
Binary file (3.23 kB). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/attention.py ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+ from typing import Optional, Any
8
+
9
+ from ldm.modules.diffusionmodules.util import checkpoint
10
+
11
+
12
+ try:
13
+ import xformers
14
+ import xformers.ops
15
+ XFORMERS_IS_AVAILBLE = True
16
+ except:
17
+ XFORMERS_IS_AVAILBLE = False
18
+
19
+ # CrossAttn precision handling
20
+ import os
21
+ _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
22
+
23
+ def exists(val):
24
+ return val is not None
25
+
26
+
27
+ def uniq(arr):
28
+ return{el: True for el in arr}.keys()
29
+
30
+
31
+ def default(val, d):
32
+ if exists(val):
33
+ return val
34
+ return d() if isfunction(d) else d
35
+
36
+
37
+ def max_neg_value(t):
38
+ return -torch.finfo(t.dtype).max
39
+
40
+
41
+ def init_(tensor):
42
+ dim = tensor.shape[-1]
43
+ std = 1 / math.sqrt(dim)
44
+ tensor.uniform_(-std, std)
45
+ return tensor
46
+
47
+
48
+ # feedforward
49
+ class GEGLU(nn.Module):
50
+ def __init__(self, dim_in, dim_out):
51
+ super().__init__()
52
+ self.proj = nn.Linear(dim_in, dim_out * 2)
53
+
54
+ def forward(self, x):
55
+ x, gate = self.proj(x).chunk(2, dim=-1)
56
+ return x * F.gelu(gate)
57
+
58
+
59
+ class FeedForward(nn.Module):
60
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
61
+ super().__init__()
62
+ inner_dim = int(dim * mult)
63
+ dim_out = default(dim_out, dim)
64
+ project_in = nn.Sequential(
65
+ nn.Linear(dim, inner_dim),
66
+ nn.GELU()
67
+ ) if not glu else GEGLU(dim, inner_dim)
68
+
69
+ self.net = nn.Sequential(
70
+ project_in,
71
+ nn.Dropout(dropout),
72
+ nn.Linear(inner_dim, dim_out)
73
+ )
74
+
75
+ def forward(self, x):
76
+ return self.net(x)
77
+
78
+
79
+ def zero_module(module):
80
+ """
81
+ Zero out the parameters of a module and return it.
82
+ """
83
+ for p in module.parameters():
84
+ p.detach().zero_()
85
+ return module
86
+
87
+
88
+ def Normalize(in_channels):
89
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
90
+
91
+
92
+ class SpatialSelfAttention(nn.Module):
93
+ def __init__(self, in_channels):
94
+ super().__init__()
95
+ self.in_channels = in_channels
96
+
97
+ self.norm = Normalize(in_channels)
98
+ self.q = torch.nn.Conv2d(in_channels,
99
+ in_channels,
100
+ kernel_size=1,
101
+ stride=1,
102
+ padding=0)
103
+ self.k = torch.nn.Conv2d(in_channels,
104
+ in_channels,
105
+ kernel_size=1,
106
+ stride=1,
107
+ padding=0)
108
+ self.v = torch.nn.Conv2d(in_channels,
109
+ in_channels,
110
+ kernel_size=1,
111
+ stride=1,
112
+ padding=0)
113
+ self.proj_out = torch.nn.Conv2d(in_channels,
114
+ in_channels,
115
+ kernel_size=1,
116
+ stride=1,
117
+ padding=0)
118
+
119
+ def forward(self, x):
120
+ h_ = x
121
+ h_ = self.norm(h_)
122
+ q = self.q(h_)
123
+ k = self.k(h_)
124
+ v = self.v(h_)
125
+
126
+ # compute attention
127
+ b,c,h,w = q.shape
128
+ q = rearrange(q, 'b c h w -> b (h w) c')
129
+ k = rearrange(k, 'b c h w -> b c (h w)')
130
+ w_ = torch.einsum('bij,bjk->bik', q, k)
131
+
132
+ w_ = w_ * (int(c)**(-0.5))
133
+ w_ = torch.nn.functional.softmax(w_, dim=2)
134
+
135
+ # attend to values
136
+ v = rearrange(v, 'b c h w -> b c (h w)')
137
+ w_ = rearrange(w_, 'b i j -> b j i')
138
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
139
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
140
+ h_ = self.proj_out(h_)
141
+
142
+ return x+h_
143
+
144
+
145
+ class CrossAttention(nn.Module):
146
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
147
+ super().__init__()
148
+ inner_dim = dim_head * heads
149
+ context_dim = default(context_dim, query_dim)
150
+
151
+ self.scale = dim_head ** -0.5
152
+ self.heads = heads
153
+
154
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
155
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
156
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
157
+
158
+ self.to_out = nn.Sequential(
159
+ nn.Linear(inner_dim, query_dim),
160
+ nn.Dropout(dropout)
161
+ )
162
+
163
+ def forward(self, x, context=None, mask=None):
164
+ h = self.heads
165
+
166
+ q = self.to_q(x)
167
+ context = default(context, x)
168
+ k = self.to_k(context)
169
+ v = self.to_v(context)
170
+
171
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
172
+
173
+ # force cast to fp32 to avoid overflowing
174
+ if _ATTN_PRECISION =="fp32":
175
+ with torch.autocast(enabled=False, device_type = 'cuda'):
176
+ q, k = q.float(), k.float()
177
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
178
+ else:
179
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
180
+
181
+ del q, k
182
+
183
+ if exists(mask):
184
+ mask = rearrange(mask, 'b ... -> b (...)')
185
+ max_neg_value = -torch.finfo(sim.dtype).max
186
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
187
+ sim.masked_fill_(~mask, max_neg_value)
188
+
189
+ # attention, what we cannot get enough of
190
+ sim = sim.softmax(dim=-1)
191
+
192
+ out = einsum('b i j, b j d -> b i d', sim, v)
193
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
194
+ return self.to_out(out)
195
+
196
+
197
+ class MemoryEfficientCrossAttention(nn.Module):
198
+ # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
199
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
200
+ super().__init__()
201
+ print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
202
+ f"{heads} heads.")
203
+ inner_dim = dim_head * heads
204
+ context_dim = default(context_dim, query_dim)
205
+
206
+ self.heads = heads
207
+ self.dim_head = dim_head
208
+
209
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
210
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
211
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
212
+
213
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
214
+ self.attention_op: Optional[Any] = None
215
+
216
+ def forward(self, x, context=None, mask=None):
217
+ q = self.to_q(x)
218
+ context = default(context, x)
219
+ k = self.to_k(context)
220
+ v = self.to_v(context)
221
+
222
+ b, _, _ = q.shape
223
+ q, k, v = map(
224
+ lambda t: t.unsqueeze(3)
225
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
226
+ .permute(0, 2, 1, 3)
227
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
228
+ .contiguous(),
229
+ (q, k, v),
230
+ )
231
+
232
+ # actually compute the attention, what we cannot get enough of
233
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
234
+
235
+ if exists(mask):
236
+ raise NotImplementedError
237
+ out = (
238
+ out.unsqueeze(0)
239
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
240
+ .permute(0, 2, 1, 3)
241
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
242
+ )
243
+ return self.to_out(out)
244
+
245
+
246
+ class BasicTransformerBlock(nn.Module):
247
+ ATTENTION_MODES = {
248
+ "softmax": CrossAttention, # vanilla attention
249
+ "softmax-xformers": MemoryEfficientCrossAttention
250
+ }
251
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
252
+ disable_self_attn=False):
253
+ super().__init__()
254
+ attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
255
+ assert attn_mode in self.ATTENTION_MODES
256
+ attn_cls = self.ATTENTION_MODES[attn_mode]
257
+ self.disable_self_attn = disable_self_attn
258
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
259
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
260
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
261
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
262
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
263
+ self.norm1 = nn.LayerNorm(dim)
264
+ self.norm2 = nn.LayerNorm(dim)
265
+ self.norm3 = nn.LayerNorm(dim)
266
+ self.checkpoint = checkpoint
267
+
268
+ def forward(self, x, context=None):
269
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
270
+
271
+ def _forward(self, x, context=None):
272
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
273
+ x = self.attn2(self.norm2(x), context=context) + x
274
+ x = self.ff(self.norm3(x)) + x
275
+ return x
276
+
277
+
278
+ class SpatialTransformer(nn.Module):
279
+ """
280
+ Transformer block for image-like data.
281
+ First, project the input (aka embedding)
282
+ and reshape to b, t, d.
283
+ Then apply standard transformer action.
284
+ Finally, reshape to image
285
+ NEW: use_linear for more efficiency instead of the 1x1 convs
286
+ """
287
+ def __init__(self, in_channels, n_heads, d_head,
288
+ depth=1, dropout=0., context_dim=None,
289
+ disable_self_attn=False, use_linear=False,
290
+ use_checkpoint=True):
291
+ super().__init__()
292
+ if exists(context_dim) and not isinstance(context_dim, list):
293
+ context_dim = [context_dim]
294
+ self.in_channels = in_channels
295
+ inner_dim = n_heads * d_head
296
+ self.norm = Normalize(in_channels)
297
+ if not use_linear:
298
+ self.proj_in = nn.Conv2d(in_channels,
299
+ inner_dim,
300
+ kernel_size=1,
301
+ stride=1,
302
+ padding=0)
303
+ else:
304
+ self.proj_in = nn.Linear(in_channels, inner_dim)
305
+
306
+ self.transformer_blocks = nn.ModuleList(
307
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
308
+ disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
309
+ for d in range(depth)]
310
+ )
311
+ if not use_linear:
312
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
313
+ in_channels,
314
+ kernel_size=1,
315
+ stride=1,
316
+ padding=0))
317
+ else:
318
+ self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
319
+ self.use_linear = use_linear
320
+
321
+ def forward(self, x, context=None):
322
+ # note: if no context is given, cross-attention defaults to self-attention
323
+ if not isinstance(context, list):
324
+ context = [context]
325
+ b, c, h, w = x.shape
326
+ x_in = x
327
+ x = self.norm(x)
328
+ if not self.use_linear:
329
+ x = self.proj_in(x)
330
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
331
+ if self.use_linear:
332
+ x = self.proj_in(x)
333
+ for i, block in enumerate(self.transformer_blocks):
334
+ x = block(x, context=context[i])
335
+ if self.use_linear:
336
+ x = self.proj_out(x)
337
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
338
+ if not self.use_linear:
339
+ x = self.proj_out(x)
340
+ return x + x_in
341
+
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (200 Bytes). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc ADDED
Binary file (20.9 kB). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc ADDED
Binary file (21.2 kB). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc ADDED
Binary file (3.82 kB). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc ADDED
Binary file (9.96 kB). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+ from typing import Optional, Any
8
+
9
+ from ldm.modules.attention import MemoryEfficientCrossAttention
10
+
11
+ try:
12
+ import xformers
13
+ import xformers.ops
14
+ XFORMERS_IS_AVAILBLE = True
15
+ except:
16
+ XFORMERS_IS_AVAILBLE = False
17
+ print("No module 'xformers'. Proceeding without it.")
18
+
19
+
20
+ def get_timestep_embedding(timesteps, embedding_dim):
21
+ """
22
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
23
+ From Fairseq.
24
+ Build sinusoidal embeddings.
25
+ This matches the implementation in tensor2tensor, but differs slightly
26
+ from the description in Section 3.5 of "Attention Is All You Need".
27
+ """
28
+ assert len(timesteps.shape) == 1
29
+
30
+ half_dim = embedding_dim // 2
31
+ emb = math.log(10000) / (half_dim - 1)
32
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
33
+ emb = emb.to(device=timesteps.device)
34
+ emb = timesteps.float()[:, None] * emb[None, :]
35
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
36
+ if embedding_dim % 2 == 1: # zero pad
37
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
38
+ return emb
39
+
40
+
41
+ def nonlinearity(x):
42
+ # swish
43
+ return x*torch.sigmoid(x)
44
+
45
+
46
+ def Normalize(in_channels, num_groups=32):
47
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
48
+
49
+
50
+ class Upsample(nn.Module):
51
+ def __init__(self, in_channels, with_conv):
52
+ super().__init__()
53
+ self.with_conv = with_conv
54
+ if self.with_conv:
55
+ self.conv = torch.nn.Conv2d(in_channels,
56
+ in_channels,
57
+ kernel_size=3,
58
+ stride=1,
59
+ padding=1)
60
+
61
+ def forward(self, x):
62
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
63
+ if self.with_conv:
64
+ x = self.conv(x)
65
+ return x
66
+
67
+
68
+ class Downsample(nn.Module):
69
+ def __init__(self, in_channels, with_conv):
70
+ super().__init__()
71
+ self.with_conv = with_conv
72
+ if self.with_conv:
73
+ # no asymmetric padding in torch conv, must do it ourselves
74
+ self.conv = torch.nn.Conv2d(in_channels,
75
+ in_channels,
76
+ kernel_size=3,
77
+ stride=2,
78
+ padding=0)
79
+
80
+ def forward(self, x):
81
+ if self.with_conv:
82
+ pad = (0,1,0,1)
83
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
84
+ x = self.conv(x)
85
+ else:
86
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
87
+ return x
88
+
89
+
90
+ class ResnetBlock(nn.Module):
91
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
92
+ dropout, temb_channels=512):
93
+ super().__init__()
94
+ self.in_channels = in_channels
95
+ out_channels = in_channels if out_channels is None else out_channels
96
+ self.out_channels = out_channels
97
+ self.use_conv_shortcut = conv_shortcut
98
+
99
+ self.norm1 = Normalize(in_channels)
100
+ self.conv1 = torch.nn.Conv2d(in_channels,
101
+ out_channels,
102
+ kernel_size=3,
103
+ stride=1,
104
+ padding=1)
105
+ if temb_channels > 0:
106
+ self.temb_proj = torch.nn.Linear(temb_channels,
107
+ out_channels)
108
+ self.norm2 = Normalize(out_channels)
109
+ self.dropout = torch.nn.Dropout(dropout)
110
+ self.conv2 = torch.nn.Conv2d(out_channels,
111
+ out_channels,
112
+ kernel_size=3,
113
+ stride=1,
114
+ padding=1)
115
+ if self.in_channels != self.out_channels:
116
+ if self.use_conv_shortcut:
117
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
118
+ out_channels,
119
+ kernel_size=3,
120
+ stride=1,
121
+ padding=1)
122
+ else:
123
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
124
+ out_channels,
125
+ kernel_size=1,
126
+ stride=1,
127
+ padding=0)
128
+
129
+ def forward(self, x, temb):
130
+ h = x
131
+ h = self.norm1(h)
132
+ h = nonlinearity(h)
133
+ h = self.conv1(h)
134
+
135
+ if temb is not None:
136
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
137
+
138
+ h = self.norm2(h)
139
+ h = nonlinearity(h)
140
+ h = self.dropout(h)
141
+ h = self.conv2(h)
142
+
143
+ if self.in_channels != self.out_channels:
144
+ if self.use_conv_shortcut:
145
+ x = self.conv_shortcut(x)
146
+ else:
147
+ x = self.nin_shortcut(x)
148
+
149
+ return x+h
150
+
151
+
152
+ class AttnBlock(nn.Module):
153
+ def __init__(self, in_channels):
154
+ super().__init__()
155
+ self.in_channels = in_channels
156
+
157
+ self.norm = Normalize(in_channels)
158
+ self.q = torch.nn.Conv2d(in_channels,
159
+ in_channels,
160
+ kernel_size=1,
161
+ stride=1,
162
+ padding=0)
163
+ self.k = torch.nn.Conv2d(in_channels,
164
+ in_channels,
165
+ kernel_size=1,
166
+ stride=1,
167
+ padding=0)
168
+ self.v = torch.nn.Conv2d(in_channels,
169
+ in_channels,
170
+ kernel_size=1,
171
+ stride=1,
172
+ padding=0)
173
+ self.proj_out = torch.nn.Conv2d(in_channels,
174
+ in_channels,
175
+ kernel_size=1,
176
+ stride=1,
177
+ padding=0)
178
+
179
+ def forward(self, x):
180
+ h_ = x
181
+ h_ = self.norm(h_)
182
+ q = self.q(h_)
183
+ k = self.k(h_)
184
+ v = self.v(h_)
185
+
186
+ # compute attention
187
+ b,c,h,w = q.shape
188
+ q = q.reshape(b,c,h*w)
189
+ q = q.permute(0,2,1) # b,hw,c
190
+ k = k.reshape(b,c,h*w) # b,c,hw
191
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
192
+ w_ = w_ * (int(c)**(-0.5))
193
+ w_ = torch.nn.functional.softmax(w_, dim=2)
194
+
195
+ # attend to values
196
+ v = v.reshape(b,c,h*w)
197
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
198
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
199
+ h_ = h_.reshape(b,c,h,w)
200
+
201
+ h_ = self.proj_out(h_)
202
+
203
+ return x+h_
204
+
205
+ class MemoryEfficientAttnBlock(nn.Module):
206
+ """
207
+ Uses xformers efficient implementation,
208
+ see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
209
+ Note: this is a single-head self-attention operation
210
+ """
211
+ #
212
+ def __init__(self, in_channels):
213
+ super().__init__()
214
+ self.in_channels = in_channels
215
+
216
+ self.norm = Normalize(in_channels)
217
+ self.q = torch.nn.Conv2d(in_channels,
218
+ in_channels,
219
+ kernel_size=1,
220
+ stride=1,
221
+ padding=0)
222
+ self.k = torch.nn.Conv2d(in_channels,
223
+ in_channels,
224
+ kernel_size=1,
225
+ stride=1,
226
+ padding=0)
227
+ self.v = torch.nn.Conv2d(in_channels,
228
+ in_channels,
229
+ kernel_size=1,
230
+ stride=1,
231
+ padding=0)
232
+ self.proj_out = torch.nn.Conv2d(in_channels,
233
+ in_channels,
234
+ kernel_size=1,
235
+ stride=1,
236
+ padding=0)
237
+ self.attention_op: Optional[Any] = None
238
+
239
+ def forward(self, x):
240
+ h_ = x
241
+ h_ = self.norm(h_)
242
+ q = self.q(h_)
243
+ k = self.k(h_)
244
+ v = self.v(h_)
245
+
246
+ # compute attention
247
+ B, C, H, W = q.shape
248
+ q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
249
+
250
+ q, k, v = map(
251
+ lambda t: t.unsqueeze(3)
252
+ .reshape(B, t.shape[1], 1, C)
253
+ .permute(0, 2, 1, 3)
254
+ .reshape(B * 1, t.shape[1], C)
255
+ .contiguous(),
256
+ (q, k, v),
257
+ )
258
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
259
+
260
+ out = (
261
+ out.unsqueeze(0)
262
+ .reshape(B, 1, out.shape[1], C)
263
+ .permute(0, 2, 1, 3)
264
+ .reshape(B, out.shape[1], C)
265
+ )
266
+ out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
267
+ out = self.proj_out(out)
268
+ return x+out
269
+
270
+
271
+ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
272
+ def forward(self, x, context=None, mask=None):
273
+ b, c, h, w = x.shape
274
+ x = rearrange(x, 'b c h w -> b (h w) c')
275
+ out = super().forward(x, context=context, mask=mask)
276
+ out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
277
+ return x + out
278
+
279
+
280
+ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
281
+ assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
282
+ if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
283
+ attn_type = "vanilla-xformers"
284
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
285
+ if attn_type == "vanilla":
286
+ assert attn_kwargs is None
287
+ return AttnBlock(in_channels)
288
+ elif attn_type == "vanilla-xformers":
289
+ print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
290
+ return MemoryEfficientAttnBlock(in_channels)
291
+ elif type == "memory-efficient-cross-attn":
292
+ attn_kwargs["query_dim"] = in_channels
293
+ return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
294
+ elif attn_type == "none":
295
+ return nn.Identity(in_channels)
296
+ else:
297
+ raise NotImplementedError()
298
+
299
+
300
+ class Model(nn.Module):
301
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
302
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
303
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
304
+ super().__init__()
305
+ if use_linear_attn: attn_type = "linear"
306
+ self.ch = ch
307
+ self.temb_ch = self.ch*4
308
+ self.num_resolutions = len(ch_mult)
309
+ self.num_res_blocks = num_res_blocks
310
+ self.resolution = resolution
311
+ self.in_channels = in_channels
312
+
313
+ self.use_timestep = use_timestep
314
+ if self.use_timestep:
315
+ # timestep embedding
316
+ self.temb = nn.Module()
317
+ self.temb.dense = nn.ModuleList([
318
+ torch.nn.Linear(self.ch,
319
+ self.temb_ch),
320
+ torch.nn.Linear(self.temb_ch,
321
+ self.temb_ch),
322
+ ])
323
+
324
+ # downsampling
325
+ self.conv_in = torch.nn.Conv2d(in_channels,
326
+ self.ch,
327
+ kernel_size=3,
328
+ stride=1,
329
+ padding=1)
330
+
331
+ curr_res = resolution
332
+ in_ch_mult = (1,)+tuple(ch_mult)
333
+ self.down = nn.ModuleList()
334
+ for i_level in range(self.num_resolutions):
335
+ block = nn.ModuleList()
336
+ attn = nn.ModuleList()
337
+ block_in = ch*in_ch_mult[i_level]
338
+ block_out = ch*ch_mult[i_level]
339
+ for i_block in range(self.num_res_blocks):
340
+ block.append(ResnetBlock(in_channels=block_in,
341
+ out_channels=block_out,
342
+ temb_channels=self.temb_ch,
343
+ dropout=dropout))
344
+ block_in = block_out
345
+ if curr_res in attn_resolutions:
346
+ attn.append(make_attn(block_in, attn_type=attn_type))
347
+ down = nn.Module()
348
+ down.block = block
349
+ down.attn = attn
350
+ if i_level != self.num_resolutions-1:
351
+ down.downsample = Downsample(block_in, resamp_with_conv)
352
+ curr_res = curr_res // 2
353
+ self.down.append(down)
354
+
355
+ # middle
356
+ self.mid = nn.Module()
357
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
358
+ out_channels=block_in,
359
+ temb_channels=self.temb_ch,
360
+ dropout=dropout)
361
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
362
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
363
+ out_channels=block_in,
364
+ temb_channels=self.temb_ch,
365
+ dropout=dropout)
366
+
367
+ # upsampling
368
+ self.up = nn.ModuleList()
369
+ for i_level in reversed(range(self.num_resolutions)):
370
+ block = nn.ModuleList()
371
+ attn = nn.ModuleList()
372
+ block_out = ch*ch_mult[i_level]
373
+ skip_in = ch*ch_mult[i_level]
374
+ for i_block in range(self.num_res_blocks+1):
375
+ if i_block == self.num_res_blocks:
376
+ skip_in = ch*in_ch_mult[i_level]
377
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
378
+ out_channels=block_out,
379
+ temb_channels=self.temb_ch,
380
+ dropout=dropout))
381
+ block_in = block_out
382
+ if curr_res in attn_resolutions:
383
+ attn.append(make_attn(block_in, attn_type=attn_type))
384
+ up = nn.Module()
385
+ up.block = block
386
+ up.attn = attn
387
+ if i_level != 0:
388
+ up.upsample = Upsample(block_in, resamp_with_conv)
389
+ curr_res = curr_res * 2
390
+ self.up.insert(0, up) # prepend to get consistent order
391
+
392
+ # end
393
+ self.norm_out = Normalize(block_in)
394
+ self.conv_out = torch.nn.Conv2d(block_in,
395
+ out_ch,
396
+ kernel_size=3,
397
+ stride=1,
398
+ padding=1)
399
+
400
+ def forward(self, x, t=None, context=None):
401
+ #assert x.shape[2] == x.shape[3] == self.resolution
402
+ if context is not None:
403
+ # assume aligned context, cat along channel axis
404
+ x = torch.cat((x, context), dim=1)
405
+ if self.use_timestep:
406
+ # timestep embedding
407
+ assert t is not None
408
+ temb = get_timestep_embedding(t, self.ch)
409
+ temb = self.temb.dense[0](temb)
410
+ temb = nonlinearity(temb)
411
+ temb = self.temb.dense[1](temb)
412
+ else:
413
+ temb = None
414
+
415
+ # downsampling
416
+ hs = [self.conv_in(x)]
417
+ for i_level in range(self.num_resolutions):
418
+ for i_block in range(self.num_res_blocks):
419
+ h = self.down[i_level].block[i_block](hs[-1], temb)
420
+ if len(self.down[i_level].attn) > 0:
421
+ h = self.down[i_level].attn[i_block](h)
422
+ hs.append(h)
423
+ if i_level != self.num_resolutions-1:
424
+ hs.append(self.down[i_level].downsample(hs[-1]))
425
+
426
+ # middle
427
+ h = hs[-1]
428
+ h = self.mid.block_1(h, temb)
429
+ h = self.mid.attn_1(h)
430
+ h = self.mid.block_2(h, temb)
431
+
432
+ # upsampling
433
+ for i_level in reversed(range(self.num_resolutions)):
434
+ for i_block in range(self.num_res_blocks+1):
435
+ h = self.up[i_level].block[i_block](
436
+ torch.cat([h, hs.pop()], dim=1), temb)
437
+ if len(self.up[i_level].attn) > 0:
438
+ h = self.up[i_level].attn[i_block](h)
439
+ if i_level != 0:
440
+ h = self.up[i_level].upsample(h)
441
+
442
+ # end
443
+ h = self.norm_out(h)
444
+ h = nonlinearity(h)
445
+ h = self.conv_out(h)
446
+ return h
447
+
448
+ def get_last_layer(self):
449
+ return self.conv_out.weight
450
+
451
+
452
+ class Encoder(nn.Module):
453
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
454
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
455
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
456
+ **ignore_kwargs):
457
+ super().__init__()
458
+ if use_linear_attn: attn_type = "linear"
459
+ self.ch = ch
460
+ self.temb_ch = 0
461
+ self.num_resolutions = len(ch_mult)
462
+ self.num_res_blocks = num_res_blocks
463
+ self.resolution = resolution
464
+ self.in_channels = in_channels
465
+
466
+ # downsampling
467
+ self.conv_in = torch.nn.Conv2d(in_channels,
468
+ self.ch,
469
+ kernel_size=3,
470
+ stride=1,
471
+ padding=1)
472
+
473
+ curr_res = resolution
474
+ in_ch_mult = (1,)+tuple(ch_mult)
475
+ self.in_ch_mult = in_ch_mult
476
+ self.down = nn.ModuleList()
477
+ for i_level in range(self.num_resolutions):
478
+ block = nn.ModuleList()
479
+ attn = nn.ModuleList()
480
+ block_in = ch*in_ch_mult[i_level]
481
+ block_out = ch*ch_mult[i_level]
482
+ for i_block in range(self.num_res_blocks):
483
+ block.append(ResnetBlock(in_channels=block_in,
484
+ out_channels=block_out,
485
+ temb_channels=self.temb_ch,
486
+ dropout=dropout))
487
+ block_in = block_out
488
+ if curr_res in attn_resolutions:
489
+ attn.append(make_attn(block_in, attn_type=attn_type))
490
+ down = nn.Module()
491
+ down.block = block
492
+ down.attn = attn
493
+ if i_level != self.num_resolutions-1:
494
+ down.downsample = Downsample(block_in, resamp_with_conv)
495
+ curr_res = curr_res // 2
496
+ self.down.append(down)
497
+
498
+ # middle
499
+ self.mid = nn.Module()
500
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
505
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
506
+ out_channels=block_in,
507
+ temb_channels=self.temb_ch,
508
+ dropout=dropout)
509
+
510
+ # end
511
+ self.norm_out = Normalize(block_in)
512
+ self.conv_out = torch.nn.Conv2d(block_in,
513
+ 2*z_channels if double_z else z_channels,
514
+ kernel_size=3,
515
+ stride=1,
516
+ padding=1)
517
+
518
+ def forward(self, x):
519
+ # timestep embedding
520
+ temb = None
521
+
522
+ # downsampling
523
+ hs = [self.conv_in(x)]
524
+ for i_level in range(self.num_resolutions):
525
+ for i_block in range(self.num_res_blocks):
526
+ h = self.down[i_level].block[i_block](hs[-1], temb)
527
+ if len(self.down[i_level].attn) > 0:
528
+ h = self.down[i_level].attn[i_block](h)
529
+ hs.append(h)
530
+ if i_level != self.num_resolutions-1:
531
+ hs.append(self.down[i_level].downsample(hs[-1]))
532
+
533
+ # middle
534
+ h = hs[-1]
535
+ h = self.mid.block_1(h, temb)
536
+ h = self.mid.attn_1(h)
537
+ h = self.mid.block_2(h, temb)
538
+
539
+ # end
540
+ h = self.norm_out(h)
541
+ h = nonlinearity(h)
542
+ h = self.conv_out(h)
543
+ return h
544
+
545
+
546
+ class Decoder(nn.Module):
547
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
548
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
549
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
550
+ attn_type="vanilla", **ignorekwargs):
551
+ super().__init__()
552
+ if use_linear_attn: attn_type = "linear"
553
+ self.ch = ch
554
+ self.temb_ch = 0
555
+ self.num_resolutions = len(ch_mult)
556
+ self.num_res_blocks = num_res_blocks
557
+ self.resolution = resolution
558
+ self.in_channels = in_channels
559
+ self.give_pre_end = give_pre_end
560
+ self.tanh_out = tanh_out
561
+
562
+ # compute in_ch_mult, block_in and curr_res at lowest res
563
+ in_ch_mult = (1,)+tuple(ch_mult)
564
+ block_in = ch*ch_mult[self.num_resolutions-1]
565
+ curr_res = resolution // 2**(self.num_resolutions-1)
566
+ self.z_shape = (1,z_channels,curr_res,curr_res)
567
+ print("Working with z of shape {} = {} dimensions.".format(
568
+ self.z_shape, np.prod(self.z_shape)))
569
+
570
+ # z to block_in
571
+ self.conv_in = torch.nn.Conv2d(z_channels,
572
+ block_in,
573
+ kernel_size=3,
574
+ stride=1,
575
+ padding=1)
576
+
577
+ # middle
578
+ self.mid = nn.Module()
579
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
580
+ out_channels=block_in,
581
+ temb_channels=self.temb_ch,
582
+ dropout=dropout)
583
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
584
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
585
+ out_channels=block_in,
586
+ temb_channels=self.temb_ch,
587
+ dropout=dropout)
588
+
589
+ # upsampling
590
+ self.up = nn.ModuleList()
591
+ for i_level in reversed(range(self.num_resolutions)):
592
+ block = nn.ModuleList()
593
+ attn = nn.ModuleList()
594
+ block_out = ch*ch_mult[i_level]
595
+ for i_block in range(self.num_res_blocks+1):
596
+ block.append(ResnetBlock(in_channels=block_in,
597
+ out_channels=block_out,
598
+ temb_channels=self.temb_ch,
599
+ dropout=dropout))
600
+ block_in = block_out
601
+ if curr_res in attn_resolutions:
602
+ attn.append(make_attn(block_in, attn_type=attn_type))
603
+ up = nn.Module()
604
+ up.block = block
605
+ up.attn = attn
606
+ if i_level != 0:
607
+ up.upsample = Upsample(block_in, resamp_with_conv)
608
+ curr_res = curr_res * 2
609
+ self.up.insert(0, up) # prepend to get consistent order
610
+
611
+ # end
612
+ self.norm_out = Normalize(block_in)
613
+ self.conv_out = torch.nn.Conv2d(block_in,
614
+ out_ch,
615
+ kernel_size=3,
616
+ stride=1,
617
+ padding=1)
618
+
619
+ def forward(self, z):
620
+ #assert z.shape[1:] == self.z_shape[1:]
621
+ self.last_z_shape = z.shape
622
+
623
+ # timestep embedding
624
+ temb = None
625
+
626
+ # z to block_in
627
+ h = self.conv_in(z)
628
+
629
+ # middle
630
+ h = self.mid.block_1(h, temb)
631
+ h = self.mid.attn_1(h)
632
+ h = self.mid.block_2(h, temb)
633
+
634
+ # upsampling
635
+ for i_level in reversed(range(self.num_resolutions)):
636
+ for i_block in range(self.num_res_blocks+1):
637
+ h = self.up[i_level].block[i_block](h, temb)
638
+ if len(self.up[i_level].attn) > 0:
639
+ h = self.up[i_level].attn[i_block](h)
640
+ if i_level != 0:
641
+ h = self.up[i_level].upsample(h)
642
+
643
+ # end
644
+ if self.give_pre_end:
645
+ return h
646
+
647
+ h = self.norm_out(h)
648
+ h = nonlinearity(h)
649
+ h = self.conv_out(h)
650
+ if self.tanh_out:
651
+ h = torch.tanh(h)
652
+ return h
653
+
654
+
655
+ class SimpleDecoder(nn.Module):
656
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
657
+ super().__init__()
658
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
659
+ ResnetBlock(in_channels=in_channels,
660
+ out_channels=2 * in_channels,
661
+ temb_channels=0, dropout=0.0),
662
+ ResnetBlock(in_channels=2 * in_channels,
663
+ out_channels=4 * in_channels,
664
+ temb_channels=0, dropout=0.0),
665
+ ResnetBlock(in_channels=4 * in_channels,
666
+ out_channels=2 * in_channels,
667
+ temb_channels=0, dropout=0.0),
668
+ nn.Conv2d(2*in_channels, in_channels, 1),
669
+ Upsample(in_channels, with_conv=True)])
670
+ # end
671
+ self.norm_out = Normalize(in_channels)
672
+ self.conv_out = torch.nn.Conv2d(in_channels,
673
+ out_channels,
674
+ kernel_size=3,
675
+ stride=1,
676
+ padding=1)
677
+
678
+ def forward(self, x):
679
+ for i, layer in enumerate(self.model):
680
+ if i in [1,2,3]:
681
+ x = layer(x, None)
682
+ else:
683
+ x = layer(x)
684
+
685
+ h = self.norm_out(x)
686
+ h = nonlinearity(h)
687
+ x = self.conv_out(h)
688
+ return x
689
+
690
+
691
+ class UpsampleDecoder(nn.Module):
692
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
693
+ ch_mult=(2,2), dropout=0.0):
694
+ super().__init__()
695
+ # upsampling
696
+ self.temb_ch = 0
697
+ self.num_resolutions = len(ch_mult)
698
+ self.num_res_blocks = num_res_blocks
699
+ block_in = in_channels
700
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
701
+ self.res_blocks = nn.ModuleList()
702
+ self.upsample_blocks = nn.ModuleList()
703
+ for i_level in range(self.num_resolutions):
704
+ res_block = []
705
+ block_out = ch * ch_mult[i_level]
706
+ for i_block in range(self.num_res_blocks + 1):
707
+ res_block.append(ResnetBlock(in_channels=block_in,
708
+ out_channels=block_out,
709
+ temb_channels=self.temb_ch,
710
+ dropout=dropout))
711
+ block_in = block_out
712
+ self.res_blocks.append(nn.ModuleList(res_block))
713
+ if i_level != self.num_resolutions - 1:
714
+ self.upsample_blocks.append(Upsample(block_in, True))
715
+ curr_res = curr_res * 2
716
+
717
+ # end
718
+ self.norm_out = Normalize(block_in)
719
+ self.conv_out = torch.nn.Conv2d(block_in,
720
+ out_channels,
721
+ kernel_size=3,
722
+ stride=1,
723
+ padding=1)
724
+
725
+ def forward(self, x):
726
+ # upsampling
727
+ h = x
728
+ for k, i_level in enumerate(range(self.num_resolutions)):
729
+ for i_block in range(self.num_res_blocks + 1):
730
+ h = self.res_blocks[i_level][i_block](h, None)
731
+ if i_level != self.num_resolutions - 1:
732
+ h = self.upsample_blocks[k](h)
733
+ h = self.norm_out(h)
734
+ h = nonlinearity(h)
735
+ h = self.conv_out(h)
736
+ return h
737
+
738
+
739
+ class LatentRescaler(nn.Module):
740
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
741
+ super().__init__()
742
+ # residual block, interpolate, residual block
743
+ self.factor = factor
744
+ self.conv_in = nn.Conv2d(in_channels,
745
+ mid_channels,
746
+ kernel_size=3,
747
+ stride=1,
748
+ padding=1)
749
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
750
+ out_channels=mid_channels,
751
+ temb_channels=0,
752
+ dropout=0.0) for _ in range(depth)])
753
+ self.attn = AttnBlock(mid_channels)
754
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
755
+ out_channels=mid_channels,
756
+ temb_channels=0,
757
+ dropout=0.0) for _ in range(depth)])
758
+
759
+ self.conv_out = nn.Conv2d(mid_channels,
760
+ out_channels,
761
+ kernel_size=1,
762
+ )
763
+
764
+ def forward(self, x):
765
+ x = self.conv_in(x)
766
+ for block in self.res_block1:
767
+ x = block(x, None)
768
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
769
+ x = self.attn(x)
770
+ for block in self.res_block2:
771
+ x = block(x, None)
772
+ x = self.conv_out(x)
773
+ return x
774
+
775
+
776
+ class MergedRescaleEncoder(nn.Module):
777
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
778
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
779
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
780
+ super().__init__()
781
+ intermediate_chn = ch * ch_mult[-1]
782
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
783
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
784
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
785
+ out_ch=None)
786
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
787
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
788
+
789
+ def forward(self, x):
790
+ x = self.encoder(x)
791
+ x = self.rescaler(x)
792
+ return x
793
+
794
+
795
+ class MergedRescaleDecoder(nn.Module):
796
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
797
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
798
+ super().__init__()
799
+ tmp_chn = z_channels*ch_mult[-1]
800
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
801
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
802
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
803
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
804
+ out_channels=tmp_chn, depth=rescale_module_depth)
805
+
806
+ def forward(self, x):
807
+ x = self.rescaler(x)
808
+ x = self.decoder(x)
809
+ return x
810
+
811
+
812
+ class Upsampler(nn.Module):
813
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
814
+ super().__init__()
815
+ assert out_size >= in_size
816
+ num_blocks = int(np.log2(out_size//in_size))+1
817
+ factor_up = 1.+ (out_size % in_size)
818
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
819
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
820
+ out_channels=in_channels)
821
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
822
+ attn_resolutions=[], in_channels=None, ch=in_channels,
823
+ ch_mult=[ch_mult for _ in range(num_blocks)])
824
+
825
+ def forward(self, x):
826
+ x = self.rescaler(x)
827
+ x = self.decoder(x)
828
+ return x
829
+
830
+
831
+ class Resize(nn.Module):
832
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
833
+ super().__init__()
834
+ self.with_conv = learned
835
+ self.mode = mode
836
+ if self.with_conv:
837
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
838
+ raise NotImplementedError()
839
+ assert in_channels is not None
840
+ # no asymmetric padding in torch conv, must do it ourselves
841
+ self.conv = torch.nn.Conv2d(in_channels,
842
+ in_channels,
843
+ kernel_size=4,
844
+ stride=2,
845
+ padding=1)
846
+
847
+ def forward(self, x, scale_factor=1.0):
848
+ if scale_factor==1.0:
849
+ return x
850
+ else:
851
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
852
+ return x
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,807 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ import math
3
+
4
+ import numpy as np
5
+ import torch as th
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+
9
+ from ldm.modules.diffusionmodules.util import (
10
+ checkpoint,
11
+ conv_nd,
12
+ linear,
13
+ avg_pool_nd,
14
+ zero_module,
15
+ normalization,
16
+ timestep_embedding,
17
+ )
18
+ from ldm.modules.attention import SpatialTransformer
19
+ from ldm.util import exists
20
+
21
+
22
+ # dummy replace
23
+ def convert_module_to_f16(x):
24
+ pass
25
+
26
+ def convert_module_to_f32(x):
27
+ pass
28
+
29
+
30
+ ## go
31
+ class AttentionPool2d(nn.Module):
32
+ """
33
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
34
+ """
35
+
36
+ def __init__(
37
+ self,
38
+ spacial_dim: int,
39
+ embed_dim: int,
40
+ num_heads_channels: int,
41
+ output_dim: int = None,
42
+ ):
43
+ super().__init__()
44
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
45
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
46
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
47
+ self.num_heads = embed_dim // num_heads_channels
48
+ self.attention = QKVAttention(self.num_heads)
49
+
50
+ def forward(self, x):
51
+ b, c, *_spatial = x.shape
52
+ x = x.reshape(b, c, -1) # NC(HW)
53
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
54
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
55
+ x = self.qkv_proj(x)
56
+ x = self.attention(x)
57
+ x = self.c_proj(x)
58
+ return x[:, :, 0]
59
+
60
+
61
+ class TimestepBlock(nn.Module):
62
+ """
63
+ Any module where forward() takes timestep embeddings as a second argument.
64
+ """
65
+
66
+ @abstractmethod
67
+ def forward(self, x, emb):
68
+ """
69
+ Apply the module to `x` given `emb` timestep embeddings.
70
+ """
71
+
72
+
73
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
74
+ """
75
+ A sequential module that passes timestep embeddings to the children that
76
+ support it as an extra input.
77
+ """
78
+
79
+ def forward(self, x, emb, context=None):
80
+ for layer in self:
81
+ if isinstance(layer, TimestepBlock):
82
+ x = layer(x, emb)
83
+ elif isinstance(layer, SpatialTransformer):
84
+ x = layer(x, context)
85
+ else:
86
+ x = layer(x)
87
+ return x
88
+
89
+
90
+ class Upsample(nn.Module):
91
+ """
92
+ An upsampling layer with an optional convolution.
93
+ :param channels: channels in the inputs and outputs.
94
+ :param use_conv: a bool determining if a convolution is applied.
95
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
96
+ upsampling occurs in the inner-two dimensions.
97
+ """
98
+
99
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
100
+ super().__init__()
101
+ self.channels = channels
102
+ self.out_channels = out_channels or channels
103
+ self.use_conv = use_conv
104
+ self.dims = dims
105
+ if use_conv:
106
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
107
+
108
+ def forward(self, x):
109
+ assert x.shape[1] == self.channels
110
+ if self.dims == 3:
111
+ x = F.interpolate(
112
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
113
+ )
114
+ else:
115
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
116
+ if self.use_conv:
117
+ x = self.conv(x)
118
+ return x
119
+
120
+ class TransposedUpsample(nn.Module):
121
+ 'Learned 2x upsampling without padding'
122
+ def __init__(self, channels, out_channels=None, ks=5):
123
+ super().__init__()
124
+ self.channels = channels
125
+ self.out_channels = out_channels or channels
126
+
127
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
128
+
129
+ def forward(self,x):
130
+ return self.up(x)
131
+
132
+
133
+ class Downsample(nn.Module):
134
+ """
135
+ A downsampling layer with an optional convolution.
136
+ :param channels: channels in the inputs and outputs.
137
+ :param use_conv: a bool determining if a convolution is applied.
138
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
139
+ downsampling occurs in the inner-two dimensions.
140
+ """
141
+
142
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
143
+ super().__init__()
144
+ self.channels = channels
145
+ self.out_channels = out_channels or channels
146
+ self.use_conv = use_conv
147
+ self.dims = dims
148
+ stride = 2 if dims != 3 else (1, 2, 2)
149
+ if use_conv:
150
+ self.op = conv_nd(
151
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
152
+ )
153
+ else:
154
+ assert self.channels == self.out_channels
155
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
156
+
157
+ def forward(self, x):
158
+ assert x.shape[1] == self.channels
159
+ return self.op(x)
160
+
161
+
162
+ class ResBlock(TimestepBlock):
163
+ """
164
+ A residual block that can optionally change the number of channels.
165
+ :param channels: the number of input channels.
166
+ :param emb_channels: the number of timestep embedding channels.
167
+ :param dropout: the rate of dropout.
168
+ :param out_channels: if specified, the number of out channels.
169
+ :param use_conv: if True and out_channels is specified, use a spatial
170
+ convolution instead of a smaller 1x1 convolution to change the
171
+ channels in the skip connection.
172
+ :param dims: determines if the signal is 1D, 2D, or 3D.
173
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
174
+ :param up: if True, use this block for upsampling.
175
+ :param down: if True, use this block for downsampling.
176
+ """
177
+
178
+ def __init__(
179
+ self,
180
+ channels,
181
+ emb_channels,
182
+ dropout,
183
+ out_channels=None,
184
+ use_conv=False,
185
+ use_scale_shift_norm=False,
186
+ dims=2,
187
+ use_checkpoint=False,
188
+ up=False,
189
+ down=False,
190
+ ):
191
+ super().__init__()
192
+ self.channels = channels
193
+ self.emb_channels = emb_channels
194
+ self.dropout = dropout
195
+ self.out_channels = out_channels or channels
196
+ self.use_conv = use_conv
197
+ self.use_checkpoint = use_checkpoint
198
+ self.use_scale_shift_norm = use_scale_shift_norm
199
+
200
+ self.in_layers = nn.Sequential(
201
+ normalization(channels),
202
+ nn.SiLU(),
203
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
204
+ )
205
+
206
+ self.updown = up or down
207
+
208
+ if up:
209
+ self.h_upd = Upsample(channels, False, dims)
210
+ self.x_upd = Upsample(channels, False, dims)
211
+ elif down:
212
+ self.h_upd = Downsample(channels, False, dims)
213
+ self.x_upd = Downsample(channels, False, dims)
214
+ else:
215
+ self.h_upd = self.x_upd = nn.Identity()
216
+
217
+ self.emb_layers = nn.Sequential(
218
+ nn.SiLU(),
219
+ linear(
220
+ emb_channels,
221
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
222
+ ),
223
+ )
224
+ self.out_layers = nn.Sequential(
225
+ normalization(self.out_channels),
226
+ nn.SiLU(),
227
+ nn.Dropout(p=dropout),
228
+ zero_module(
229
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
230
+ ),
231
+ )
232
+
233
+ if self.out_channels == channels:
234
+ self.skip_connection = nn.Identity()
235
+ elif use_conv:
236
+ self.skip_connection = conv_nd(
237
+ dims, channels, self.out_channels, 3, padding=1
238
+ )
239
+ else:
240
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
241
+
242
+ def forward(self, x, emb):
243
+ """
244
+ Apply the block to a Tensor, conditioned on a timestep embedding.
245
+ :param x: an [N x C x ...] Tensor of features.
246
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
247
+ :return: an [N x C x ...] Tensor of outputs.
248
+ """
249
+ return checkpoint(
250
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
251
+ )
252
+
253
+
254
+ def _forward(self, x, emb):
255
+ if self.updown:
256
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
257
+ h = in_rest(x)
258
+ h = self.h_upd(h)
259
+ x = self.x_upd(x)
260
+ h = in_conv(h)
261
+ else:
262
+ h = self.in_layers(x)
263
+ emb_out = self.emb_layers(emb).type(h.dtype)
264
+ while len(emb_out.shape) < len(h.shape):
265
+ emb_out = emb_out[..., None]
266
+ if self.use_scale_shift_norm:
267
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
268
+ scale, shift = th.chunk(emb_out, 2, dim=1)
269
+ h = out_norm(h) * (1 + scale) + shift
270
+ h = out_rest(h)
271
+ else:
272
+ h = h + emb_out
273
+ h = self.out_layers(h)
274
+ return self.skip_connection(x) + h
275
+
276
+
277
+ class AttentionBlock(nn.Module):
278
+ """
279
+ An attention block that allows spatial positions to attend to each other.
280
+ Originally ported from here, but adapted to the N-d case.
281
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
282
+ """
283
+
284
+ def __init__(
285
+ self,
286
+ channels,
287
+ num_heads=1,
288
+ num_head_channels=-1,
289
+ use_checkpoint=False,
290
+ use_new_attention_order=False,
291
+ ):
292
+ super().__init__()
293
+ self.channels = channels
294
+ if num_head_channels == -1:
295
+ self.num_heads = num_heads
296
+ else:
297
+ assert (
298
+ channels % num_head_channels == 0
299
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
300
+ self.num_heads = channels // num_head_channels
301
+ self.use_checkpoint = use_checkpoint
302
+ self.norm = normalization(channels)
303
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
304
+ if use_new_attention_order:
305
+ # split qkv before split heads
306
+ self.attention = QKVAttention(self.num_heads)
307
+ else:
308
+ # split heads before split qkv
309
+ self.attention = QKVAttentionLegacy(self.num_heads)
310
+
311
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
312
+
313
+ def forward(self, x):
314
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
315
+ #return pt_checkpoint(self._forward, x) # pytorch
316
+
317
+ def _forward(self, x):
318
+ b, c, *spatial = x.shape
319
+ x = x.reshape(b, c, -1)
320
+ qkv = self.qkv(self.norm(x))
321
+ h = self.attention(qkv)
322
+ h = self.proj_out(h)
323
+ return (x + h).reshape(b, c, *spatial)
324
+
325
+
326
+ def count_flops_attn(model, _x, y):
327
+ """
328
+ A counter for the `thop` package to count the operations in an
329
+ attention operation.
330
+ Meant to be used like:
331
+ macs, params = thop.profile(
332
+ model,
333
+ inputs=(inputs, timestamps),
334
+ custom_ops={QKVAttention: QKVAttention.count_flops},
335
+ )
336
+ """
337
+ b, c, *spatial = y[0].shape
338
+ num_spatial = int(np.prod(spatial))
339
+ # We perform two matmuls with the same number of ops.
340
+ # The first computes the weight matrix, the second computes
341
+ # the combination of the value vectors.
342
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
343
+ model.total_ops += th.DoubleTensor([matmul_ops])
344
+
345
+
346
+ class QKVAttentionLegacy(nn.Module):
347
+ """
348
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
349
+ """
350
+
351
+ def __init__(self, n_heads):
352
+ super().__init__()
353
+ self.n_heads = n_heads
354
+
355
+ def forward(self, qkv):
356
+ """
357
+ Apply QKV attention.
358
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
359
+ :return: an [N x (H * C) x T] tensor after attention.
360
+ """
361
+ bs, width, length = qkv.shape
362
+ assert width % (3 * self.n_heads) == 0
363
+ ch = width // (3 * self.n_heads)
364
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
365
+ scale = 1 / math.sqrt(math.sqrt(ch))
366
+ weight = th.einsum(
367
+ "bct,bcs->bts", q * scale, k * scale
368
+ ) # More stable with f16 than dividing afterwards
369
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
370
+ a = th.einsum("bts,bcs->bct", weight, v)
371
+ return a.reshape(bs, -1, length)
372
+
373
+ @staticmethod
374
+ def count_flops(model, _x, y):
375
+ return count_flops_attn(model, _x, y)
376
+
377
+
378
+ class QKVAttention(nn.Module):
379
+ """
380
+ A module which performs QKV attention and splits in a different order.
381
+ """
382
+
383
+ def __init__(self, n_heads):
384
+ super().__init__()
385
+ self.n_heads = n_heads
386
+
387
+ def forward(self, qkv):
388
+ """
389
+ Apply QKV attention.
390
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
391
+ :return: an [N x (H * C) x T] tensor after attention.
392
+ """
393
+ bs, width, length = qkv.shape
394
+ assert width % (3 * self.n_heads) == 0
395
+ ch = width // (3 * self.n_heads)
396
+ q, k, v = qkv.chunk(3, dim=1)
397
+ scale = 1 / math.sqrt(math.sqrt(ch))
398
+ weight = th.einsum(
399
+ "bct,bcs->bts",
400
+ (q * scale).view(bs * self.n_heads, ch, length),
401
+ (k * scale).view(bs * self.n_heads, ch, length),
402
+ ) # More stable with f16 than dividing afterwards
403
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
404
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
405
+ return a.reshape(bs, -1, length)
406
+
407
+ @staticmethod
408
+ def count_flops(model, _x, y):
409
+ return count_flops_attn(model, _x, y)
410
+
411
+
412
+ class Timestep(nn.Module):
413
+ def __init__(self, dim):
414
+ super().__init__()
415
+ self.dim = dim
416
+
417
+ def forward(self, t):
418
+ return timestep_embedding(t, self.dim)
419
+
420
+
421
+ class UNetModel(nn.Module):
422
+ """
423
+ The full UNet model with attention and timestep embedding.
424
+ :param in_channels: channels in the input Tensor.
425
+ :param model_channels: base channel count for the model.
426
+ :param out_channels: channels in the output Tensor.
427
+ :param num_res_blocks: number of residual blocks per downsample.
428
+ :param attention_resolutions: a collection of downsample rates at which
429
+ attention will take place. May be a set, list, or tuple.
430
+ For example, if this contains 4, then at 4x downsampling, attention
431
+ will be used.
432
+ :param dropout: the dropout probability.
433
+ :param channel_mult: channel multiplier for each level of the UNet.
434
+ :param conv_resample: if True, use learned convolutions for upsampling and
435
+ downsampling.
436
+ :param dims: determines if the signal is 1D, 2D, or 3D.
437
+ :param num_classes: if specified (as an int), then this model will be
438
+ class-conditional with `num_classes` classes.
439
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
440
+ :param num_heads: the number of attention heads in each attention layer.
441
+ :param num_heads_channels: if specified, ignore num_heads and instead use
442
+ a fixed channel width per attention head.
443
+ :param num_heads_upsample: works with num_heads to set a different number
444
+ of heads for upsampling. Deprecated.
445
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
446
+ :param resblock_updown: use residual blocks for up/downsampling.
447
+ :param use_new_attention_order: use a different attention pattern for potentially
448
+ increased efficiency.
449
+ """
450
+
451
+ def __init__(
452
+ self,
453
+ image_size,
454
+ in_channels,
455
+ model_channels,
456
+ out_channels,
457
+ num_res_blocks,
458
+ attention_resolutions,
459
+ dropout=0,
460
+ channel_mult=(1, 2, 4, 8),
461
+ conv_resample=True,
462
+ dims=2,
463
+ num_classes=None,
464
+ use_checkpoint=False,
465
+ use_fp16=False,
466
+ use_bf16=False,
467
+ num_heads=-1,
468
+ num_head_channels=-1,
469
+ num_heads_upsample=-1,
470
+ use_scale_shift_norm=False,
471
+ resblock_updown=False,
472
+ use_new_attention_order=False,
473
+ use_spatial_transformer=False, # custom transformer support
474
+ transformer_depth=1, # custom transformer support
475
+ context_dim=None, # custom transformer support
476
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
477
+ legacy=True,
478
+ disable_self_attentions=None,
479
+ num_attention_blocks=None,
480
+ disable_middle_self_attn=False,
481
+ use_linear_in_transformer=False,
482
+ adm_in_channels=None,
483
+ ):
484
+ super().__init__()
485
+ if use_spatial_transformer:
486
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
487
+
488
+ if context_dim is not None:
489
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
490
+ from omegaconf.listconfig import ListConfig
491
+ if type(context_dim) == ListConfig:
492
+ context_dim = list(context_dim)
493
+
494
+ if num_heads_upsample == -1:
495
+ num_heads_upsample = num_heads
496
+
497
+ if num_heads == -1:
498
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
499
+
500
+ if num_head_channels == -1:
501
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
502
+
503
+ self.image_size = image_size
504
+ self.in_channels = in_channels
505
+ self.model_channels = model_channels
506
+ self.out_channels = out_channels
507
+ if isinstance(num_res_blocks, int):
508
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
509
+ else:
510
+ if len(num_res_blocks) != len(channel_mult):
511
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
512
+ "as a list/tuple (per-level) with the same length as channel_mult")
513
+ self.num_res_blocks = num_res_blocks
514
+ if disable_self_attentions is not None:
515
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
516
+ assert len(disable_self_attentions) == len(channel_mult)
517
+ if num_attention_blocks is not None:
518
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
519
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
520
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
521
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
522
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
523
+ f"attention will still not be set.")
524
+
525
+ self.attention_resolutions = attention_resolutions
526
+ self.dropout = dropout
527
+ self.channel_mult = channel_mult
528
+ self.conv_resample = conv_resample
529
+ self.num_classes = num_classes
530
+ self.use_checkpoint = use_checkpoint
531
+ self.dtype = th.float16 if use_fp16 else th.float32
532
+ self.dtype = th.bfloat16 if use_bf16 else self.dtype
533
+ self.num_heads = num_heads
534
+ self.num_head_channels = num_head_channels
535
+ self.num_heads_upsample = num_heads_upsample
536
+ self.predict_codebook_ids = n_embed is not None
537
+
538
+ time_embed_dim = model_channels * 4
539
+ self.time_embed = nn.Sequential(
540
+ linear(model_channels, time_embed_dim),
541
+ nn.SiLU(),
542
+ linear(time_embed_dim, time_embed_dim),
543
+ )
544
+
545
+ if self.num_classes is not None:
546
+ if isinstance(self.num_classes, int):
547
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
548
+ elif self.num_classes == "continuous":
549
+ print("setting up linear c_adm embedding layer")
550
+ self.label_emb = nn.Linear(1, time_embed_dim)
551
+ elif self.num_classes == "sequential":
552
+ assert adm_in_channels is not None
553
+ self.label_emb = nn.Sequential(
554
+ nn.Sequential(
555
+ linear(adm_in_channels, time_embed_dim),
556
+ nn.SiLU(),
557
+ linear(time_embed_dim, time_embed_dim),
558
+ )
559
+ )
560
+ else:
561
+ raise ValueError()
562
+
563
+ self.input_blocks = nn.ModuleList(
564
+ [
565
+ TimestepEmbedSequential(
566
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
567
+ )
568
+ ]
569
+ )
570
+ self._feature_size = model_channels
571
+ input_block_chans = [model_channels]
572
+ ch = model_channels
573
+ ds = 1
574
+ for level, mult in enumerate(channel_mult):
575
+ for nr in range(self.num_res_blocks[level]):
576
+ layers = [
577
+ ResBlock(
578
+ ch,
579
+ time_embed_dim,
580
+ dropout,
581
+ out_channels=mult * model_channels,
582
+ dims=dims,
583
+ use_checkpoint=use_checkpoint,
584
+ use_scale_shift_norm=use_scale_shift_norm,
585
+ )
586
+ ]
587
+ ch = mult * model_channels
588
+ if ds in attention_resolutions:
589
+ if num_head_channels == -1:
590
+ dim_head = ch // num_heads
591
+ else:
592
+ num_heads = ch // num_head_channels
593
+ dim_head = num_head_channels
594
+ if legacy:
595
+ #num_heads = 1
596
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
597
+ if exists(disable_self_attentions):
598
+ disabled_sa = disable_self_attentions[level]
599
+ else:
600
+ disabled_sa = False
601
+
602
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
603
+ layers.append(
604
+ AttentionBlock(
605
+ ch,
606
+ use_checkpoint=use_checkpoint,
607
+ num_heads=num_heads,
608
+ num_head_channels=dim_head,
609
+ use_new_attention_order=use_new_attention_order,
610
+ ) if not use_spatial_transformer else SpatialTransformer(
611
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
612
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
613
+ use_checkpoint=use_checkpoint
614
+ )
615
+ )
616
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
617
+ self._feature_size += ch
618
+ input_block_chans.append(ch)
619
+ if level != len(channel_mult) - 1:
620
+ out_ch = ch
621
+ self.input_blocks.append(
622
+ TimestepEmbedSequential(
623
+ ResBlock(
624
+ ch,
625
+ time_embed_dim,
626
+ dropout,
627
+ out_channels=out_ch,
628
+ dims=dims,
629
+ use_checkpoint=use_checkpoint,
630
+ use_scale_shift_norm=use_scale_shift_norm,
631
+ down=True,
632
+ )
633
+ if resblock_updown
634
+ else Downsample(
635
+ ch, conv_resample, dims=dims, out_channels=out_ch
636
+ )
637
+ )
638
+ )
639
+ ch = out_ch
640
+ input_block_chans.append(ch)
641
+ ds *= 2
642
+ self._feature_size += ch
643
+
644
+ if num_head_channels == -1:
645
+ dim_head = ch // num_heads
646
+ else:
647
+ num_heads = ch // num_head_channels
648
+ dim_head = num_head_channels
649
+ if legacy:
650
+ #num_heads = 1
651
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
652
+ self.middle_block = TimestepEmbedSequential(
653
+ ResBlock(
654
+ ch,
655
+ time_embed_dim,
656
+ dropout,
657
+ dims=dims,
658
+ use_checkpoint=use_checkpoint,
659
+ use_scale_shift_norm=use_scale_shift_norm,
660
+ ),
661
+ AttentionBlock(
662
+ ch,
663
+ use_checkpoint=use_checkpoint,
664
+ num_heads=num_heads,
665
+ num_head_channels=dim_head,
666
+ use_new_attention_order=use_new_attention_order,
667
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
668
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
669
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
670
+ use_checkpoint=use_checkpoint
671
+ ),
672
+ ResBlock(
673
+ ch,
674
+ time_embed_dim,
675
+ dropout,
676
+ dims=dims,
677
+ use_checkpoint=use_checkpoint,
678
+ use_scale_shift_norm=use_scale_shift_norm,
679
+ ),
680
+ )
681
+ self._feature_size += ch
682
+
683
+ self.output_blocks = nn.ModuleList([])
684
+ for level, mult in list(enumerate(channel_mult))[::-1]:
685
+ for i in range(self.num_res_blocks[level] + 1):
686
+ ich = input_block_chans.pop()
687
+ layers = [
688
+ ResBlock(
689
+ ch + ich,
690
+ time_embed_dim,
691
+ dropout,
692
+ out_channels=model_channels * mult,
693
+ dims=dims,
694
+ use_checkpoint=use_checkpoint,
695
+ use_scale_shift_norm=use_scale_shift_norm,
696
+ )
697
+ ]
698
+ ch = model_channels * mult
699
+ if ds in attention_resolutions:
700
+ if num_head_channels == -1:
701
+ dim_head = ch // num_heads
702
+ else:
703
+ num_heads = ch // num_head_channels
704
+ dim_head = num_head_channels
705
+ if legacy:
706
+ #num_heads = 1
707
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
708
+ if exists(disable_self_attentions):
709
+ disabled_sa = disable_self_attentions[level]
710
+ else:
711
+ disabled_sa = False
712
+
713
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
714
+ layers.append(
715
+ AttentionBlock(
716
+ ch,
717
+ use_checkpoint=use_checkpoint,
718
+ num_heads=num_heads_upsample,
719
+ num_head_channels=dim_head,
720
+ use_new_attention_order=use_new_attention_order,
721
+ ) if not use_spatial_transformer else SpatialTransformer(
722
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
723
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
724
+ use_checkpoint=use_checkpoint
725
+ )
726
+ )
727
+ if level and i == self.num_res_blocks[level]:
728
+ out_ch = ch
729
+ layers.append(
730
+ ResBlock(
731
+ ch,
732
+ time_embed_dim,
733
+ dropout,
734
+ out_channels=out_ch,
735
+ dims=dims,
736
+ use_checkpoint=use_checkpoint,
737
+ use_scale_shift_norm=use_scale_shift_norm,
738
+ up=True,
739
+ )
740
+ if resblock_updown
741
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
742
+ )
743
+ ds //= 2
744
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
745
+ self._feature_size += ch
746
+
747
+ self.out = nn.Sequential(
748
+ normalization(ch),
749
+ nn.SiLU(),
750
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
751
+ )
752
+ if self.predict_codebook_ids:
753
+ self.id_predictor = nn.Sequential(
754
+ normalization(ch),
755
+ conv_nd(dims, model_channels, n_embed, 1),
756
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
757
+ )
758
+
759
+ def convert_to_fp16(self):
760
+ """
761
+ Convert the torso of the model to float16.
762
+ """
763
+ self.input_blocks.apply(convert_module_to_f16)
764
+ self.middle_block.apply(convert_module_to_f16)
765
+ self.output_blocks.apply(convert_module_to_f16)
766
+
767
+ def convert_to_fp32(self):
768
+ """
769
+ Convert the torso of the model to float32.
770
+ """
771
+ self.input_blocks.apply(convert_module_to_f32)
772
+ self.middle_block.apply(convert_module_to_f32)
773
+ self.output_blocks.apply(convert_module_to_f32)
774
+
775
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
776
+ """
777
+ Apply the model to an input batch.
778
+ :param x: an [N x C x ...] Tensor of inputs.
779
+ :param timesteps: a 1-D batch of timesteps.
780
+ :param context: conditioning plugged in via crossattn
781
+ :param y: an [N] Tensor of labels, if class-conditional.
782
+ :return: an [N x C x ...] Tensor of outputs.
783
+ """
784
+ assert (y is not None) == (
785
+ self.num_classes is not None
786
+ ), "must specify y if and only if the model is class-conditional"
787
+ hs = []
788
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
789
+ emb = self.time_embed(t_emb)
790
+
791
+ if self.num_classes is not None:
792
+ assert y.shape[0] == x.shape[0]
793
+ emb = emb + self.label_emb(y)
794
+
795
+ h = x.type(self.dtype)
796
+ for module in self.input_blocks:
797
+ h = module(h, emb, context)
798
+ hs.append(h)
799
+ h = self.middle_block(h, emb, context)
800
+ for module in self.output_blocks:
801
+ h = th.cat([h, hs.pop()], dim=1)
802
+ h = module(h, emb, context)
803
+ h = h.type(x.dtype)
804
+ if self.predict_codebook_ids:
805
+ return self.id_predictor(h)
806
+ else:
807
+ return self.out(h)
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/upscaling.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from functools import partial
5
+
6
+ from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
7
+ from ldm.util import default
8
+
9
+
10
+ class AbstractLowScaleModel(nn.Module):
11
+ # for concatenating a downsampled image to the latent representation
12
+ def __init__(self, noise_schedule_config=None):
13
+ super(AbstractLowScaleModel, self).__init__()
14
+ if noise_schedule_config is not None:
15
+ self.register_schedule(**noise_schedule_config)
16
+
17
+ def register_schedule(self, beta_schedule="linear", timesteps=1000,
18
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
19
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
20
+ cosine_s=cosine_s)
21
+ alphas = 1. - betas
22
+ alphas_cumprod = np.cumprod(alphas, axis=0)
23
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
24
+
25
+ timesteps, = betas.shape
26
+ self.num_timesteps = int(timesteps)
27
+ self.linear_start = linear_start
28
+ self.linear_end = linear_end
29
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
30
+
31
+ to_torch = partial(torch.tensor, dtype=torch.float32)
32
+
33
+ self.register_buffer('betas', to_torch(betas))
34
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
35
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
36
+
37
+ # calculations for diffusion q(x_t | x_{t-1}) and others
38
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
39
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
40
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
41
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
42
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
43
+
44
+ def q_sample(self, x_start, t, noise=None):
45
+ noise = default(noise, lambda: torch.randn_like(x_start))
46
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
47
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
48
+
49
+ def forward(self, x):
50
+ return x, None
51
+
52
+ def decode(self, x):
53
+ return x
54
+
55
+
56
+ class SimpleImageConcat(AbstractLowScaleModel):
57
+ # no noise level conditioning
58
+ def __init__(self):
59
+ super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
60
+ self.max_noise_level = 0
61
+
62
+ def forward(self, x):
63
+ # fix to constant noise level
64
+ return x, torch.zeros(x.shape[0], device=x.device).long()
65
+
66
+
67
+ class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
68
+ def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
69
+ super().__init__(noise_schedule_config=noise_schedule_config)
70
+ self.max_noise_level = max_noise_level
71
+
72
+ def forward(self, x, noise_level=None):
73
+ if noise_level is None:
74
+ noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
75
+ else:
76
+ assert isinstance(noise_level, torch.Tensor)
77
+ z = self.q_sample(x, noise_level)
78
+ return z, noise_level
79
+
80
+
81
+
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+
11
+ import os
12
+ import math
13
+ import torch
14
+ import torch.nn as nn
15
+ import numpy as np
16
+ from einops import repeat
17
+
18
+ from ldm.util import instantiate_from_config
19
+
20
+
21
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
+ if schedule == "linear":
23
+ betas = (
24
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
+ )
26
+
27
+ elif schedule == "cosine":
28
+ timesteps = (
29
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
+ )
31
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
+ alphas = torch.cos(alphas).pow(2)
33
+ alphas = alphas / alphas[0]
34
+ betas = 1 - alphas[1:] / alphas[:-1]
35
+ betas = np.clip(betas, a_min=0, a_max=0.999)
36
+
37
+ elif schedule == "squaredcos_cap_v2": # used for karlo prior
38
+ # return early
39
+ return betas_for_alpha_bar(
40
+ n_timestep,
41
+ lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
42
+ )
43
+
44
+ elif schedule == "sqrt_linear":
45
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
46
+ elif schedule == "sqrt":
47
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
48
+ else:
49
+ raise ValueError(f"schedule '{schedule}' unknown.")
50
+ return betas.numpy()
51
+
52
+
53
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
54
+ if ddim_discr_method == 'uniform':
55
+ c = num_ddpm_timesteps // num_ddim_timesteps
56
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
57
+ elif ddim_discr_method == 'quad':
58
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
59
+ else:
60
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
61
+
62
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
63
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
64
+ steps_out = ddim_timesteps + 1
65
+ if verbose:
66
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
67
+ return steps_out
68
+
69
+
70
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
71
+ # select alphas for computing the variance schedule
72
+ alphas = alphacums[ddim_timesteps]
73
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
74
+
75
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
76
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
77
+ if verbose:
78
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
79
+ print(f'For the chosen value of eta, which is {eta}, '
80
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
81
+ return sigmas, alphas, alphas_prev
82
+
83
+
84
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
85
+ """
86
+ Create a beta schedule that discretizes the given alpha_t_bar function,
87
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
88
+ :param num_diffusion_timesteps: the number of betas to produce.
89
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
90
+ produces the cumulative product of (1-beta) up to that
91
+ part of the diffusion process.
92
+ :param max_beta: the maximum beta to use; use values lower than 1 to
93
+ prevent singularities.
94
+ """
95
+ betas = []
96
+ for i in range(num_diffusion_timesteps):
97
+ t1 = i / num_diffusion_timesteps
98
+ t2 = (i + 1) / num_diffusion_timesteps
99
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
100
+ return np.array(betas)
101
+
102
+
103
+ def extract_into_tensor(a, t, x_shape):
104
+ b, *_ = t.shape
105
+ out = a.gather(-1, t)
106
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
107
+
108
+
109
+ def checkpoint(func, inputs, params, flag):
110
+ """
111
+ Evaluate a function without caching intermediate activations, allowing for
112
+ reduced memory at the expense of extra compute in the backward pass.
113
+ :param func: the function to evaluate.
114
+ :param inputs: the argument sequence to pass to `func`.
115
+ :param params: a sequence of parameters `func` depends on but does not
116
+ explicitly take as arguments.
117
+ :param flag: if False, disable gradient checkpointing.
118
+ """
119
+ if flag:
120
+ args = tuple(inputs) + tuple(params)
121
+ return CheckpointFunction.apply(func, len(inputs), *args)
122
+ else:
123
+ return func(*inputs)
124
+
125
+
126
+ class CheckpointFunction(torch.autograd.Function):
127
+ @staticmethod
128
+ def forward(ctx, run_function, length, *args):
129
+ ctx.run_function = run_function
130
+ ctx.input_tensors = list(args[:length])
131
+ ctx.input_params = list(args[length:])
132
+ ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
133
+ "dtype": torch.get_autocast_gpu_dtype(),
134
+ "cache_enabled": torch.is_autocast_cache_enabled()}
135
+ with torch.no_grad():
136
+ output_tensors = ctx.run_function(*ctx.input_tensors)
137
+ return output_tensors
138
+
139
+ @staticmethod
140
+ def backward(ctx, *output_grads):
141
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
142
+ with torch.enable_grad(), \
143
+ torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
144
+ # Fixes a bug where the first op in run_function modifies the
145
+ # Tensor storage in place, which is not allowed for detach()'d
146
+ # Tensors.
147
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
148
+ output_tensors = ctx.run_function(*shallow_copies)
149
+ input_grads = torch.autograd.grad(
150
+ output_tensors,
151
+ ctx.input_tensors + ctx.input_params,
152
+ output_grads,
153
+ allow_unused=True,
154
+ )
155
+ del ctx.input_tensors
156
+ del ctx.input_params
157
+ del output_tensors
158
+ return (None, None) + input_grads
159
+
160
+
161
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
162
+ """
163
+ Create sinusoidal timestep embeddings.
164
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
165
+ These may be fractional.
166
+ :param dim: the dimension of the output.
167
+ :param max_period: controls the minimum frequency of the embeddings.
168
+ :return: an [N x dim] Tensor of positional embeddings.
169
+ """
170
+ if not repeat_only:
171
+ half = dim // 2
172
+ freqs = torch.exp(
173
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
174
+ ).to(device=timesteps.device)
175
+ args = timesteps[:, None].float() * freqs[None]
176
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
177
+ if dim % 2:
178
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
179
+ else:
180
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
181
+ return embedding
182
+
183
+
184
+ def zero_module(module):
185
+ """
186
+ Zero out the parameters of a module and return it.
187
+ """
188
+ for p in module.parameters():
189
+ p.detach().zero_()
190
+ return module
191
+
192
+
193
+ def scale_module(module, scale):
194
+ """
195
+ Scale the parameters of a module and return it.
196
+ """
197
+ for p in module.parameters():
198
+ p.detach().mul_(scale)
199
+ return module
200
+
201
+
202
+ def mean_flat(tensor):
203
+ """
204
+ Take the mean over all non-batch dimensions.
205
+ """
206
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
207
+
208
+
209
+ def normalization(channels):
210
+ """
211
+ Make a standard normalization layer.
212
+ :param channels: number of input channels.
213
+ :return: an nn.Module for normalization.
214
+ """
215
+ return GroupNorm32(32, channels)
216
+
217
+
218
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
219
+ class SiLU(nn.Module):
220
+ def forward(self, x):
221
+ return x * torch.sigmoid(x)
222
+
223
+
224
+ class GroupNorm32(nn.GroupNorm):
225
+ def forward(self, x):
226
+ return super().forward(x.float()).type(x.dtype)
227
+
228
+
229
+ def conv_nd(dims, *args, **kwargs):
230
+ """
231
+ Create a 1D, 2D, or 3D convolution module.
232
+ """
233
+ if dims == 1:
234
+ return nn.Conv1d(*args, **kwargs)
235
+ elif dims == 2:
236
+ return nn.Conv2d(*args, **kwargs)
237
+ elif dims == 3:
238
+ return nn.Conv3d(*args, **kwargs)
239
+ raise ValueError(f"unsupported dimensions: {dims}")
240
+
241
+
242
+ def linear(*args, **kwargs):
243
+ """
244
+ Create a linear module.
245
+ """
246
+ return nn.Linear(*args, **kwargs)
247
+
248
+
249
+ def avg_pool_nd(dims, *args, **kwargs):
250
+ """
251
+ Create a 1D, 2D, or 3D average pooling module.
252
+ """
253
+ if dims == 1:
254
+ return nn.AvgPool1d(*args, **kwargs)
255
+ elif dims == 2:
256
+ return nn.AvgPool2d(*args, **kwargs)
257
+ elif dims == 3:
258
+ return nn.AvgPool3d(*args, **kwargs)
259
+ raise ValueError(f"unsupported dimensions: {dims}")
260
+
261
+
262
+ class HybridConditioner(nn.Module):
263
+
264
+ def __init__(self, c_concat_config, c_crossattn_config):
265
+ super().__init__()
266
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
267
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
268
+
269
+ def forward(self, c_concat, c_crossattn):
270
+ c_concat = self.concat_conditioner(c_concat)
271
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
272
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
273
+
274
+
275
+ def noise_like(shape, device, repeat=False):
276
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
277
+ noise = lambda: torch.randn(shape, device=device)
278
+ return repeat_noise() if repeat else noise()
repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__init__.py ADDED
File without changes
repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (197 Bytes). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc ADDED
Binary file (3.8 kB). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/distributions/distributions.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ class AbstractDistribution:
6
+ def sample(self):
7
+ raise NotImplementedError()
8
+
9
+ def mode(self):
10
+ raise NotImplementedError()
11
+
12
+
13
+ class DiracDistribution(AbstractDistribution):
14
+ def __init__(self, value):
15
+ self.value = value
16
+
17
+ def sample(self):
18
+ return self.value
19
+
20
+ def mode(self):
21
+ return self.value
22
+
23
+
24
+ class DiagonalGaussianDistribution(object):
25
+ def __init__(self, parameters, deterministic=False):
26
+ self.parameters = parameters
27
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
28
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
29
+ self.deterministic = deterministic
30
+ self.std = torch.exp(0.5 * self.logvar)
31
+ self.var = torch.exp(self.logvar)
32
+ if self.deterministic:
33
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
34
+
35
+ def sample(self):
36
+ x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
37
+ return x
38
+
39
+ def kl(self, other=None):
40
+ if self.deterministic:
41
+ return torch.Tensor([0.])
42
+ else:
43
+ if other is None:
44
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
45
+ + self.var - 1.0 - self.logvar,
46
+ dim=[1, 2, 3])
47
+ else:
48
+ return 0.5 * torch.sum(
49
+ torch.pow(self.mean - other.mean, 2) / other.var
50
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
51
+ dim=[1, 2, 3])
52
+
53
+ def nll(self, sample, dims=[1,2,3]):
54
+ if self.deterministic:
55
+ return torch.Tensor([0.])
56
+ logtwopi = np.log(2.0 * np.pi)
57
+ return 0.5 * torch.sum(
58
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
59
+ dim=dims)
60
+
61
+ def mode(self):
62
+ return self.mean
63
+
64
+
65
+ def normal_kl(mean1, logvar1, mean2, logvar2):
66
+ """
67
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
68
+ Compute the KL divergence between two gaussians.
69
+ Shapes are automatically broadcasted, so batches can be compared to
70
+ scalars, among other use cases.
71
+ """
72
+ tensor = None
73
+ for obj in (mean1, logvar1, mean2, logvar2):
74
+ if isinstance(obj, torch.Tensor):
75
+ tensor = obj
76
+ break
77
+ assert tensor is not None, "at least one argument must be a Tensor"
78
+
79
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
80
+ # Tensors, but it does not work for torch.exp().
81
+ logvar1, logvar2 = [
82
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
83
+ for x in (logvar1, logvar2)
84
+ ]
85
+
86
+ return 0.5 * (
87
+ -1.0
88
+ + logvar2
89
+ - logvar1
90
+ + torch.exp(logvar1 - logvar2)
91
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
92
+ )
repositories/stable-diffusion-stability-ai/ldm/modules/ema.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class LitEma(nn.Module):
6
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
7
+ super().__init__()
8
+ if decay < 0.0 or decay > 1.0:
9
+ raise ValueError('Decay must be between 0 and 1')
10
+
11
+ self.m_name2s_name = {}
12
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
13
+ self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
14
+ else torch.tensor(-1, dtype=torch.int))
15
+
16
+ for name, p in model.named_parameters():
17
+ if p.requires_grad:
18
+ # remove as '.'-character is not allowed in buffers
19
+ s_name = name.replace('.', '')
20
+ self.m_name2s_name.update({name: s_name})
21
+ self.register_buffer(s_name, p.clone().detach().data)
22
+
23
+ self.collected_params = []
24
+
25
+ def reset_num_updates(self):
26
+ del self.num_updates
27
+ self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
28
+
29
+ def forward(self, model):
30
+ decay = self.decay
31
+
32
+ if self.num_updates >= 0:
33
+ self.num_updates += 1
34
+ decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
35
+
36
+ one_minus_decay = 1.0 - decay
37
+
38
+ with torch.no_grad():
39
+ m_param = dict(model.named_parameters())
40
+ shadow_params = dict(self.named_buffers())
41
+
42
+ for key in m_param:
43
+ if m_param[key].requires_grad:
44
+ sname = self.m_name2s_name[key]
45
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
46
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
47
+ else:
48
+ assert not key in self.m_name2s_name
49
+
50
+ def copy_to(self, model):
51
+ m_param = dict(model.named_parameters())
52
+ shadow_params = dict(self.named_buffers())
53
+ for key in m_param:
54
+ if m_param[key].requires_grad:
55
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
56
+ else:
57
+ assert not key in self.m_name2s_name
58
+
59
+ def store(self, parameters):
60
+ """
61
+ Save the current parameters for restoring later.
62
+ Args:
63
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
64
+ temporarily stored.
65
+ """
66
+ self.collected_params = [param.clone() for param in parameters]
67
+
68
+ def restore(self, parameters):
69
+ """
70
+ Restore the parameters stored with the `store` method.
71
+ Useful to validate the model with EMA parameters without affecting the
72
+ original optimization process. Store the parameters before the
73
+ `copy_to` method. After validation (or model saving), use this to
74
+ restore the former parameters.
75
+ Args:
76
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
77
+ updated with the stored parameters.
78
+ """
79
+ for c_param, param in zip(self.collected_params, parameters):
80
+ param.data.copy_(c_param.data)
repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__init__.py ADDED
File without changes
repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (192 Bytes). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__pycache__/modules.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
repositories/stable-diffusion-stability-ai/ldm/modules/encoders/modules.py ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import kornia
4
+ from torch.utils.checkpoint import checkpoint
5
+
6
+ from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
7
+
8
+ import open_clip
9
+ from ldm.util import default, count_params, autocast
10
+
11
+
12
+ class AbstractEncoder(nn.Module):
13
+ def __init__(self):
14
+ super().__init__()
15
+
16
+ def encode(self, *args, **kwargs):
17
+ raise NotImplementedError
18
+
19
+
20
+ class IdentityEncoder(AbstractEncoder):
21
+
22
+ def encode(self, x):
23
+ return x
24
+
25
+
26
+ class ClassEmbedder(nn.Module):
27
+ def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
28
+ super().__init__()
29
+ self.key = key
30
+ self.embedding = nn.Embedding(n_classes, embed_dim)
31
+ self.n_classes = n_classes
32
+ self.ucg_rate = ucg_rate
33
+
34
+ def forward(self, batch, key=None, disable_dropout=False):
35
+ if key is None:
36
+ key = self.key
37
+ # this is for use in crossattn
38
+ c = batch[key][:, None]
39
+ if self.ucg_rate > 0. and not disable_dropout:
40
+ mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
41
+ c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
42
+ c = c.long()
43
+ c = self.embedding(c)
44
+ return c
45
+
46
+ def get_unconditional_conditioning(self, bs, device="cuda"):
47
+ uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
48
+ uc = torch.ones((bs,), device=device) * uc_class
49
+ uc = {self.key: uc}
50
+ return uc
51
+
52
+
53
+ def disabled_train(self, mode=True):
54
+ """Overwrite model.train with this function to make sure train/eval mode
55
+ does not change anymore."""
56
+ return self
57
+
58
+
59
+ class FrozenT5Embedder(AbstractEncoder):
60
+ """Uses the T5 transformer encoder for text"""
61
+
62
+ def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
63
+ freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
64
+ super().__init__()
65
+ self.tokenizer = T5Tokenizer.from_pretrained(version)
66
+ self.transformer = T5EncoderModel.from_pretrained(version)
67
+ self.device = device
68
+ self.max_length = max_length # TODO: typical value?
69
+ if freeze:
70
+ self.freeze()
71
+
72
+ def freeze(self):
73
+ self.transformer = self.transformer.eval()
74
+ # self.train = disabled_train
75
+ for param in self.parameters():
76
+ param.requires_grad = False
77
+
78
+ def forward(self, text):
79
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
80
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
81
+ tokens = batch_encoding["input_ids"].to(self.device)
82
+ outputs = self.transformer(input_ids=tokens)
83
+
84
+ z = outputs.last_hidden_state
85
+ return z
86
+
87
+ def encode(self, text):
88
+ return self(text)
89
+
90
+
91
+ class FrozenCLIPEmbedder(AbstractEncoder):
92
+ """Uses the CLIP transformer encoder for text (from huggingface)"""
93
+ LAYERS = [
94
+ "last",
95
+ "pooled",
96
+ "hidden"
97
+ ]
98
+
99
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
100
+ freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
101
+ super().__init__()
102
+ assert layer in self.LAYERS
103
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
104
+ self.transformer = CLIPTextModel.from_pretrained(version)
105
+ self.device = device
106
+ self.max_length = max_length
107
+ if freeze:
108
+ self.freeze()
109
+ self.layer = layer
110
+ self.layer_idx = layer_idx
111
+ if layer == "hidden":
112
+ assert layer_idx is not None
113
+ assert 0 <= abs(layer_idx) <= 12
114
+
115
+ def freeze(self):
116
+ self.transformer = self.transformer.eval()
117
+ # self.train = disabled_train
118
+ for param in self.parameters():
119
+ param.requires_grad = False
120
+
121
+ def forward(self, text):
122
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
123
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
124
+ tokens = batch_encoding["input_ids"].to(self.device)
125
+ outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
126
+ if self.layer == "last":
127
+ z = outputs.last_hidden_state
128
+ elif self.layer == "pooled":
129
+ z = outputs.pooler_output[:, None, :]
130
+ else:
131
+ z = outputs.hidden_states[self.layer_idx]
132
+ return z
133
+
134
+ def encode(self, text):
135
+ return self(text)
136
+
137
+
138
+ class ClipImageEmbedder(nn.Module):
139
+ def __init__(
140
+ self,
141
+ model,
142
+ jit=False,
143
+ device='cuda' if torch.cuda.is_available() else 'cpu',
144
+ antialias=True,
145
+ ucg_rate=0.
146
+ ):
147
+ super().__init__()
148
+ from clip import load as load_clip
149
+ self.model, _ = load_clip(name=model, device=device, jit=jit)
150
+
151
+ self.antialias = antialias
152
+
153
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
154
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
155
+ self.ucg_rate = ucg_rate
156
+
157
+ def preprocess(self, x):
158
+ # normalize to [0,1]
159
+ x = kornia.geometry.resize(x, (224, 224),
160
+ interpolation='bicubic', align_corners=True,
161
+ antialias=self.antialias)
162
+ x = (x + 1.) / 2.
163
+ # re-normalize according to clip
164
+ x = kornia.enhance.normalize(x, self.mean, self.std)
165
+ return x
166
+
167
+ def forward(self, x, no_dropout=False):
168
+ # x is assumed to be in range [-1,1]
169
+ out = self.model.encode_image(self.preprocess(x))
170
+ out = out.to(x.dtype)
171
+ if self.ucg_rate > 0. and not no_dropout:
172
+ out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
173
+ return out
174
+
175
+
176
+ class FrozenOpenCLIPEmbedder(AbstractEncoder):
177
+ """
178
+ Uses the OpenCLIP transformer encoder for text
179
+ """
180
+ LAYERS = [
181
+ # "pooled",
182
+ "last",
183
+ "penultimate"
184
+ ]
185
+
186
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
187
+ freeze=True, layer="last"):
188
+ super().__init__()
189
+ assert layer in self.LAYERS
190
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
191
+ del model.visual
192
+ self.model = model
193
+
194
+ self.device = device
195
+ self.max_length = max_length
196
+ if freeze:
197
+ self.freeze()
198
+ self.layer = layer
199
+ if self.layer == "last":
200
+ self.layer_idx = 0
201
+ elif self.layer == "penultimate":
202
+ self.layer_idx = 1
203
+ else:
204
+ raise NotImplementedError()
205
+
206
+ def freeze(self):
207
+ self.model = self.model.eval()
208
+ for param in self.parameters():
209
+ param.requires_grad = False
210
+
211
+ def forward(self, text):
212
+ tokens = open_clip.tokenize(text)
213
+ z = self.encode_with_transformer(tokens.to(self.device))
214
+ return z
215
+
216
+ def encode_with_transformer(self, text):
217
+ x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
218
+ x = x + self.model.positional_embedding
219
+ x = x.permute(1, 0, 2) # NLD -> LND
220
+ x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
221
+ x = x.permute(1, 0, 2) # LND -> NLD
222
+ x = self.model.ln_final(x)
223
+ return x
224
+
225
+ def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
226
+ for i, r in enumerate(self.model.transformer.resblocks):
227
+ if i == len(self.model.transformer.resblocks) - self.layer_idx:
228
+ break
229
+ if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
230
+ x = checkpoint(r, x, attn_mask)
231
+ else:
232
+ x = r(x, attn_mask=attn_mask)
233
+ return x
234
+
235
+ def encode(self, text):
236
+ return self(text)
237
+
238
+
239
+ class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
240
+ """
241
+ Uses the OpenCLIP vision transformer encoder for images
242
+ """
243
+
244
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
245
+ freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
246
+ super().__init__()
247
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
248
+ pretrained=version, )
249
+ del model.transformer
250
+ self.model = model
251
+
252
+ self.device = device
253
+ self.max_length = max_length
254
+ if freeze:
255
+ self.freeze()
256
+ self.layer = layer
257
+ if self.layer == "penultimate":
258
+ raise NotImplementedError()
259
+ self.layer_idx = 1
260
+
261
+ self.antialias = antialias
262
+
263
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
264
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
265
+ self.ucg_rate = ucg_rate
266
+
267
+ def preprocess(self, x):
268
+ # normalize to [0,1]
269
+ x = kornia.geometry.resize(x, (224, 224),
270
+ interpolation='bicubic', align_corners=True,
271
+ antialias=self.antialias)
272
+ x = (x + 1.) / 2.
273
+ # renormalize according to clip
274
+ x = kornia.enhance.normalize(x, self.mean, self.std)
275
+ return x
276
+
277
+ def freeze(self):
278
+ self.model = self.model.eval()
279
+ for param in self.parameters():
280
+ param.requires_grad = False
281
+
282
+ @autocast
283
+ def forward(self, image, no_dropout=False):
284
+ z = self.encode_with_vision_transformer(image)
285
+ if self.ucg_rate > 0. and not no_dropout:
286
+ z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
287
+ return z
288
+
289
+ def encode_with_vision_transformer(self, img):
290
+ img = self.preprocess(img)
291
+ x = self.model.visual(img)
292
+ return x
293
+
294
+ def encode(self, text):
295
+ return self(text)
296
+
297
+
298
+ class FrozenCLIPT5Encoder(AbstractEncoder):
299
+ def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
300
+ clip_max_length=77, t5_max_length=77):
301
+ super().__init__()
302
+ self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
303
+ self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
304
+ print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
305
+ f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
306
+
307
+ def encode(self, text):
308
+ return self(text)
309
+
310
+ def forward(self, text):
311
+ clip_z = self.clip_encoder.encode(text)
312
+ t5_z = self.t5_encoder.encode(text)
313
+ return [clip_z, t5_z]
314
+
315
+
316
+ from ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
317
+ from ldm.modules.diffusionmodules.openaimodel import Timestep
318
+
319
+
320
+ class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
321
+ def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs):
322
+ super().__init__(*args, **kwargs)
323
+ if clip_stats_path is None:
324
+ clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
325
+ else:
326
+ clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
327
+ self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
328
+ self.register_buffer("data_std", clip_std[None, :], persistent=False)
329
+ self.time_embed = Timestep(timestep_dim)
330
+
331
+ def scale(self, x):
332
+ # re-normalize to centered mean and unit variance
333
+ x = (x - self.data_mean) * 1. / self.data_std
334
+ return x
335
+
336
+ def unscale(self, x):
337
+ # back to original data stats
338
+ x = (x * self.data_std) + self.data_mean
339
+ return x
340
+
341
+ def forward(self, x, noise_level=None):
342
+ if noise_level is None:
343
+ noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
344
+ else:
345
+ assert isinstance(noise_level, torch.Tensor)
346
+ x = self.scale(x)
347
+ z = self.q_sample(x, noise_level)
348
+ z = self.unscale(z)
349
+ noise_level = self.time_embed(noise_level)
350
+ return z, noise_level
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
2
+ from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/bsrgan.py ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ # --------------------------------------------
4
+ # Super-Resolution
5
+ # --------------------------------------------
6
+ #
7
+ # Kai Zhang (cskaizhang@gmail.com)
8
+ # https://github.com/cszn
9
+ # From 2019/03--2021/08
10
+ # --------------------------------------------
11
+ """
12
+
13
+ import numpy as np
14
+ import cv2
15
+ import torch
16
+
17
+ from functools import partial
18
+ import random
19
+ from scipy import ndimage
20
+ import scipy
21
+ import scipy.stats as ss
22
+ from scipy.interpolate import interp2d
23
+ from scipy.linalg import orth
24
+ import albumentations
25
+
26
+ import ldm.modules.image_degradation.utils_image as util
27
+
28
+
29
+ def modcrop_np(img, sf):
30
+ '''
31
+ Args:
32
+ img: numpy image, WxH or WxHxC
33
+ sf: scale factor
34
+ Return:
35
+ cropped image
36
+ '''
37
+ w, h = img.shape[:2]
38
+ im = np.copy(img)
39
+ return im[:w - w % sf, :h - h % sf, ...]
40
+
41
+
42
+ """
43
+ # --------------------------------------------
44
+ # anisotropic Gaussian kernels
45
+ # --------------------------------------------
46
+ """
47
+
48
+
49
+ def analytic_kernel(k):
50
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
51
+ k_size = k.shape[0]
52
+ # Calculate the big kernels size
53
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
54
+ # Loop over the small kernel to fill the big one
55
+ for r in range(k_size):
56
+ for c in range(k_size):
57
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
58
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
59
+ crop = k_size // 2
60
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
61
+ # Normalize to 1
62
+ return cropped_big_k / cropped_big_k.sum()
63
+
64
+
65
+ def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
66
+ """ generate an anisotropic Gaussian kernel
67
+ Args:
68
+ ksize : e.g., 15, kernel size
69
+ theta : [0, pi], rotation angle range
70
+ l1 : [0.1,50], scaling of eigenvalues
71
+ l2 : [0.1,l1], scaling of eigenvalues
72
+ If l1 = l2, will get an isotropic Gaussian kernel.
73
+ Returns:
74
+ k : kernel
75
+ """
76
+
77
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
78
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
79
+ D = np.array([[l1, 0], [0, l2]])
80
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
81
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
82
+
83
+ return k
84
+
85
+
86
+ def gm_blur_kernel(mean, cov, size=15):
87
+ center = size / 2.0 + 0.5
88
+ k = np.zeros([size, size])
89
+ for y in range(size):
90
+ for x in range(size):
91
+ cy = y - center + 1
92
+ cx = x - center + 1
93
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
94
+
95
+ k = k / np.sum(k)
96
+ return k
97
+
98
+
99
+ def shift_pixel(x, sf, upper_left=True):
100
+ """shift pixel for super-resolution with different scale factors
101
+ Args:
102
+ x: WxHxC or WxH
103
+ sf: scale factor
104
+ upper_left: shift direction
105
+ """
106
+ h, w = x.shape[:2]
107
+ shift = (sf - 1) * 0.5
108
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
109
+ if upper_left:
110
+ x1 = xv + shift
111
+ y1 = yv + shift
112
+ else:
113
+ x1 = xv - shift
114
+ y1 = yv - shift
115
+
116
+ x1 = np.clip(x1, 0, w - 1)
117
+ y1 = np.clip(y1, 0, h - 1)
118
+
119
+ if x.ndim == 2:
120
+ x = interp2d(xv, yv, x)(x1, y1)
121
+ if x.ndim == 3:
122
+ for i in range(x.shape[-1]):
123
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
124
+
125
+ return x
126
+
127
+
128
+ def blur(x, k):
129
+ '''
130
+ x: image, NxcxHxW
131
+ k: kernel, Nx1xhxw
132
+ '''
133
+ n, c = x.shape[:2]
134
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
135
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
136
+ k = k.repeat(1, c, 1, 1)
137
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
138
+ x = x.view(1, -1, x.shape[2], x.shape[3])
139
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
140
+ x = x.view(n, c, x.shape[2], x.shape[3])
141
+
142
+ return x
143
+
144
+
145
+ def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
146
+ """"
147
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
148
+ # Kai Zhang
149
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
150
+ # max_var = 2.5 * sf
151
+ """
152
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
153
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
154
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
155
+ theta = np.random.rand() * np.pi # random theta
156
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
157
+
158
+ # Set COV matrix using Lambdas and Theta
159
+ LAMBDA = np.diag([lambda_1, lambda_2])
160
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
161
+ [np.sin(theta), np.cos(theta)]])
162
+ SIGMA = Q @ LAMBDA @ Q.T
163
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
164
+
165
+ # Set expectation position (shifting kernel for aligned image)
166
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
167
+ MU = MU[None, None, :, None]
168
+
169
+ # Create meshgrid for Gaussian
170
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
171
+ Z = np.stack([X, Y], 2)[:, :, :, None]
172
+
173
+ # Calcualte Gaussian for every pixel of the kernel
174
+ ZZ = Z - MU
175
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
176
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
177
+
178
+ # shift the kernel so it will be centered
179
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
180
+
181
+ # Normalize the kernel and return
182
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
183
+ kernel = raw_kernel / np.sum(raw_kernel)
184
+ return kernel
185
+
186
+
187
+ def fspecial_gaussian(hsize, sigma):
188
+ hsize = [hsize, hsize]
189
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
190
+ std = sigma
191
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
192
+ arg = -(x * x + y * y) / (2 * std * std)
193
+ h = np.exp(arg)
194
+ h[h < scipy.finfo(float).eps * h.max()] = 0
195
+ sumh = h.sum()
196
+ if sumh != 0:
197
+ h = h / sumh
198
+ return h
199
+
200
+
201
+ def fspecial_laplacian(alpha):
202
+ alpha = max([0, min([alpha, 1])])
203
+ h1 = alpha / (alpha + 1)
204
+ h2 = (1 - alpha) / (alpha + 1)
205
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
206
+ h = np.array(h)
207
+ return h
208
+
209
+
210
+ def fspecial(filter_type, *args, **kwargs):
211
+ '''
212
+ python code from:
213
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
214
+ '''
215
+ if filter_type == 'gaussian':
216
+ return fspecial_gaussian(*args, **kwargs)
217
+ if filter_type == 'laplacian':
218
+ return fspecial_laplacian(*args, **kwargs)
219
+
220
+
221
+ """
222
+ # --------------------------------------------
223
+ # degradation models
224
+ # --------------------------------------------
225
+ """
226
+
227
+
228
+ def bicubic_degradation(x, sf=3):
229
+ '''
230
+ Args:
231
+ x: HxWxC image, [0, 1]
232
+ sf: down-scale factor
233
+ Return:
234
+ bicubicly downsampled LR image
235
+ '''
236
+ x = util.imresize_np(x, scale=1 / sf)
237
+ return x
238
+
239
+
240
+ def srmd_degradation(x, k, sf=3):
241
+ ''' blur + bicubic downsampling
242
+ Args:
243
+ x: HxWxC image, [0, 1]
244
+ k: hxw, double
245
+ sf: down-scale factor
246
+ Return:
247
+ downsampled LR image
248
+ Reference:
249
+ @inproceedings{zhang2018learning,
250
+ title={Learning a single convolutional super-resolution network for multiple degradations},
251
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
252
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
253
+ pages={3262--3271},
254
+ year={2018}
255
+ }
256
+ '''
257
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
258
+ x = bicubic_degradation(x, sf=sf)
259
+ return x
260
+
261
+
262
+ def dpsr_degradation(x, k, sf=3):
263
+ ''' bicubic downsampling + blur
264
+ Args:
265
+ x: HxWxC image, [0, 1]
266
+ k: hxw, double
267
+ sf: down-scale factor
268
+ Return:
269
+ downsampled LR image
270
+ Reference:
271
+ @inproceedings{zhang2019deep,
272
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
273
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
274
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
275
+ pages={1671--1681},
276
+ year={2019}
277
+ }
278
+ '''
279
+ x = bicubic_degradation(x, sf=sf)
280
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
281
+ return x
282
+
283
+
284
+ def classical_degradation(x, k, sf=3):
285
+ ''' blur + downsampling
286
+ Args:
287
+ x: HxWxC image, [0, 1]/[0, 255]
288
+ k: hxw, double
289
+ sf: down-scale factor
290
+ Return:
291
+ downsampled LR image
292
+ '''
293
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
294
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
295
+ st = 0
296
+ return x[st::sf, st::sf, ...]
297
+
298
+
299
+ def add_sharpening(img, weight=0.5, radius=50, threshold=10):
300
+ """USM sharpening. borrowed from real-ESRGAN
301
+ Input image: I; Blurry image: B.
302
+ 1. K = I + weight * (I - B)
303
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
304
+ 3. Blur mask:
305
+ 4. Out = Mask * K + (1 - Mask) * I
306
+ Args:
307
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
308
+ weight (float): Sharp weight. Default: 1.
309
+ radius (float): Kernel size of Gaussian blur. Default: 50.
310
+ threshold (int):
311
+ """
312
+ if radius % 2 == 0:
313
+ radius += 1
314
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
315
+ residual = img - blur
316
+ mask = np.abs(residual) * 255 > threshold
317
+ mask = mask.astype('float32')
318
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
319
+
320
+ K = img + weight * residual
321
+ K = np.clip(K, 0, 1)
322
+ return soft_mask * K + (1 - soft_mask) * img
323
+
324
+
325
+ def add_blur(img, sf=4):
326
+ wd2 = 4.0 + sf
327
+ wd = 2.0 + 0.2 * sf
328
+ if random.random() < 0.5:
329
+ l1 = wd2 * random.random()
330
+ l2 = wd2 * random.random()
331
+ k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
332
+ else:
333
+ k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
334
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
335
+
336
+ return img
337
+
338
+
339
+ def add_resize(img, sf=4):
340
+ rnum = np.random.rand()
341
+ if rnum > 0.8: # up
342
+ sf1 = random.uniform(1, 2)
343
+ elif rnum < 0.7: # down
344
+ sf1 = random.uniform(0.5 / sf, 1)
345
+ else:
346
+ sf1 = 1.0
347
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
348
+ img = np.clip(img, 0.0, 1.0)
349
+
350
+ return img
351
+
352
+
353
+ # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
354
+ # noise_level = random.randint(noise_level1, noise_level2)
355
+ # rnum = np.random.rand()
356
+ # if rnum > 0.6: # add color Gaussian noise
357
+ # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
358
+ # elif rnum < 0.4: # add grayscale Gaussian noise
359
+ # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
360
+ # else: # add noise
361
+ # L = noise_level2 / 255.
362
+ # D = np.diag(np.random.rand(3))
363
+ # U = orth(np.random.rand(3, 3))
364
+ # conv = np.dot(np.dot(np.transpose(U), D), U)
365
+ # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
366
+ # img = np.clip(img, 0.0, 1.0)
367
+ # return img
368
+
369
+ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
370
+ noise_level = random.randint(noise_level1, noise_level2)
371
+ rnum = np.random.rand()
372
+ if rnum > 0.6: # add color Gaussian noise
373
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
374
+ elif rnum < 0.4: # add grayscale Gaussian noise
375
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
376
+ else: # add noise
377
+ L = noise_level2 / 255.
378
+ D = np.diag(np.random.rand(3))
379
+ U = orth(np.random.rand(3, 3))
380
+ conv = np.dot(np.dot(np.transpose(U), D), U)
381
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
382
+ img = np.clip(img, 0.0, 1.0)
383
+ return img
384
+
385
+
386
+ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
387
+ noise_level = random.randint(noise_level1, noise_level2)
388
+ img = np.clip(img, 0.0, 1.0)
389
+ rnum = random.random()
390
+ if rnum > 0.6:
391
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
392
+ elif rnum < 0.4:
393
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
394
+ else:
395
+ L = noise_level2 / 255.
396
+ D = np.diag(np.random.rand(3))
397
+ U = orth(np.random.rand(3, 3))
398
+ conv = np.dot(np.dot(np.transpose(U), D), U)
399
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
400
+ img = np.clip(img, 0.0, 1.0)
401
+ return img
402
+
403
+
404
+ def add_Poisson_noise(img):
405
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
406
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
407
+ if random.random() < 0.5:
408
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
409
+ else:
410
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
411
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
412
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
413
+ img += noise_gray[:, :, np.newaxis]
414
+ img = np.clip(img, 0.0, 1.0)
415
+ return img
416
+
417
+
418
+ def add_JPEG_noise(img):
419
+ quality_factor = random.randint(30, 95)
420
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
421
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
422
+ img = cv2.imdecode(encimg, 1)
423
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
424
+ return img
425
+
426
+
427
+ def random_crop(lq, hq, sf=4, lq_patchsize=64):
428
+ h, w = lq.shape[:2]
429
+ rnd_h = random.randint(0, h - lq_patchsize)
430
+ rnd_w = random.randint(0, w - lq_patchsize)
431
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
432
+
433
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
434
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
435
+ return lq, hq
436
+
437
+
438
+ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
439
+ """
440
+ This is the degradation model of BSRGAN from the paper
441
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
442
+ ----------
443
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
444
+ sf: scale factor
445
+ isp_model: camera ISP model
446
+ Returns
447
+ -------
448
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
449
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
450
+ """
451
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
452
+ sf_ori = sf
453
+
454
+ h1, w1 = img.shape[:2]
455
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
456
+ h, w = img.shape[:2]
457
+
458
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
459
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
460
+
461
+ hq = img.copy()
462
+
463
+ if sf == 4 and random.random() < scale2_prob: # downsample1
464
+ if np.random.rand() < 0.5:
465
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
466
+ interpolation=random.choice([1, 2, 3]))
467
+ else:
468
+ img = util.imresize_np(img, 1 / 2, True)
469
+ img = np.clip(img, 0.0, 1.0)
470
+ sf = 2
471
+
472
+ shuffle_order = random.sample(range(7), 7)
473
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
474
+ if idx1 > idx2: # keep downsample3 last
475
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
476
+
477
+ for i in shuffle_order:
478
+
479
+ if i == 0:
480
+ img = add_blur(img, sf=sf)
481
+
482
+ elif i == 1:
483
+ img = add_blur(img, sf=sf)
484
+
485
+ elif i == 2:
486
+ a, b = img.shape[1], img.shape[0]
487
+ # downsample2
488
+ if random.random() < 0.75:
489
+ sf1 = random.uniform(1, 2 * sf)
490
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
491
+ interpolation=random.choice([1, 2, 3]))
492
+ else:
493
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
494
+ k_shifted = shift_pixel(k, sf)
495
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
496
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
497
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
498
+ img = np.clip(img, 0.0, 1.0)
499
+
500
+ elif i == 3:
501
+ # downsample3
502
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
503
+ img = np.clip(img, 0.0, 1.0)
504
+
505
+ elif i == 4:
506
+ # add Gaussian noise
507
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
508
+
509
+ elif i == 5:
510
+ # add JPEG noise
511
+ if random.random() < jpeg_prob:
512
+ img = add_JPEG_noise(img)
513
+
514
+ elif i == 6:
515
+ # add processed camera sensor noise
516
+ if random.random() < isp_prob and isp_model is not None:
517
+ with torch.no_grad():
518
+ img, hq = isp_model.forward(img.copy(), hq)
519
+
520
+ # add final JPEG compression noise
521
+ img = add_JPEG_noise(img)
522
+
523
+ # random crop
524
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
525
+
526
+ return img, hq
527
+
528
+
529
+ # todo no isp_model?
530
+ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
531
+ """
532
+ This is the degradation model of BSRGAN from the paper
533
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
534
+ ----------
535
+ sf: scale factor
536
+ isp_model: camera ISP model
537
+ Returns
538
+ -------
539
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
540
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
541
+ """
542
+ image = util.uint2single(image)
543
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
544
+ sf_ori = sf
545
+
546
+ h1, w1 = image.shape[:2]
547
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
548
+ h, w = image.shape[:2]
549
+
550
+ hq = image.copy()
551
+
552
+ if sf == 4 and random.random() < scale2_prob: # downsample1
553
+ if np.random.rand() < 0.5:
554
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
555
+ interpolation=random.choice([1, 2, 3]))
556
+ else:
557
+ image = util.imresize_np(image, 1 / 2, True)
558
+ image = np.clip(image, 0.0, 1.0)
559
+ sf = 2
560
+
561
+ shuffle_order = random.sample(range(7), 7)
562
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
563
+ if idx1 > idx2: # keep downsample3 last
564
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
565
+
566
+ for i in shuffle_order:
567
+
568
+ if i == 0:
569
+ image = add_blur(image, sf=sf)
570
+
571
+ elif i == 1:
572
+ image = add_blur(image, sf=sf)
573
+
574
+ elif i == 2:
575
+ a, b = image.shape[1], image.shape[0]
576
+ # downsample2
577
+ if random.random() < 0.75:
578
+ sf1 = random.uniform(1, 2 * sf)
579
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
580
+ interpolation=random.choice([1, 2, 3]))
581
+ else:
582
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
583
+ k_shifted = shift_pixel(k, sf)
584
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
585
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
586
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
587
+ image = np.clip(image, 0.0, 1.0)
588
+
589
+ elif i == 3:
590
+ # downsample3
591
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
592
+ image = np.clip(image, 0.0, 1.0)
593
+
594
+ elif i == 4:
595
+ # add Gaussian noise
596
+ image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
597
+
598
+ elif i == 5:
599
+ # add JPEG noise
600
+ if random.random() < jpeg_prob:
601
+ image = add_JPEG_noise(image)
602
+
603
+ # elif i == 6:
604
+ # # add processed camera sensor noise
605
+ # if random.random() < isp_prob and isp_model is not None:
606
+ # with torch.no_grad():
607
+ # img, hq = isp_model.forward(img.copy(), hq)
608
+
609
+ # add final JPEG compression noise
610
+ image = add_JPEG_noise(image)
611
+ image = util.single2uint(image)
612
+ example = {"image":image}
613
+ return example
614
+
615
+
616
+ # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
617
+ def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
618
+ """
619
+ This is an extended degradation model by combining
620
+ the degradation models of BSRGAN and Real-ESRGAN
621
+ ----------
622
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
623
+ sf: scale factor
624
+ use_shuffle: the degradation shuffle
625
+ use_sharp: sharpening the img
626
+ Returns
627
+ -------
628
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
629
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
630
+ """
631
+
632
+ h1, w1 = img.shape[:2]
633
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
634
+ h, w = img.shape[:2]
635
+
636
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
637
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
638
+
639
+ if use_sharp:
640
+ img = add_sharpening(img)
641
+ hq = img.copy()
642
+
643
+ if random.random() < shuffle_prob:
644
+ shuffle_order = random.sample(range(13), 13)
645
+ else:
646
+ shuffle_order = list(range(13))
647
+ # local shuffle for noise, JPEG is always the last one
648
+ shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
649
+ shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
650
+
651
+ poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
652
+
653
+ for i in shuffle_order:
654
+ if i == 0:
655
+ img = add_blur(img, sf=sf)
656
+ elif i == 1:
657
+ img = add_resize(img, sf=sf)
658
+ elif i == 2:
659
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
660
+ elif i == 3:
661
+ if random.random() < poisson_prob:
662
+ img = add_Poisson_noise(img)
663
+ elif i == 4:
664
+ if random.random() < speckle_prob:
665
+ img = add_speckle_noise(img)
666
+ elif i == 5:
667
+ if random.random() < isp_prob and isp_model is not None:
668
+ with torch.no_grad():
669
+ img, hq = isp_model.forward(img.copy(), hq)
670
+ elif i == 6:
671
+ img = add_JPEG_noise(img)
672
+ elif i == 7:
673
+ img = add_blur(img, sf=sf)
674
+ elif i == 8:
675
+ img = add_resize(img, sf=sf)
676
+ elif i == 9:
677
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
678
+ elif i == 10:
679
+ if random.random() < poisson_prob:
680
+ img = add_Poisson_noise(img)
681
+ elif i == 11:
682
+ if random.random() < speckle_prob:
683
+ img = add_speckle_noise(img)
684
+ elif i == 12:
685
+ if random.random() < isp_prob and isp_model is not None:
686
+ with torch.no_grad():
687
+ img, hq = isp_model.forward(img.copy(), hq)
688
+ else:
689
+ print('check the shuffle!')
690
+
691
+ # resize to desired size
692
+ img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
693
+ interpolation=random.choice([1, 2, 3]))
694
+
695
+ # add final JPEG compression noise
696
+ img = add_JPEG_noise(img)
697
+
698
+ # random crop
699
+ img, hq = random_crop(img, hq, sf, lq_patchsize)
700
+
701
+ return img, hq
702
+
703
+
704
+ if __name__ == '__main__':
705
+ print("hey")
706
+ img = util.imread_uint('utils/test.png', 3)
707
+ print(img)
708
+ img = util.uint2single(img)
709
+ print(img)
710
+ img = img[:448, :448]
711
+ h = img.shape[0] // 4
712
+ print("resizing to", h)
713
+ sf = 4
714
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
715
+ for i in range(20):
716
+ print(i)
717
+ img_lq = deg_fn(img)
718
+ print(img_lq)
719
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
720
+ print(img_lq.shape)
721
+ print("bicubic", img_lq_bicubic.shape)
722
+ print(img_hq.shape)
723
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
724
+ interpolation=0)
725
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
726
+ interpolation=0)
727
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
728
+ util.imsave(img_concat, str(i) + '.png')
729
+
730
+
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/bsrgan_light.py ADDED
@@ -0,0 +1,651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ import numpy as np
3
+ import cv2
4
+ import torch
5
+
6
+ from functools import partial
7
+ import random
8
+ from scipy import ndimage
9
+ import scipy
10
+ import scipy.stats as ss
11
+ from scipy.interpolate import interp2d
12
+ from scipy.linalg import orth
13
+ import albumentations
14
+
15
+ import ldm.modules.image_degradation.utils_image as util
16
+
17
+ """
18
+ # --------------------------------------------
19
+ # Super-Resolution
20
+ # --------------------------------------------
21
+ #
22
+ # Kai Zhang (cskaizhang@gmail.com)
23
+ # https://github.com/cszn
24
+ # From 2019/03--2021/08
25
+ # --------------------------------------------
26
+ """
27
+
28
+ def modcrop_np(img, sf):
29
+ '''
30
+ Args:
31
+ img: numpy image, WxH or WxHxC
32
+ sf: scale factor
33
+ Return:
34
+ cropped image
35
+ '''
36
+ w, h = img.shape[:2]
37
+ im = np.copy(img)
38
+ return im[:w - w % sf, :h - h % sf, ...]
39
+
40
+
41
+ """
42
+ # --------------------------------------------
43
+ # anisotropic Gaussian kernels
44
+ # --------------------------------------------
45
+ """
46
+
47
+
48
+ def analytic_kernel(k):
49
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
50
+ k_size = k.shape[0]
51
+ # Calculate the big kernels size
52
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
53
+ # Loop over the small kernel to fill the big one
54
+ for r in range(k_size):
55
+ for c in range(k_size):
56
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
57
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
58
+ crop = k_size // 2
59
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
60
+ # Normalize to 1
61
+ return cropped_big_k / cropped_big_k.sum()
62
+
63
+
64
+ def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
65
+ """ generate an anisotropic Gaussian kernel
66
+ Args:
67
+ ksize : e.g., 15, kernel size
68
+ theta : [0, pi], rotation angle range
69
+ l1 : [0.1,50], scaling of eigenvalues
70
+ l2 : [0.1,l1], scaling of eigenvalues
71
+ If l1 = l2, will get an isotropic Gaussian kernel.
72
+ Returns:
73
+ k : kernel
74
+ """
75
+
76
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
77
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
78
+ D = np.array([[l1, 0], [0, l2]])
79
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
80
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
81
+
82
+ return k
83
+
84
+
85
+ def gm_blur_kernel(mean, cov, size=15):
86
+ center = size / 2.0 + 0.5
87
+ k = np.zeros([size, size])
88
+ for y in range(size):
89
+ for x in range(size):
90
+ cy = y - center + 1
91
+ cx = x - center + 1
92
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
93
+
94
+ k = k / np.sum(k)
95
+ return k
96
+
97
+
98
+ def shift_pixel(x, sf, upper_left=True):
99
+ """shift pixel for super-resolution with different scale factors
100
+ Args:
101
+ x: WxHxC or WxH
102
+ sf: scale factor
103
+ upper_left: shift direction
104
+ """
105
+ h, w = x.shape[:2]
106
+ shift = (sf - 1) * 0.5
107
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
108
+ if upper_left:
109
+ x1 = xv + shift
110
+ y1 = yv + shift
111
+ else:
112
+ x1 = xv - shift
113
+ y1 = yv - shift
114
+
115
+ x1 = np.clip(x1, 0, w - 1)
116
+ y1 = np.clip(y1, 0, h - 1)
117
+
118
+ if x.ndim == 2:
119
+ x = interp2d(xv, yv, x)(x1, y1)
120
+ if x.ndim == 3:
121
+ for i in range(x.shape[-1]):
122
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
123
+
124
+ return x
125
+
126
+
127
+ def blur(x, k):
128
+ '''
129
+ x: image, NxcxHxW
130
+ k: kernel, Nx1xhxw
131
+ '''
132
+ n, c = x.shape[:2]
133
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
134
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
135
+ k = k.repeat(1, c, 1, 1)
136
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
137
+ x = x.view(1, -1, x.shape[2], x.shape[3])
138
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
139
+ x = x.view(n, c, x.shape[2], x.shape[3])
140
+
141
+ return x
142
+
143
+
144
+ def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
145
+ """"
146
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
147
+ # Kai Zhang
148
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
149
+ # max_var = 2.5 * sf
150
+ """
151
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
152
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
153
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
154
+ theta = np.random.rand() * np.pi # random theta
155
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
156
+
157
+ # Set COV matrix using Lambdas and Theta
158
+ LAMBDA = np.diag([lambda_1, lambda_2])
159
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
160
+ [np.sin(theta), np.cos(theta)]])
161
+ SIGMA = Q @ LAMBDA @ Q.T
162
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
163
+
164
+ # Set expectation position (shifting kernel for aligned image)
165
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
166
+ MU = MU[None, None, :, None]
167
+
168
+ # Create meshgrid for Gaussian
169
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
170
+ Z = np.stack([X, Y], 2)[:, :, :, None]
171
+
172
+ # Calcualte Gaussian for every pixel of the kernel
173
+ ZZ = Z - MU
174
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
175
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
176
+
177
+ # shift the kernel so it will be centered
178
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
179
+
180
+ # Normalize the kernel and return
181
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
182
+ kernel = raw_kernel / np.sum(raw_kernel)
183
+ return kernel
184
+
185
+
186
+ def fspecial_gaussian(hsize, sigma):
187
+ hsize = [hsize, hsize]
188
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
189
+ std = sigma
190
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
191
+ arg = -(x * x + y * y) / (2 * std * std)
192
+ h = np.exp(arg)
193
+ h[h < scipy.finfo(float).eps * h.max()] = 0
194
+ sumh = h.sum()
195
+ if sumh != 0:
196
+ h = h / sumh
197
+ return h
198
+
199
+
200
+ def fspecial_laplacian(alpha):
201
+ alpha = max([0, min([alpha, 1])])
202
+ h1 = alpha / (alpha + 1)
203
+ h2 = (1 - alpha) / (alpha + 1)
204
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
205
+ h = np.array(h)
206
+ return h
207
+
208
+
209
+ def fspecial(filter_type, *args, **kwargs):
210
+ '''
211
+ python code from:
212
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
213
+ '''
214
+ if filter_type == 'gaussian':
215
+ return fspecial_gaussian(*args, **kwargs)
216
+ if filter_type == 'laplacian':
217
+ return fspecial_laplacian(*args, **kwargs)
218
+
219
+
220
+ """
221
+ # --------------------------------------------
222
+ # degradation models
223
+ # --------------------------------------------
224
+ """
225
+
226
+
227
+ def bicubic_degradation(x, sf=3):
228
+ '''
229
+ Args:
230
+ x: HxWxC image, [0, 1]
231
+ sf: down-scale factor
232
+ Return:
233
+ bicubicly downsampled LR image
234
+ '''
235
+ x = util.imresize_np(x, scale=1 / sf)
236
+ return x
237
+
238
+
239
+ def srmd_degradation(x, k, sf=3):
240
+ ''' blur + bicubic downsampling
241
+ Args:
242
+ x: HxWxC image, [0, 1]
243
+ k: hxw, double
244
+ sf: down-scale factor
245
+ Return:
246
+ downsampled LR image
247
+ Reference:
248
+ @inproceedings{zhang2018learning,
249
+ title={Learning a single convolutional super-resolution network for multiple degradations},
250
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
251
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
252
+ pages={3262--3271},
253
+ year={2018}
254
+ }
255
+ '''
256
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
257
+ x = bicubic_degradation(x, sf=sf)
258
+ return x
259
+
260
+
261
+ def dpsr_degradation(x, k, sf=3):
262
+ ''' bicubic downsampling + blur
263
+ Args:
264
+ x: HxWxC image, [0, 1]
265
+ k: hxw, double
266
+ sf: down-scale factor
267
+ Return:
268
+ downsampled LR image
269
+ Reference:
270
+ @inproceedings{zhang2019deep,
271
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
272
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
273
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
274
+ pages={1671--1681},
275
+ year={2019}
276
+ }
277
+ '''
278
+ x = bicubic_degradation(x, sf=sf)
279
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
280
+ return x
281
+
282
+
283
+ def classical_degradation(x, k, sf=3):
284
+ ''' blur + downsampling
285
+ Args:
286
+ x: HxWxC image, [0, 1]/[0, 255]
287
+ k: hxw, double
288
+ sf: down-scale factor
289
+ Return:
290
+ downsampled LR image
291
+ '''
292
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
293
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
294
+ st = 0
295
+ return x[st::sf, st::sf, ...]
296
+
297
+
298
+ def add_sharpening(img, weight=0.5, radius=50, threshold=10):
299
+ """USM sharpening. borrowed from real-ESRGAN
300
+ Input image: I; Blurry image: B.
301
+ 1. K = I + weight * (I - B)
302
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
303
+ 3. Blur mask:
304
+ 4. Out = Mask * K + (1 - Mask) * I
305
+ Args:
306
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
307
+ weight (float): Sharp weight. Default: 1.
308
+ radius (float): Kernel size of Gaussian blur. Default: 50.
309
+ threshold (int):
310
+ """
311
+ if radius % 2 == 0:
312
+ radius += 1
313
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
314
+ residual = img - blur
315
+ mask = np.abs(residual) * 255 > threshold
316
+ mask = mask.astype('float32')
317
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
318
+
319
+ K = img + weight * residual
320
+ K = np.clip(K, 0, 1)
321
+ return soft_mask * K + (1 - soft_mask) * img
322
+
323
+
324
+ def add_blur(img, sf=4):
325
+ wd2 = 4.0 + sf
326
+ wd = 2.0 + 0.2 * sf
327
+
328
+ wd2 = wd2/4
329
+ wd = wd/4
330
+
331
+ if random.random() < 0.5:
332
+ l1 = wd2 * random.random()
333
+ l2 = wd2 * random.random()
334
+ k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
335
+ else:
336
+ k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
337
+ img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
338
+
339
+ return img
340
+
341
+
342
+ def add_resize(img, sf=4):
343
+ rnum = np.random.rand()
344
+ if rnum > 0.8: # up
345
+ sf1 = random.uniform(1, 2)
346
+ elif rnum < 0.7: # down
347
+ sf1 = random.uniform(0.5 / sf, 1)
348
+ else:
349
+ sf1 = 1.0
350
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
351
+ img = np.clip(img, 0.0, 1.0)
352
+
353
+ return img
354
+
355
+
356
+ # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
357
+ # noise_level = random.randint(noise_level1, noise_level2)
358
+ # rnum = np.random.rand()
359
+ # if rnum > 0.6: # add color Gaussian noise
360
+ # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
361
+ # elif rnum < 0.4: # add grayscale Gaussian noise
362
+ # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
363
+ # else: # add noise
364
+ # L = noise_level2 / 255.
365
+ # D = np.diag(np.random.rand(3))
366
+ # U = orth(np.random.rand(3, 3))
367
+ # conv = np.dot(np.dot(np.transpose(U), D), U)
368
+ # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
369
+ # img = np.clip(img, 0.0, 1.0)
370
+ # return img
371
+
372
+ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
373
+ noise_level = random.randint(noise_level1, noise_level2)
374
+ rnum = np.random.rand()
375
+ if rnum > 0.6: # add color Gaussian noise
376
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
377
+ elif rnum < 0.4: # add grayscale Gaussian noise
378
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
379
+ else: # add noise
380
+ L = noise_level2 / 255.
381
+ D = np.diag(np.random.rand(3))
382
+ U = orth(np.random.rand(3, 3))
383
+ conv = np.dot(np.dot(np.transpose(U), D), U)
384
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
385
+ img = np.clip(img, 0.0, 1.0)
386
+ return img
387
+
388
+
389
+ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
390
+ noise_level = random.randint(noise_level1, noise_level2)
391
+ img = np.clip(img, 0.0, 1.0)
392
+ rnum = random.random()
393
+ if rnum > 0.6:
394
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
395
+ elif rnum < 0.4:
396
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
397
+ else:
398
+ L = noise_level2 / 255.
399
+ D = np.diag(np.random.rand(3))
400
+ U = orth(np.random.rand(3, 3))
401
+ conv = np.dot(np.dot(np.transpose(U), D), U)
402
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
403
+ img = np.clip(img, 0.0, 1.0)
404
+ return img
405
+
406
+
407
+ def add_Poisson_noise(img):
408
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
409
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
410
+ if random.random() < 0.5:
411
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
412
+ else:
413
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
414
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
415
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
416
+ img += noise_gray[:, :, np.newaxis]
417
+ img = np.clip(img, 0.0, 1.0)
418
+ return img
419
+
420
+
421
+ def add_JPEG_noise(img):
422
+ quality_factor = random.randint(80, 95)
423
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
424
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
425
+ img = cv2.imdecode(encimg, 1)
426
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
427
+ return img
428
+
429
+
430
+ def random_crop(lq, hq, sf=4, lq_patchsize=64):
431
+ h, w = lq.shape[:2]
432
+ rnd_h = random.randint(0, h - lq_patchsize)
433
+ rnd_w = random.randint(0, w - lq_patchsize)
434
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
435
+
436
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
437
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
438
+ return lq, hq
439
+
440
+
441
+ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
442
+ """
443
+ This is the degradation model of BSRGAN from the paper
444
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
445
+ ----------
446
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
447
+ sf: scale factor
448
+ isp_model: camera ISP model
449
+ Returns
450
+ -------
451
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
452
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
453
+ """
454
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
455
+ sf_ori = sf
456
+
457
+ h1, w1 = img.shape[:2]
458
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
459
+ h, w = img.shape[:2]
460
+
461
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
462
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
463
+
464
+ hq = img.copy()
465
+
466
+ if sf == 4 and random.random() < scale2_prob: # downsample1
467
+ if np.random.rand() < 0.5:
468
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
469
+ interpolation=random.choice([1, 2, 3]))
470
+ else:
471
+ img = util.imresize_np(img, 1 / 2, True)
472
+ img = np.clip(img, 0.0, 1.0)
473
+ sf = 2
474
+
475
+ shuffle_order = random.sample(range(7), 7)
476
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
477
+ if idx1 > idx2: # keep downsample3 last
478
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
479
+
480
+ for i in shuffle_order:
481
+
482
+ if i == 0:
483
+ img = add_blur(img, sf=sf)
484
+
485
+ elif i == 1:
486
+ img = add_blur(img, sf=sf)
487
+
488
+ elif i == 2:
489
+ a, b = img.shape[1], img.shape[0]
490
+ # downsample2
491
+ if random.random() < 0.75:
492
+ sf1 = random.uniform(1, 2 * sf)
493
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
494
+ interpolation=random.choice([1, 2, 3]))
495
+ else:
496
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
497
+ k_shifted = shift_pixel(k, sf)
498
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
499
+ img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
500
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
501
+ img = np.clip(img, 0.0, 1.0)
502
+
503
+ elif i == 3:
504
+ # downsample3
505
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
506
+ img = np.clip(img, 0.0, 1.0)
507
+
508
+ elif i == 4:
509
+ # add Gaussian noise
510
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
511
+
512
+ elif i == 5:
513
+ # add JPEG noise
514
+ if random.random() < jpeg_prob:
515
+ img = add_JPEG_noise(img)
516
+
517
+ elif i == 6:
518
+ # add processed camera sensor noise
519
+ if random.random() < isp_prob and isp_model is not None:
520
+ with torch.no_grad():
521
+ img, hq = isp_model.forward(img.copy(), hq)
522
+
523
+ # add final JPEG compression noise
524
+ img = add_JPEG_noise(img)
525
+
526
+ # random crop
527
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
528
+
529
+ return img, hq
530
+
531
+
532
+ # todo no isp_model?
533
+ def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
534
+ """
535
+ This is the degradation model of BSRGAN from the paper
536
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
537
+ ----------
538
+ sf: scale factor
539
+ isp_model: camera ISP model
540
+ Returns
541
+ -------
542
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
543
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
544
+ """
545
+ image = util.uint2single(image)
546
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
547
+ sf_ori = sf
548
+
549
+ h1, w1 = image.shape[:2]
550
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
551
+ h, w = image.shape[:2]
552
+
553
+ hq = image.copy()
554
+
555
+ if sf == 4 and random.random() < scale2_prob: # downsample1
556
+ if np.random.rand() < 0.5:
557
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
558
+ interpolation=random.choice([1, 2, 3]))
559
+ else:
560
+ image = util.imresize_np(image, 1 / 2, True)
561
+ image = np.clip(image, 0.0, 1.0)
562
+ sf = 2
563
+
564
+ shuffle_order = random.sample(range(7), 7)
565
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
566
+ if idx1 > idx2: # keep downsample3 last
567
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
568
+
569
+ for i in shuffle_order:
570
+
571
+ if i == 0:
572
+ image = add_blur(image, sf=sf)
573
+
574
+ # elif i == 1:
575
+ # image = add_blur(image, sf=sf)
576
+
577
+ if i == 0:
578
+ pass
579
+
580
+ elif i == 2:
581
+ a, b = image.shape[1], image.shape[0]
582
+ # downsample2
583
+ if random.random() < 0.8:
584
+ sf1 = random.uniform(1, 2 * sf)
585
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
586
+ interpolation=random.choice([1, 2, 3]))
587
+ else:
588
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
589
+ k_shifted = shift_pixel(k, sf)
590
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
591
+ image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
592
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
593
+
594
+ image = np.clip(image, 0.0, 1.0)
595
+
596
+ elif i == 3:
597
+ # downsample3
598
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
599
+ image = np.clip(image, 0.0, 1.0)
600
+
601
+ elif i == 4:
602
+ # add Gaussian noise
603
+ image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
604
+
605
+ elif i == 5:
606
+ # add JPEG noise
607
+ if random.random() < jpeg_prob:
608
+ image = add_JPEG_noise(image)
609
+ #
610
+ # elif i == 6:
611
+ # # add processed camera sensor noise
612
+ # if random.random() < isp_prob and isp_model is not None:
613
+ # with torch.no_grad():
614
+ # img, hq = isp_model.forward(img.copy(), hq)
615
+
616
+ # add final JPEG compression noise
617
+ image = add_JPEG_noise(image)
618
+ image = util.single2uint(image)
619
+ if up:
620
+ image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then
621
+ example = {"image": image}
622
+ return example
623
+
624
+
625
+
626
+
627
+ if __name__ == '__main__':
628
+ print("hey")
629
+ img = util.imread_uint('utils/test.png', 3)
630
+ img = img[:448, :448]
631
+ h = img.shape[0] // 4
632
+ print("resizing to", h)
633
+ sf = 4
634
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
635
+ for i in range(20):
636
+ print(i)
637
+ img_hq = img
638
+ img_lq = deg_fn(img)["image"]
639
+ img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
640
+ print(img_lq)
641
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
642
+ print(img_lq.shape)
643
+ print("bicubic", img_lq_bicubic.shape)
644
+ print(img_hq.shape)
645
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
646
+ interpolation=0)
647
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
648
+ (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
649
+ interpolation=0)
650
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
651
+ util.imsave(img_concat, str(i) + '.png')
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/utils/test.png ADDED
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/utils_image.py ADDED
@@ -0,0 +1,916 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import cv2
7
+ from torchvision.utils import make_grid
8
+ from datetime import datetime
9
+ #import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
10
+
11
+
12
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
13
+
14
+
15
+ '''
16
+ # --------------------------------------------
17
+ # Kai Zhang (github: https://github.com/cszn)
18
+ # 03/Mar/2019
19
+ # --------------------------------------------
20
+ # https://github.com/twhui/SRGAN-pyTorch
21
+ # https://github.com/xinntao/BasicSR
22
+ # --------------------------------------------
23
+ '''
24
+
25
+
26
+ IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
27
+
28
+
29
+ def is_image_file(filename):
30
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
31
+
32
+
33
+ def get_timestamp():
34
+ return datetime.now().strftime('%y%m%d-%H%M%S')
35
+
36
+
37
+ def imshow(x, title=None, cbar=False, figsize=None):
38
+ plt.figure(figsize=figsize)
39
+ plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
40
+ if title:
41
+ plt.title(title)
42
+ if cbar:
43
+ plt.colorbar()
44
+ plt.show()
45
+
46
+
47
+ def surf(Z, cmap='rainbow', figsize=None):
48
+ plt.figure(figsize=figsize)
49
+ ax3 = plt.axes(projection='3d')
50
+
51
+ w, h = Z.shape[:2]
52
+ xx = np.arange(0,w,1)
53
+ yy = np.arange(0,h,1)
54
+ X, Y = np.meshgrid(xx, yy)
55
+ ax3.plot_surface(X,Y,Z,cmap=cmap)
56
+ #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
57
+ plt.show()
58
+
59
+
60
+ '''
61
+ # --------------------------------------------
62
+ # get image pathes
63
+ # --------------------------------------------
64
+ '''
65
+
66
+
67
+ def get_image_paths(dataroot):
68
+ paths = None # return None if dataroot is None
69
+ if dataroot is not None:
70
+ paths = sorted(_get_paths_from_images(dataroot))
71
+ return paths
72
+
73
+
74
+ def _get_paths_from_images(path):
75
+ assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
76
+ images = []
77
+ for dirpath, _, fnames in sorted(os.walk(path)):
78
+ for fname in sorted(fnames):
79
+ if is_image_file(fname):
80
+ img_path = os.path.join(dirpath, fname)
81
+ images.append(img_path)
82
+ assert images, '{:s} has no valid image file'.format(path)
83
+ return images
84
+
85
+
86
+ '''
87
+ # --------------------------------------------
88
+ # split large images into small images
89
+ # --------------------------------------------
90
+ '''
91
+
92
+
93
+ def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
94
+ w, h = img.shape[:2]
95
+ patches = []
96
+ if w > p_max and h > p_max:
97
+ w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
98
+ h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
99
+ w1.append(w-p_size)
100
+ h1.append(h-p_size)
101
+ # print(w1)
102
+ # print(h1)
103
+ for i in w1:
104
+ for j in h1:
105
+ patches.append(img[i:i+p_size, j:j+p_size,:])
106
+ else:
107
+ patches.append(img)
108
+
109
+ return patches
110
+
111
+
112
+ def imssave(imgs, img_path):
113
+ """
114
+ imgs: list, N images of size WxHxC
115
+ """
116
+ img_name, ext = os.path.splitext(os.path.basename(img_path))
117
+
118
+ for i, img in enumerate(imgs):
119
+ if img.ndim == 3:
120
+ img = img[:, :, [2, 1, 0]]
121
+ new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
122
+ cv2.imwrite(new_path, img)
123
+
124
+
125
+ def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
126
+ """
127
+ split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
128
+ and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
129
+ will be splitted.
130
+ Args:
131
+ original_dataroot:
132
+ taget_dataroot:
133
+ p_size: size of small images
134
+ p_overlap: patch size in training is a good choice
135
+ p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
136
+ """
137
+ paths = get_image_paths(original_dataroot)
138
+ for img_path in paths:
139
+ # img_name, ext = os.path.splitext(os.path.basename(img_path))
140
+ img = imread_uint(img_path, n_channels=n_channels)
141
+ patches = patches_from_image(img, p_size, p_overlap, p_max)
142
+ imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
143
+ #if original_dataroot == taget_dataroot:
144
+ #del img_path
145
+
146
+ '''
147
+ # --------------------------------------------
148
+ # makedir
149
+ # --------------------------------------------
150
+ '''
151
+
152
+
153
+ def mkdir(path):
154
+ if not os.path.exists(path):
155
+ os.makedirs(path)
156
+
157
+
158
+ def mkdirs(paths):
159
+ if isinstance(paths, str):
160
+ mkdir(paths)
161
+ else:
162
+ for path in paths:
163
+ mkdir(path)
164
+
165
+
166
+ def mkdir_and_rename(path):
167
+ if os.path.exists(path):
168
+ new_name = path + '_archived_' + get_timestamp()
169
+ print('Path already exists. Rename it to [{:s}]'.format(new_name))
170
+ os.rename(path, new_name)
171
+ os.makedirs(path)
172
+
173
+
174
+ '''
175
+ # --------------------------------------------
176
+ # read image from path
177
+ # opencv is fast, but read BGR numpy image
178
+ # --------------------------------------------
179
+ '''
180
+
181
+
182
+ # --------------------------------------------
183
+ # get uint8 image of size HxWxn_channles (RGB)
184
+ # --------------------------------------------
185
+ def imread_uint(path, n_channels=3):
186
+ # input: path
187
+ # output: HxWx3(RGB or GGG), or HxWx1 (G)
188
+ if n_channels == 1:
189
+ img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
190
+ img = np.expand_dims(img, axis=2) # HxWx1
191
+ elif n_channels == 3:
192
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
193
+ if img.ndim == 2:
194
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
195
+ else:
196
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
197
+ return img
198
+
199
+
200
+ # --------------------------------------------
201
+ # matlab's imwrite
202
+ # --------------------------------------------
203
+ def imsave(img, img_path):
204
+ img = np.squeeze(img)
205
+ if img.ndim == 3:
206
+ img = img[:, :, [2, 1, 0]]
207
+ cv2.imwrite(img_path, img)
208
+
209
+ def imwrite(img, img_path):
210
+ img = np.squeeze(img)
211
+ if img.ndim == 3:
212
+ img = img[:, :, [2, 1, 0]]
213
+ cv2.imwrite(img_path, img)
214
+
215
+
216
+
217
+ # --------------------------------------------
218
+ # get single image of size HxWxn_channles (BGR)
219
+ # --------------------------------------------
220
+ def read_img(path):
221
+ # read image by cv2
222
+ # return: Numpy float32, HWC, BGR, [0,1]
223
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
224
+ img = img.astype(np.float32) / 255.
225
+ if img.ndim == 2:
226
+ img = np.expand_dims(img, axis=2)
227
+ # some images have 4 channels
228
+ if img.shape[2] > 3:
229
+ img = img[:, :, :3]
230
+ return img
231
+
232
+
233
+ '''
234
+ # --------------------------------------------
235
+ # image format conversion
236
+ # --------------------------------------------
237
+ # numpy(single) <---> numpy(unit)
238
+ # numpy(single) <---> tensor
239
+ # numpy(unit) <---> tensor
240
+ # --------------------------------------------
241
+ '''
242
+
243
+
244
+ # --------------------------------------------
245
+ # numpy(single) [0, 1] <---> numpy(unit)
246
+ # --------------------------------------------
247
+
248
+
249
+ def uint2single(img):
250
+
251
+ return np.float32(img/255.)
252
+
253
+
254
+ def single2uint(img):
255
+
256
+ return np.uint8((img.clip(0, 1)*255.).round())
257
+
258
+
259
+ def uint162single(img):
260
+
261
+ return np.float32(img/65535.)
262
+
263
+
264
+ def single2uint16(img):
265
+
266
+ return np.uint16((img.clip(0, 1)*65535.).round())
267
+
268
+
269
+ # --------------------------------------------
270
+ # numpy(unit) (HxWxC or HxW) <---> tensor
271
+ # --------------------------------------------
272
+
273
+
274
+ # convert uint to 4-dimensional torch tensor
275
+ def uint2tensor4(img):
276
+ if img.ndim == 2:
277
+ img = np.expand_dims(img, axis=2)
278
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
279
+
280
+
281
+ # convert uint to 3-dimensional torch tensor
282
+ def uint2tensor3(img):
283
+ if img.ndim == 2:
284
+ img = np.expand_dims(img, axis=2)
285
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
286
+
287
+
288
+ # convert 2/3/4-dimensional torch tensor to uint
289
+ def tensor2uint(img):
290
+ img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
291
+ if img.ndim == 3:
292
+ img = np.transpose(img, (1, 2, 0))
293
+ return np.uint8((img*255.0).round())
294
+
295
+
296
+ # --------------------------------------------
297
+ # numpy(single) (HxWxC) <---> tensor
298
+ # --------------------------------------------
299
+
300
+
301
+ # convert single (HxWxC) to 3-dimensional torch tensor
302
+ def single2tensor3(img):
303
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
304
+
305
+
306
+ # convert single (HxWxC) to 4-dimensional torch tensor
307
+ def single2tensor4(img):
308
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
309
+
310
+
311
+ # convert torch tensor to single
312
+ def tensor2single(img):
313
+ img = img.data.squeeze().float().cpu().numpy()
314
+ if img.ndim == 3:
315
+ img = np.transpose(img, (1, 2, 0))
316
+
317
+ return img
318
+
319
+ # convert torch tensor to single
320
+ def tensor2single3(img):
321
+ img = img.data.squeeze().float().cpu().numpy()
322
+ if img.ndim == 3:
323
+ img = np.transpose(img, (1, 2, 0))
324
+ elif img.ndim == 2:
325
+ img = np.expand_dims(img, axis=2)
326
+ return img
327
+
328
+
329
+ def single2tensor5(img):
330
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
331
+
332
+
333
+ def single32tensor5(img):
334
+ return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
335
+
336
+
337
+ def single42tensor4(img):
338
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
339
+
340
+
341
+ # from skimage.io import imread, imsave
342
+ def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
343
+ '''
344
+ Converts a torch Tensor into an image Numpy array of BGR channel order
345
+ Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
346
+ Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
347
+ '''
348
+ tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
349
+ tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
350
+ n_dim = tensor.dim()
351
+ if n_dim == 4:
352
+ n_img = len(tensor)
353
+ img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
354
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
355
+ elif n_dim == 3:
356
+ img_np = tensor.numpy()
357
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
358
+ elif n_dim == 2:
359
+ img_np = tensor.numpy()
360
+ else:
361
+ raise TypeError(
362
+ 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
363
+ if out_type == np.uint8:
364
+ img_np = (img_np * 255.0).round()
365
+ # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
366
+ return img_np.astype(out_type)
367
+
368
+
369
+ '''
370
+ # --------------------------------------------
371
+ # Augmentation, flipe and/or rotate
372
+ # --------------------------------------------
373
+ # The following two are enough.
374
+ # (1) augmet_img: numpy image of WxHxC or WxH
375
+ # (2) augment_img_tensor4: tensor image 1xCxWxH
376
+ # --------------------------------------------
377
+ '''
378
+
379
+
380
+ def augment_img(img, mode=0):
381
+ '''Kai Zhang (github: https://github.com/cszn)
382
+ '''
383
+ if mode == 0:
384
+ return img
385
+ elif mode == 1:
386
+ return np.flipud(np.rot90(img))
387
+ elif mode == 2:
388
+ return np.flipud(img)
389
+ elif mode == 3:
390
+ return np.rot90(img, k=3)
391
+ elif mode == 4:
392
+ return np.flipud(np.rot90(img, k=2))
393
+ elif mode == 5:
394
+ return np.rot90(img)
395
+ elif mode == 6:
396
+ return np.rot90(img, k=2)
397
+ elif mode == 7:
398
+ return np.flipud(np.rot90(img, k=3))
399
+
400
+
401
+ def augment_img_tensor4(img, mode=0):
402
+ '''Kai Zhang (github: https://github.com/cszn)
403
+ '''
404
+ if mode == 0:
405
+ return img
406
+ elif mode == 1:
407
+ return img.rot90(1, [2, 3]).flip([2])
408
+ elif mode == 2:
409
+ return img.flip([2])
410
+ elif mode == 3:
411
+ return img.rot90(3, [2, 3])
412
+ elif mode == 4:
413
+ return img.rot90(2, [2, 3]).flip([2])
414
+ elif mode == 5:
415
+ return img.rot90(1, [2, 3])
416
+ elif mode == 6:
417
+ return img.rot90(2, [2, 3])
418
+ elif mode == 7:
419
+ return img.rot90(3, [2, 3]).flip([2])
420
+
421
+
422
+ def augment_img_tensor(img, mode=0):
423
+ '''Kai Zhang (github: https://github.com/cszn)
424
+ '''
425
+ img_size = img.size()
426
+ img_np = img.data.cpu().numpy()
427
+ if len(img_size) == 3:
428
+ img_np = np.transpose(img_np, (1, 2, 0))
429
+ elif len(img_size) == 4:
430
+ img_np = np.transpose(img_np, (2, 3, 1, 0))
431
+ img_np = augment_img(img_np, mode=mode)
432
+ img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
433
+ if len(img_size) == 3:
434
+ img_tensor = img_tensor.permute(2, 0, 1)
435
+ elif len(img_size) == 4:
436
+ img_tensor = img_tensor.permute(3, 2, 0, 1)
437
+
438
+ return img_tensor.type_as(img)
439
+
440
+
441
+ def augment_img_np3(img, mode=0):
442
+ if mode == 0:
443
+ return img
444
+ elif mode == 1:
445
+ return img.transpose(1, 0, 2)
446
+ elif mode == 2:
447
+ return img[::-1, :, :]
448
+ elif mode == 3:
449
+ img = img[::-1, :, :]
450
+ img = img.transpose(1, 0, 2)
451
+ return img
452
+ elif mode == 4:
453
+ return img[:, ::-1, :]
454
+ elif mode == 5:
455
+ img = img[:, ::-1, :]
456
+ img = img.transpose(1, 0, 2)
457
+ return img
458
+ elif mode == 6:
459
+ img = img[:, ::-1, :]
460
+ img = img[::-1, :, :]
461
+ return img
462
+ elif mode == 7:
463
+ img = img[:, ::-1, :]
464
+ img = img[::-1, :, :]
465
+ img = img.transpose(1, 0, 2)
466
+ return img
467
+
468
+
469
+ def augment_imgs(img_list, hflip=True, rot=True):
470
+ # horizontal flip OR rotate
471
+ hflip = hflip and random.random() < 0.5
472
+ vflip = rot and random.random() < 0.5
473
+ rot90 = rot and random.random() < 0.5
474
+
475
+ def _augment(img):
476
+ if hflip:
477
+ img = img[:, ::-1, :]
478
+ if vflip:
479
+ img = img[::-1, :, :]
480
+ if rot90:
481
+ img = img.transpose(1, 0, 2)
482
+ return img
483
+
484
+ return [_augment(img) for img in img_list]
485
+
486
+
487
+ '''
488
+ # --------------------------------------------
489
+ # modcrop and shave
490
+ # --------------------------------------------
491
+ '''
492
+
493
+
494
+ def modcrop(img_in, scale):
495
+ # img_in: Numpy, HWC or HW
496
+ img = np.copy(img_in)
497
+ if img.ndim == 2:
498
+ H, W = img.shape
499
+ H_r, W_r = H % scale, W % scale
500
+ img = img[:H - H_r, :W - W_r]
501
+ elif img.ndim == 3:
502
+ H, W, C = img.shape
503
+ H_r, W_r = H % scale, W % scale
504
+ img = img[:H - H_r, :W - W_r, :]
505
+ else:
506
+ raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
507
+ return img
508
+
509
+
510
+ def shave(img_in, border=0):
511
+ # img_in: Numpy, HWC or HW
512
+ img = np.copy(img_in)
513
+ h, w = img.shape[:2]
514
+ img = img[border:h-border, border:w-border]
515
+ return img
516
+
517
+
518
+ '''
519
+ # --------------------------------------------
520
+ # image processing process on numpy image
521
+ # channel_convert(in_c, tar_type, img_list):
522
+ # rgb2ycbcr(img, only_y=True):
523
+ # bgr2ycbcr(img, only_y=True):
524
+ # ycbcr2rgb(img):
525
+ # --------------------------------------------
526
+ '''
527
+
528
+
529
+ def rgb2ycbcr(img, only_y=True):
530
+ '''same as matlab rgb2ycbcr
531
+ only_y: only return Y channel
532
+ Input:
533
+ uint8, [0, 255]
534
+ float, [0, 1]
535
+ '''
536
+ in_img_type = img.dtype
537
+ img.astype(np.float32)
538
+ if in_img_type != np.uint8:
539
+ img *= 255.
540
+ # convert
541
+ if only_y:
542
+ rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
543
+ else:
544
+ rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
545
+ [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
546
+ if in_img_type == np.uint8:
547
+ rlt = rlt.round()
548
+ else:
549
+ rlt /= 255.
550
+ return rlt.astype(in_img_type)
551
+
552
+
553
+ def ycbcr2rgb(img):
554
+ '''same as matlab ycbcr2rgb
555
+ Input:
556
+ uint8, [0, 255]
557
+ float, [0, 1]
558
+ '''
559
+ in_img_type = img.dtype
560
+ img.astype(np.float32)
561
+ if in_img_type != np.uint8:
562
+ img *= 255.
563
+ # convert
564
+ rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
565
+ [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
566
+ if in_img_type == np.uint8:
567
+ rlt = rlt.round()
568
+ else:
569
+ rlt /= 255.
570
+ return rlt.astype(in_img_type)
571
+
572
+
573
+ def bgr2ycbcr(img, only_y=True):
574
+ '''bgr version of rgb2ycbcr
575
+ only_y: only return Y channel
576
+ Input:
577
+ uint8, [0, 255]
578
+ float, [0, 1]
579
+ '''
580
+ in_img_type = img.dtype
581
+ img.astype(np.float32)
582
+ if in_img_type != np.uint8:
583
+ img *= 255.
584
+ # convert
585
+ if only_y:
586
+ rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
587
+ else:
588
+ rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
589
+ [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
590
+ if in_img_type == np.uint8:
591
+ rlt = rlt.round()
592
+ else:
593
+ rlt /= 255.
594
+ return rlt.astype(in_img_type)
595
+
596
+
597
+ def channel_convert(in_c, tar_type, img_list):
598
+ # conversion among BGR, gray and y
599
+ if in_c == 3 and tar_type == 'gray': # BGR to gray
600
+ gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
601
+ return [np.expand_dims(img, axis=2) for img in gray_list]
602
+ elif in_c == 3 and tar_type == 'y': # BGR to y
603
+ y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
604
+ return [np.expand_dims(img, axis=2) for img in y_list]
605
+ elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
606
+ return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
607
+ else:
608
+ return img_list
609
+
610
+
611
+ '''
612
+ # --------------------------------------------
613
+ # metric, PSNR and SSIM
614
+ # --------------------------------------------
615
+ '''
616
+
617
+
618
+ # --------------------------------------------
619
+ # PSNR
620
+ # --------------------------------------------
621
+ def calculate_psnr(img1, img2, border=0):
622
+ # img1 and img2 have range [0, 255]
623
+ #img1 = img1.squeeze()
624
+ #img2 = img2.squeeze()
625
+ if not img1.shape == img2.shape:
626
+ raise ValueError('Input images must have the same dimensions.')
627
+ h, w = img1.shape[:2]
628
+ img1 = img1[border:h-border, border:w-border]
629
+ img2 = img2[border:h-border, border:w-border]
630
+
631
+ img1 = img1.astype(np.float64)
632
+ img2 = img2.astype(np.float64)
633
+ mse = np.mean((img1 - img2)**2)
634
+ if mse == 0:
635
+ return float('inf')
636
+ return 20 * math.log10(255.0 / math.sqrt(mse))
637
+
638
+
639
+ # --------------------------------------------
640
+ # SSIM
641
+ # --------------------------------------------
642
+ def calculate_ssim(img1, img2, border=0):
643
+ '''calculate SSIM
644
+ the same outputs as MATLAB's
645
+ img1, img2: [0, 255]
646
+ '''
647
+ #img1 = img1.squeeze()
648
+ #img2 = img2.squeeze()
649
+ if not img1.shape == img2.shape:
650
+ raise ValueError('Input images must have the same dimensions.')
651
+ h, w = img1.shape[:2]
652
+ img1 = img1[border:h-border, border:w-border]
653
+ img2 = img2[border:h-border, border:w-border]
654
+
655
+ if img1.ndim == 2:
656
+ return ssim(img1, img2)
657
+ elif img1.ndim == 3:
658
+ if img1.shape[2] == 3:
659
+ ssims = []
660
+ for i in range(3):
661
+ ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
662
+ return np.array(ssims).mean()
663
+ elif img1.shape[2] == 1:
664
+ return ssim(np.squeeze(img1), np.squeeze(img2))
665
+ else:
666
+ raise ValueError('Wrong input image dimensions.')
667
+
668
+
669
+ def ssim(img1, img2):
670
+ C1 = (0.01 * 255)**2
671
+ C2 = (0.03 * 255)**2
672
+
673
+ img1 = img1.astype(np.float64)
674
+ img2 = img2.astype(np.float64)
675
+ kernel = cv2.getGaussianKernel(11, 1.5)
676
+ window = np.outer(kernel, kernel.transpose())
677
+
678
+ mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
679
+ mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
680
+ mu1_sq = mu1**2
681
+ mu2_sq = mu2**2
682
+ mu1_mu2 = mu1 * mu2
683
+ sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
684
+ sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
685
+ sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
686
+
687
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
688
+ (sigma1_sq + sigma2_sq + C2))
689
+ return ssim_map.mean()
690
+
691
+
692
+ '''
693
+ # --------------------------------------------
694
+ # matlab's bicubic imresize (numpy and torch) [0, 1]
695
+ # --------------------------------------------
696
+ '''
697
+
698
+
699
+ # matlab 'imresize' function, now only support 'bicubic'
700
+ def cubic(x):
701
+ absx = torch.abs(x)
702
+ absx2 = absx**2
703
+ absx3 = absx**3
704
+ return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
705
+ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
706
+
707
+
708
+ def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
709
+ if (scale < 1) and (antialiasing):
710
+ # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
711
+ kernel_width = kernel_width / scale
712
+
713
+ # Output-space coordinates
714
+ x = torch.linspace(1, out_length, out_length)
715
+
716
+ # Input-space coordinates. Calculate the inverse mapping such that 0.5
717
+ # in output space maps to 0.5 in input space, and 0.5+scale in output
718
+ # space maps to 1.5 in input space.
719
+ u = x / scale + 0.5 * (1 - 1 / scale)
720
+
721
+ # What is the left-most pixel that can be involved in the computation?
722
+ left = torch.floor(u - kernel_width / 2)
723
+
724
+ # What is the maximum number of pixels that can be involved in the
725
+ # computation? Note: it's OK to use an extra pixel here; if the
726
+ # corresponding weights are all zero, it will be eliminated at the end
727
+ # of this function.
728
+ P = math.ceil(kernel_width) + 2
729
+
730
+ # The indices of the input pixels involved in computing the k-th output
731
+ # pixel are in row k of the indices matrix.
732
+ indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
733
+ 1, P).expand(out_length, P)
734
+
735
+ # The weights used to compute the k-th output pixel are in row k of the
736
+ # weights matrix.
737
+ distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
738
+ # apply cubic kernel
739
+ if (scale < 1) and (antialiasing):
740
+ weights = scale * cubic(distance_to_center * scale)
741
+ else:
742
+ weights = cubic(distance_to_center)
743
+ # Normalize the weights matrix so that each row sums to 1.
744
+ weights_sum = torch.sum(weights, 1).view(out_length, 1)
745
+ weights = weights / weights_sum.expand(out_length, P)
746
+
747
+ # If a column in weights is all zero, get rid of it. only consider the first and last column.
748
+ weights_zero_tmp = torch.sum((weights == 0), 0)
749
+ if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
750
+ indices = indices.narrow(1, 1, P - 2)
751
+ weights = weights.narrow(1, 1, P - 2)
752
+ if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
753
+ indices = indices.narrow(1, 0, P - 2)
754
+ weights = weights.narrow(1, 0, P - 2)
755
+ weights = weights.contiguous()
756
+ indices = indices.contiguous()
757
+ sym_len_s = -indices.min() + 1
758
+ sym_len_e = indices.max() - in_length
759
+ indices = indices + sym_len_s - 1
760
+ return weights, indices, int(sym_len_s), int(sym_len_e)
761
+
762
+
763
+ # --------------------------------------------
764
+ # imresize for tensor image [0, 1]
765
+ # --------------------------------------------
766
+ def imresize(img, scale, antialiasing=True):
767
+ # Now the scale should be the same for H and W
768
+ # input: img: pytorch tensor, CHW or HW [0,1]
769
+ # output: CHW or HW [0,1] w/o round
770
+ need_squeeze = True if img.dim() == 2 else False
771
+ if need_squeeze:
772
+ img.unsqueeze_(0)
773
+ in_C, in_H, in_W = img.size()
774
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
775
+ kernel_width = 4
776
+ kernel = 'cubic'
777
+
778
+ # Return the desired dimension order for performing the resize. The
779
+ # strategy is to perform the resize first along the dimension with the
780
+ # smallest scale factor.
781
+ # Now we do not support this.
782
+
783
+ # get weights and indices
784
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
785
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
786
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
787
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
788
+ # process H dimension
789
+ # symmetric copying
790
+ img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
791
+ img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
792
+
793
+ sym_patch = img[:, :sym_len_Hs, :]
794
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
795
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
796
+ img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
797
+
798
+ sym_patch = img[:, -sym_len_He:, :]
799
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
800
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
801
+ img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
802
+
803
+ out_1 = torch.FloatTensor(in_C, out_H, in_W)
804
+ kernel_width = weights_H.size(1)
805
+ for i in range(out_H):
806
+ idx = int(indices_H[i][0])
807
+ for j in range(out_C):
808
+ out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
809
+
810
+ # process W dimension
811
+ # symmetric copying
812
+ out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
813
+ out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
814
+
815
+ sym_patch = out_1[:, :, :sym_len_Ws]
816
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
817
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
818
+ out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
819
+
820
+ sym_patch = out_1[:, :, -sym_len_We:]
821
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
822
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
823
+ out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
824
+
825
+ out_2 = torch.FloatTensor(in_C, out_H, out_W)
826
+ kernel_width = weights_W.size(1)
827
+ for i in range(out_W):
828
+ idx = int(indices_W[i][0])
829
+ for j in range(out_C):
830
+ out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
831
+ if need_squeeze:
832
+ out_2.squeeze_()
833
+ return out_2
834
+
835
+
836
+ # --------------------------------------------
837
+ # imresize for numpy image [0, 1]
838
+ # --------------------------------------------
839
+ def imresize_np(img, scale, antialiasing=True):
840
+ # Now the scale should be the same for H and W
841
+ # input: img: Numpy, HWC or HW [0,1]
842
+ # output: HWC or HW [0,1] w/o round
843
+ img = torch.from_numpy(img)
844
+ need_squeeze = True if img.dim() == 2 else False
845
+ if need_squeeze:
846
+ img.unsqueeze_(2)
847
+
848
+ in_H, in_W, in_C = img.size()
849
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
850
+ kernel_width = 4
851
+ kernel = 'cubic'
852
+
853
+ # Return the desired dimension order for performing the resize. The
854
+ # strategy is to perform the resize first along the dimension with the
855
+ # smallest scale factor.
856
+ # Now we do not support this.
857
+
858
+ # get weights and indices
859
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
860
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
861
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
862
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
863
+ # process H dimension
864
+ # symmetric copying
865
+ img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
866
+ img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
867
+
868
+ sym_patch = img[:sym_len_Hs, :, :]
869
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
870
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
871
+ img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
872
+
873
+ sym_patch = img[-sym_len_He:, :, :]
874
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
875
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
876
+ img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
877
+
878
+ out_1 = torch.FloatTensor(out_H, in_W, in_C)
879
+ kernel_width = weights_H.size(1)
880
+ for i in range(out_H):
881
+ idx = int(indices_H[i][0])
882
+ for j in range(out_C):
883
+ out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
884
+
885
+ # process W dimension
886
+ # symmetric copying
887
+ out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
888
+ out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
889
+
890
+ sym_patch = out_1[:, :sym_len_Ws, :]
891
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
892
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
893
+ out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
894
+
895
+ sym_patch = out_1[:, -sym_len_We:, :]
896
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
897
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
898
+ out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
899
+
900
+ out_2 = torch.FloatTensor(out_H, out_W, in_C)
901
+ kernel_width = weights_W.size(1)
902
+ for i in range(out_W):
903
+ idx = int(indices_W[i][0])
904
+ for j in range(out_C):
905
+ out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
906
+ if need_squeeze:
907
+ out_2.squeeze_()
908
+
909
+ return out_2.numpy()
910
+
911
+
912
+ if __name__ == '__main__':
913
+ print('---')
914
+ # img = imread_uint('test.bmp', 3)
915
+ # img = uint2single(img)
916
+ # img_bicubic = imresize_np(img, 1/4)
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/__init__.py ADDED
File without changes
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/diffusers_pipeline.py ADDED
@@ -0,0 +1,512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Kakao Brain and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ from torch.nn import functional as F
20
+
21
+ from transformers import CLIPTextModelWithProjection, CLIPTokenizer
22
+ from transformers.models.clip.modeling_clip import CLIPTextModelOutput
23
+
24
+ from ...models import PriorTransformer, UNet2DConditionModel, UNet2DModel
25
+ from ...pipelines import DiffusionPipeline, ImagePipelineOutput
26
+ from ...schedulers import UnCLIPScheduler
27
+ from ...utils import is_accelerate_available, logging, randn_tensor
28
+ from .text_proj import UnCLIPTextProjModel
29
+
30
+
31
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
32
+
33
+
34
+ class UnCLIPPipeline(DiffusionPipeline):
35
+ """
36
+ Pipeline for text-to-image generation using unCLIP
37
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
38
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
39
+ Args:
40
+ text_encoder ([`CLIPTextModelWithProjection`]):
41
+ Frozen text-encoder.
42
+ tokenizer (`CLIPTokenizer`):
43
+ Tokenizer of class
44
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
45
+ prior ([`PriorTransformer`]):
46
+ The canonincal unCLIP prior to approximate the image embedding from the text embedding.
47
+ text_proj ([`UnCLIPTextProjModel`]):
48
+ Utility class to prepare and combine the embeddings before they are passed to the decoder.
49
+ decoder ([`UNet2DConditionModel`]):
50
+ The decoder to invert the image embedding into an image.
51
+ super_res_first ([`UNet2DModel`]):
52
+ Super resolution unet. Used in all but the last step of the super resolution diffusion process.
53
+ super_res_last ([`UNet2DModel`]):
54
+ Super resolution unet. Used in the last step of the super resolution diffusion process.
55
+ prior_scheduler ([`UnCLIPScheduler`]):
56
+ Scheduler used in the prior denoising process. Just a modified DDPMScheduler.
57
+ decoder_scheduler ([`UnCLIPScheduler`]):
58
+ Scheduler used in the decoder denoising process. Just a modified DDPMScheduler.
59
+ super_res_scheduler ([`UnCLIPScheduler`]):
60
+ Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler.
61
+ """
62
+
63
+ prior: PriorTransformer
64
+ decoder: UNet2DConditionModel
65
+ text_proj: UnCLIPTextProjModel
66
+ text_encoder: CLIPTextModelWithProjection
67
+ tokenizer: CLIPTokenizer
68
+ super_res_first: UNet2DModel
69
+ super_res_last: UNet2DModel
70
+
71
+ prior_scheduler: UnCLIPScheduler
72
+ decoder_scheduler: UnCLIPScheduler
73
+ super_res_scheduler: UnCLIPScheduler
74
+
75
+ def __init__(
76
+ self,
77
+ prior: PriorTransformer,
78
+ decoder: UNet2DConditionModel,
79
+ text_encoder: CLIPTextModelWithProjection,
80
+ tokenizer: CLIPTokenizer,
81
+ text_proj: UnCLIPTextProjModel,
82
+ super_res_first: UNet2DModel,
83
+ super_res_last: UNet2DModel,
84
+ prior_scheduler: UnCLIPScheduler,
85
+ decoder_scheduler: UnCLIPScheduler,
86
+ super_res_scheduler: UnCLIPScheduler,
87
+ ):
88
+ super().__init__()
89
+
90
+ self.register_modules(
91
+ prior=prior,
92
+ decoder=decoder,
93
+ text_encoder=text_encoder,
94
+ tokenizer=tokenizer,
95
+ text_proj=text_proj,
96
+ super_res_first=super_res_first,
97
+ super_res_last=super_res_last,
98
+ prior_scheduler=prior_scheduler,
99
+ decoder_scheduler=decoder_scheduler,
100
+ super_res_scheduler=super_res_scheduler,
101
+ )
102
+
103
+ def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
104
+ if latents is None:
105
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
106
+ else:
107
+ if latents.shape != shape:
108
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
109
+ latents = latents.to(device)
110
+
111
+ latents = latents * scheduler.init_noise_sigma
112
+ return latents
113
+
114
+ def _encode_prompt(
115
+ self,
116
+ prompt,
117
+ device,
118
+ num_images_per_prompt,
119
+ do_classifier_free_guidance,
120
+ text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
121
+ text_attention_mask: Optional[torch.Tensor] = None,
122
+ ):
123
+ if text_model_output is None:
124
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
125
+ # get prompt text embeddings
126
+ text_inputs = self.tokenizer(
127
+ prompt,
128
+ padding="max_length",
129
+ max_length=self.tokenizer.model_max_length,
130
+ return_tensors="pt",
131
+ )
132
+ text_input_ids = text_inputs.input_ids
133
+ text_mask = text_inputs.attention_mask.bool().to(device)
134
+
135
+ if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
136
+ removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
137
+ logger.warning(
138
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
139
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
140
+ )
141
+ text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
142
+
143
+ text_encoder_output = self.text_encoder(text_input_ids.to(device))
144
+
145
+ text_embeddings = text_encoder_output.text_embeds
146
+ text_encoder_hidden_states = text_encoder_output.last_hidden_state
147
+
148
+ else:
149
+ batch_size = text_model_output[0].shape[0]
150
+ text_embeddings, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
151
+ text_mask = text_attention_mask
152
+
153
+ text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
154
+ text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
155
+ text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
156
+
157
+ if do_classifier_free_guidance:
158
+ uncond_tokens = [""] * batch_size
159
+
160
+ uncond_input = self.tokenizer(
161
+ uncond_tokens,
162
+ padding="max_length",
163
+ max_length=self.tokenizer.model_max_length,
164
+ truncation=True,
165
+ return_tensors="pt",
166
+ )
167
+ uncond_text_mask = uncond_input.attention_mask.bool().to(device)
168
+ uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
169
+
170
+ uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds
171
+ uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state
172
+
173
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
174
+
175
+ seq_len = uncond_embeddings.shape[1]
176
+ uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt)
177
+ uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len)
178
+
179
+ seq_len = uncond_text_encoder_hidden_states.shape[1]
180
+ uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
181
+ uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
182
+ batch_size * num_images_per_prompt, seq_len, -1
183
+ )
184
+ uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
185
+
186
+ # done duplicates
187
+
188
+ # For classifier free guidance, we need to do two forward passes.
189
+ # Here we concatenate the unconditional and text embeddings into a single batch
190
+ # to avoid doing two forward passes
191
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
192
+ text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
193
+
194
+ text_mask = torch.cat([uncond_text_mask, text_mask])
195
+
196
+ return text_embeddings, text_encoder_hidden_states, text_mask
197
+
198
+ def enable_sequential_cpu_offload(self, gpu_id=0):
199
+ r"""
200
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
201
+ models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
202
+ when their specific submodule has its `forward` method called.
203
+ """
204
+ if is_accelerate_available():
205
+ from accelerate import cpu_offload
206
+ else:
207
+ raise ImportError("Please install accelerate via `pip install accelerate`")
208
+
209
+ device = torch.device(f"cuda:{gpu_id}")
210
+
211
+ # TODO: self.prior.post_process_latents is not covered by the offload hooks, so it fails if added to the list
212
+ models = [
213
+ self.decoder,
214
+ self.text_proj,
215
+ self.text_encoder,
216
+ self.super_res_first,
217
+ self.super_res_last,
218
+ ]
219
+ for cpu_offloaded_model in models:
220
+ if cpu_offloaded_model is not None:
221
+ cpu_offload(cpu_offloaded_model, device)
222
+
223
+ @property
224
+ def _execution_device(self):
225
+ r"""
226
+ Returns the device on which the pipeline's models will be executed. After calling
227
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
228
+ hooks.
229
+ """
230
+ if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"):
231
+ return self.device
232
+ for module in self.decoder.modules():
233
+ if (
234
+ hasattr(module, "_hf_hook")
235
+ and hasattr(module._hf_hook, "execution_device")
236
+ and module._hf_hook.execution_device is not None
237
+ ):
238
+ return torch.device(module._hf_hook.execution_device)
239
+ return self.device
240
+
241
+ @torch.no_grad()
242
+ def __call__(
243
+ self,
244
+ prompt: Optional[Union[str, List[str]]] = None,
245
+ num_images_per_prompt: int = 1,
246
+ prior_num_inference_steps: int = 25,
247
+ decoder_num_inference_steps: int = 25,
248
+ super_res_num_inference_steps: int = 7,
249
+ generator: Optional[torch.Generator] = None,
250
+ prior_latents: Optional[torch.FloatTensor] = None,
251
+ decoder_latents: Optional[torch.FloatTensor] = None,
252
+ super_res_latents: Optional[torch.FloatTensor] = None,
253
+ text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
254
+ text_attention_mask: Optional[torch.Tensor] = None,
255
+ prior_guidance_scale: float = 4.0,
256
+ decoder_guidance_scale: float = 8.0,
257
+ output_type: Optional[str] = "pil",
258
+ return_dict: bool = True,
259
+ ):
260
+ """
261
+ Function invoked when calling the pipeline for generation.
262
+ Args:
263
+ prompt (`str` or `List[str]`):
264
+ The prompt or prompts to guide the image generation. This can only be left undefined if
265
+ `text_model_output` and `text_attention_mask` is passed.
266
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
267
+ The number of images to generate per prompt.
268
+ prior_num_inference_steps (`int`, *optional*, defaults to 25):
269
+ The number of denoising steps for the prior. More denoising steps usually lead to a higher quality
270
+ image at the expense of slower inference.
271
+ decoder_num_inference_steps (`int`, *optional*, defaults to 25):
272
+ The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
273
+ image at the expense of slower inference.
274
+ super_res_num_inference_steps (`int`, *optional*, defaults to 7):
275
+ The number of denoising steps for super resolution. More denoising steps usually lead to a higher
276
+ quality image at the expense of slower inference.
277
+ generator (`torch.Generator`, *optional*):
278
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
279
+ to make generation deterministic.
280
+ prior_latents (`torch.FloatTensor` of shape (batch size, embeddings dimension), *optional*):
281
+ Pre-generated noisy latents to be used as inputs for the prior.
282
+ decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*):
283
+ Pre-generated noisy latents to be used as inputs for the decoder.
284
+ super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*):
285
+ Pre-generated noisy latents to be used as inputs for the decoder.
286
+ prior_guidance_scale (`float`, *optional*, defaults to 4.0):
287
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
288
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
289
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
290
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
291
+ usually at the expense of lower image quality.
292
+ decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
293
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
294
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
295
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
296
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
297
+ usually at the expense of lower image quality.
298
+ text_model_output (`CLIPTextModelOutput`, *optional*):
299
+ Pre-defined CLIPTextModel outputs that can be derived from the text encoder. Pre-defined text outputs
300
+ can be passed for tasks like text embedding interpolations. Make sure to also pass
301
+ `text_attention_mask` in this case. `prompt` can the be left to `None`.
302
+ text_attention_mask (`torch.Tensor`, *optional*):
303
+ Pre-defined CLIP text attention mask that can be derived from the tokenizer. Pre-defined text attention
304
+ masks are necessary when passing `text_model_output`.
305
+ output_type (`str`, *optional*, defaults to `"pil"`):
306
+ The output format of the generated image. Choose between
307
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
308
+ return_dict (`bool`, *optional*, defaults to `True`):
309
+ Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
310
+ """
311
+ if prompt is not None:
312
+ if isinstance(prompt, str):
313
+ batch_size = 1
314
+ elif isinstance(prompt, list):
315
+ batch_size = len(prompt)
316
+ else:
317
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
318
+ else:
319
+ batch_size = text_model_output[0].shape[0]
320
+
321
+ device = self._execution_device
322
+
323
+ batch_size = batch_size * num_images_per_prompt
324
+
325
+ do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0
326
+
327
+ text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt(
328
+ prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask
329
+ )
330
+
331
+ # prior
332
+
333
+ self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
334
+ prior_timesteps_tensor = self.prior_scheduler.timesteps
335
+
336
+ embedding_dim = self.prior.config.embedding_dim
337
+
338
+ prior_latents = self.prepare_latents(
339
+ (batch_size, embedding_dim),
340
+ text_embeddings.dtype,
341
+ device,
342
+ generator,
343
+ prior_latents,
344
+ self.prior_scheduler,
345
+ )
346
+
347
+ for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
348
+ # expand the latents if we are doing classifier free guidance
349
+ latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents
350
+
351
+ predicted_image_embedding = self.prior(
352
+ latent_model_input,
353
+ timestep=t,
354
+ proj_embedding=text_embeddings,
355
+ encoder_hidden_states=text_encoder_hidden_states,
356
+ attention_mask=text_mask,
357
+ ).predicted_image_embedding
358
+
359
+ if do_classifier_free_guidance:
360
+ predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
361
+ predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
362
+ predicted_image_embedding_text - predicted_image_embedding_uncond
363
+ )
364
+
365
+ if i + 1 == prior_timesteps_tensor.shape[0]:
366
+ prev_timestep = None
367
+ else:
368
+ prev_timestep = prior_timesteps_tensor[i + 1]
369
+
370
+ prior_latents = self.prior_scheduler.step(
371
+ predicted_image_embedding,
372
+ timestep=t,
373
+ sample=prior_latents,
374
+ generator=generator,
375
+ prev_timestep=prev_timestep,
376
+ ).prev_sample
377
+
378
+ prior_latents = self.prior.post_process_latents(prior_latents)
379
+
380
+ image_embeddings = prior_latents
381
+
382
+ # done prior
383
+
384
+ # decoder
385
+
386
+ text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
387
+ image_embeddings=image_embeddings,
388
+ text_embeddings=text_embeddings,
389
+ text_encoder_hidden_states=text_encoder_hidden_states,
390
+ do_classifier_free_guidance=do_classifier_free_guidance,
391
+ )
392
+
393
+ decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
394
+
395
+ self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
396
+ decoder_timesteps_tensor = self.decoder_scheduler.timesteps
397
+
398
+ num_channels_latents = self.decoder.in_channels
399
+ height = self.decoder.sample_size
400
+ width = self.decoder.sample_size
401
+
402
+ decoder_latents = self.prepare_latents(
403
+ (batch_size, num_channels_latents, height, width),
404
+ text_encoder_hidden_states.dtype,
405
+ device,
406
+ generator,
407
+ decoder_latents,
408
+ self.decoder_scheduler,
409
+ )
410
+
411
+ for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
412
+ # expand the latents if we are doing classifier free guidance
413
+ latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents
414
+
415
+ noise_pred = self.decoder(
416
+ sample=latent_model_input,
417
+ timestep=t,
418
+ encoder_hidden_states=text_encoder_hidden_states,
419
+ class_labels=additive_clip_time_embeddings,
420
+ attention_mask=decoder_text_mask,
421
+ ).sample
422
+
423
+ if do_classifier_free_guidance:
424
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
425
+ noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
426
+ noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
427
+ noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
428
+ noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
429
+
430
+ if i + 1 == decoder_timesteps_tensor.shape[0]:
431
+ prev_timestep = None
432
+ else:
433
+ prev_timestep = decoder_timesteps_tensor[i + 1]
434
+
435
+ # compute the previous noisy sample x_t -> x_t-1
436
+ decoder_latents = self.decoder_scheduler.step(
437
+ noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
438
+ ).prev_sample
439
+
440
+ decoder_latents = decoder_latents.clamp(-1, 1)
441
+
442
+ image_small = decoder_latents
443
+
444
+ # done decoder
445
+
446
+ # super res
447
+
448
+ self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
449
+ super_res_timesteps_tensor = self.super_res_scheduler.timesteps
450
+
451
+ channels = self.super_res_first.in_channels // 2
452
+ height = self.super_res_first.sample_size
453
+ width = self.super_res_first.sample_size
454
+
455
+ super_res_latents = self.prepare_latents(
456
+ (batch_size, channels, height, width),
457
+ image_small.dtype,
458
+ device,
459
+ generator,
460
+ super_res_latents,
461
+ self.super_res_scheduler,
462
+ )
463
+
464
+ interpolate_antialias = {}
465
+ if "antialias" in inspect.signature(F.interpolate).parameters:
466
+ interpolate_antialias["antialias"] = True
467
+
468
+ image_upscaled = F.interpolate(
469
+ image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
470
+ )
471
+
472
+ for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
473
+ # no classifier free guidance
474
+
475
+ if i == super_res_timesteps_tensor.shape[0] - 1:
476
+ unet = self.super_res_last
477
+ else:
478
+ unet = self.super_res_first
479
+
480
+ latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)
481
+
482
+ noise_pred = unet(
483
+ sample=latent_model_input,
484
+ timestep=t,
485
+ ).sample
486
+
487
+ if i + 1 == super_res_timesteps_tensor.shape[0]:
488
+ prev_timestep = None
489
+ else:
490
+ prev_timestep = super_res_timesteps_tensor[i + 1]
491
+
492
+ # compute the previous noisy sample x_t -> x_t-1
493
+ super_res_latents = self.super_res_scheduler.step(
494
+ noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
495
+ ).prev_sample
496
+
497
+ image = super_res_latents
498
+ # done super res
499
+
500
+ # post processing
501
+
502
+ image = image * 0.5 + 0.5
503
+ image = image.clamp(0, 1)
504
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
505
+
506
+ if output_type == "pil":
507
+ image = self.numpy_to_pil(image)
508
+
509
+ if not return_dict:
510
+ return (image,)
511
+
512
+ return ImagePipelineOutput(images=image)
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/__init__.py ADDED
File without changes
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/__init__.py ADDED
File without changes
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/clip.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Karlo-v1.0.alpha
3
+ # Copyright (c) 2022 KakaoBrain. All Rights Reserved.
4
+ # ------------------------------------------------------------------------------------
5
+ # ------------------------------------------------------------------------------------
6
+ # Adapted from OpenAI's CLIP (https://github.com/openai/CLIP/)
7
+ # ------------------------------------------------------------------------------------
8
+
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import clip
14
+
15
+ from clip.model import CLIP, convert_weights
16
+ from clip.simple_tokenizer import SimpleTokenizer, default_bpe
17
+
18
+
19
+ """===== Monkey-Patching original CLIP for JIT compile ====="""
20
+
21
+
22
+ class LayerNorm(nn.LayerNorm):
23
+ """Subclass torch's LayerNorm to handle fp16."""
24
+
25
+ def forward(self, x: torch.Tensor):
26
+ orig_type = x.dtype
27
+ ret = F.layer_norm(
28
+ x.type(torch.float32),
29
+ self.normalized_shape,
30
+ self.weight,
31
+ self.bias,
32
+ self.eps,
33
+ )
34
+ return ret.type(orig_type)
35
+
36
+
37
+ clip.model.LayerNorm = LayerNorm
38
+ delattr(clip.model.CLIP, "forward")
39
+
40
+ """===== End of Monkey-Patching ====="""
41
+
42
+
43
+ class CustomizedCLIP(CLIP):
44
+ def __init__(self, *args, **kwargs):
45
+ super().__init__(*args, **kwargs)
46
+
47
+ @torch.jit.export
48
+ def encode_image(self, image):
49
+ return self.visual(image)
50
+
51
+ @torch.jit.export
52
+ def encode_text(self, text):
53
+ # re-define this function to return unpooled text features
54
+
55
+ x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
56
+
57
+ x = x + self.positional_embedding.type(self.dtype)
58
+ x = x.permute(1, 0, 2) # NLD -> LND
59
+ x = self.transformer(x)
60
+ x = x.permute(1, 0, 2) # LND -> NLD
61
+ x = self.ln_final(x).type(self.dtype)
62
+
63
+ x_seq = x
64
+ # x.shape = [batch_size, n_ctx, transformer.width]
65
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
66
+ x_out = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
67
+
68
+ return x_out, x_seq
69
+
70
+ @torch.jit.ignore
71
+ def forward(self, image, text):
72
+ super().forward(image, text)
73
+
74
+ @classmethod
75
+ def load_from_checkpoint(cls, ckpt_path: str):
76
+ state_dict = torch.load(ckpt_path, map_location="cpu").state_dict()
77
+
78
+ vit = "visual.proj" in state_dict
79
+ if vit:
80
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
81
+ vision_layers = len(
82
+ [
83
+ k
84
+ for k in state_dict.keys()
85
+ if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
86
+ ]
87
+ )
88
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
89
+ grid_size = round(
90
+ (state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5
91
+ )
92
+ image_resolution = vision_patch_size * grid_size
93
+ else:
94
+ counts: list = [
95
+ len(
96
+ set(
97
+ k.split(".")[2]
98
+ for k in state_dict
99
+ if k.startswith(f"visual.layer{b}")
100
+ )
101
+ )
102
+ for b in [1, 2, 3, 4]
103
+ ]
104
+ vision_layers = tuple(counts)
105
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
106
+ output_width = round(
107
+ (state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5
108
+ )
109
+ vision_patch_size = None
110
+ assert (
111
+ output_width**2 + 1
112
+ == state_dict["visual.attnpool.positional_embedding"].shape[0]
113
+ )
114
+ image_resolution = output_width * 32
115
+
116
+ embed_dim = state_dict["text_projection"].shape[1]
117
+ context_length = state_dict["positional_embedding"].shape[0]
118
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
119
+ transformer_width = state_dict["ln_final.weight"].shape[0]
120
+ transformer_heads = transformer_width // 64
121
+ transformer_layers = len(
122
+ set(
123
+ k.split(".")[2]
124
+ for k in state_dict
125
+ if k.startswith("transformer.resblocks")
126
+ )
127
+ )
128
+
129
+ model = cls(
130
+ embed_dim,
131
+ image_resolution,
132
+ vision_layers,
133
+ vision_width,
134
+ vision_patch_size,
135
+ context_length,
136
+ vocab_size,
137
+ transformer_width,
138
+ transformer_heads,
139
+ transformer_layers,
140
+ )
141
+
142
+ for key in ["input_resolution", "context_length", "vocab_size"]:
143
+ if key in state_dict:
144
+ del state_dict[key]
145
+
146
+ convert_weights(model)
147
+ model.load_state_dict(state_dict)
148
+ model.eval()
149
+ model.float()
150
+ return model
151
+
152
+
153
+ class CustomizedTokenizer(SimpleTokenizer):
154
+ def __init__(self):
155
+ super().__init__(bpe_path=default_bpe())
156
+
157
+ self.sot_token = self.encoder["<|startoftext|>"]
158
+ self.eot_token = self.encoder["<|endoftext|>"]
159
+
160
+ def padded_tokens_and_mask(self, texts, text_ctx):
161
+ assert isinstance(texts, list) and all(
162
+ isinstance(elem, str) for elem in texts
163
+ ), "texts should be a list of strings"
164
+
165
+ all_tokens = [
166
+ [self.sot_token] + self.encode(text) + [self.eot_token] for text in texts
167
+ ]
168
+
169
+ mask = [
170
+ [True] * min(text_ctx, len(tokens))
171
+ + [False] * max(text_ctx - len(tokens), 0)
172
+ for tokens in all_tokens
173
+ ]
174
+ mask = torch.tensor(mask, dtype=torch.bool)
175
+ result = torch.zeros(len(all_tokens), text_ctx, dtype=torch.int)
176
+ for i, tokens in enumerate(all_tokens):
177
+ if len(tokens) > text_ctx:
178
+ tokens = tokens[:text_ctx]
179
+ tokens[-1] = self.eot_token
180
+ result[i, : len(tokens)] = torch.tensor(tokens)
181
+
182
+ return result, mask
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/decoder_model.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Karlo-v1.0.alpha
3
+ # Copyright (c) 2022 KakaoBrain. All Rights Reserved.
4
+ # ------------------------------------------------------------------------------------
5
+
6
+ import copy
7
+ import torch
8
+
9
+ from ldm.modules.karlo.kakao.modules import create_gaussian_diffusion
10
+ from ldm.modules.karlo.kakao.modules.unet import PLMImUNet
11
+
12
+
13
+ class Text2ImProgressiveModel(torch.nn.Module):
14
+ """
15
+ A decoder that generates 64x64px images based on the text prompt.
16
+
17
+ :param config: yaml config to define the decoder.
18
+ :param tokenizer: tokenizer used in clip.
19
+ """
20
+
21
+ def __init__(
22
+ self,
23
+ config,
24
+ tokenizer,
25
+ ):
26
+ super().__init__()
27
+
28
+ self._conf = config
29
+ self._model_conf = config.model.hparams
30
+ self._diffusion_kwargs = dict(
31
+ steps=config.diffusion.steps,
32
+ learn_sigma=config.diffusion.learn_sigma,
33
+ sigma_small=config.diffusion.sigma_small,
34
+ noise_schedule=config.diffusion.noise_schedule,
35
+ use_kl=config.diffusion.use_kl,
36
+ predict_xstart=config.diffusion.predict_xstart,
37
+ rescale_learned_sigmas=config.diffusion.rescale_learned_sigmas,
38
+ timestep_respacing=config.diffusion.timestep_respacing,
39
+ )
40
+ self._tokenizer = tokenizer
41
+
42
+ self.model = self.create_plm_dec_model()
43
+
44
+ cf_token, cf_mask = self.set_cf_text_tensor()
45
+ self.register_buffer("cf_token", cf_token, persistent=False)
46
+ self.register_buffer("cf_mask", cf_mask, persistent=False)
47
+
48
+ @classmethod
49
+ def load_from_checkpoint(cls, config, tokenizer, ckpt_path, strict: bool = True):
50
+ ckpt = torch.load(ckpt_path, map_location="cpu")["state_dict"]
51
+
52
+ model = cls(config, tokenizer)
53
+ model.load_state_dict(ckpt, strict=strict)
54
+ return model
55
+
56
+ def create_plm_dec_model(self):
57
+ image_size = self._model_conf.image_size
58
+ if self._model_conf.channel_mult == "":
59
+ if image_size == 256:
60
+ channel_mult = (1, 1, 2, 2, 4, 4)
61
+ elif image_size == 128:
62
+ channel_mult = (1, 1, 2, 3, 4)
63
+ elif image_size == 64:
64
+ channel_mult = (1, 2, 3, 4)
65
+ else:
66
+ raise ValueError(f"unsupported image size: {image_size}")
67
+ else:
68
+ channel_mult = tuple(
69
+ int(ch_mult) for ch_mult in self._model_conf.channel_mult.split(",")
70
+ )
71
+ assert 2 ** (len(channel_mult) + 2) == image_size
72
+
73
+ attention_ds = []
74
+ for res in self._model_conf.attention_resolutions.split(","):
75
+ attention_ds.append(image_size // int(res))
76
+
77
+ return PLMImUNet(
78
+ text_ctx=self._model_conf.text_ctx,
79
+ xf_width=self._model_conf.xf_width,
80
+ in_channels=3,
81
+ model_channels=self._model_conf.num_channels,
82
+ out_channels=6 if self._model_conf.learn_sigma else 3,
83
+ num_res_blocks=self._model_conf.num_res_blocks,
84
+ attention_resolutions=tuple(attention_ds),
85
+ dropout=self._model_conf.dropout,
86
+ channel_mult=channel_mult,
87
+ num_heads=self._model_conf.num_heads,
88
+ num_head_channels=self._model_conf.num_head_channels,
89
+ num_heads_upsample=self._model_conf.num_heads_upsample,
90
+ use_scale_shift_norm=self._model_conf.use_scale_shift_norm,
91
+ resblock_updown=self._model_conf.resblock_updown,
92
+ clip_dim=self._model_conf.clip_dim,
93
+ clip_emb_mult=self._model_conf.clip_emb_mult,
94
+ clip_emb_type=self._model_conf.clip_emb_type,
95
+ clip_emb_drop=self._model_conf.clip_emb_drop,
96
+ )
97
+
98
+ def set_cf_text_tensor(self):
99
+ return self._tokenizer.padded_tokens_and_mask([""], self.model.text_ctx)
100
+
101
+ def get_sample_fn(self, timestep_respacing):
102
+ use_ddim = timestep_respacing.startswith(("ddim", "fast"))
103
+
104
+ diffusion_kwargs = copy.deepcopy(self._diffusion_kwargs)
105
+ diffusion_kwargs.update(timestep_respacing=timestep_respacing)
106
+ diffusion = create_gaussian_diffusion(**diffusion_kwargs)
107
+ sample_fn = (
108
+ diffusion.ddim_sample_loop_progressive
109
+ if use_ddim
110
+ else diffusion.p_sample_loop_progressive
111
+ )
112
+
113
+ return sample_fn
114
+
115
+ def forward(
116
+ self,
117
+ txt_feat,
118
+ txt_feat_seq,
119
+ tok,
120
+ mask,
121
+ img_feat=None,
122
+ cf_guidance_scales=None,
123
+ timestep_respacing=None,
124
+ ):
125
+ # cfg should be enabled in inference
126
+ assert cf_guidance_scales is not None and all(cf_guidance_scales > 0.0)
127
+ assert img_feat is not None
128
+
129
+ bsz = txt_feat.shape[0]
130
+ img_sz = self._model_conf.image_size
131
+
132
+ def guided_model_fn(x_t, ts, **kwargs):
133
+ half = x_t[: len(x_t) // 2]
134
+ combined = torch.cat([half, half], dim=0)
135
+ model_out = self.model(combined, ts, **kwargs)
136
+ eps, rest = model_out[:, :3], model_out[:, 3:]
137
+ cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
138
+ half_eps = uncond_eps + cf_guidance_scales.view(-1, 1, 1, 1) * (
139
+ cond_eps - uncond_eps
140
+ )
141
+ eps = torch.cat([half_eps, half_eps], dim=0)
142
+ return torch.cat([eps, rest], dim=1)
143
+
144
+ cf_feat = self.model.cf_param.unsqueeze(0)
145
+ cf_feat = cf_feat.expand(bsz // 2, -1)
146
+ feat = torch.cat([img_feat, cf_feat.to(txt_feat.device)], dim=0)
147
+
148
+ cond = {
149
+ "y": feat,
150
+ "txt_feat": txt_feat,
151
+ "txt_feat_seq": txt_feat_seq,
152
+ "mask": mask,
153
+ }
154
+ sample_fn = self.get_sample_fn(timestep_respacing)
155
+ sample_outputs = sample_fn(
156
+ guided_model_fn,
157
+ (bsz, 3, img_sz, img_sz),
158
+ noise=None,
159
+ device=txt_feat.device,
160
+ clip_denoised=True,
161
+ model_kwargs=cond,
162
+ )
163
+
164
+ for out in sample_outputs:
165
+ sample = out["sample"]
166
+ yield sample if cf_guidance_scales is None else sample[
167
+ : sample.shape[0] // 2
168
+ ]
169
+
170
+
171
+ class Text2ImModel(Text2ImProgressiveModel):
172
+ def forward(
173
+ self,
174
+ txt_feat,
175
+ txt_feat_seq,
176
+ tok,
177
+ mask,
178
+ img_feat=None,
179
+ cf_guidance_scales=None,
180
+ timestep_respacing=None,
181
+ ):
182
+ last_out = None
183
+ for out in super().forward(
184
+ txt_feat,
185
+ txt_feat_seq,
186
+ tok,
187
+ mask,
188
+ img_feat,
189
+ cf_guidance_scales,
190
+ timestep_respacing,
191
+ ):
192
+ last_out = out
193
+ return last_out
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/prior_model.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Karlo-v1.0.alpha
3
+ # Copyright (c) 2022 KakaoBrain. All Rights Reserved.
4
+ # ------------------------------------------------------------------------------------
5
+
6
+ import copy
7
+ import torch
8
+
9
+ from ldm.modules.karlo.kakao.modules import create_gaussian_diffusion
10
+ from ldm.modules.karlo.kakao.modules.xf import PriorTransformer
11
+
12
+
13
+ class PriorDiffusionModel(torch.nn.Module):
14
+ """
15
+ A prior that generates clip image feature based on the text prompt.
16
+
17
+ :param config: yaml config to define the decoder.
18
+ :param tokenizer: tokenizer used in clip.
19
+ :param clip_mean: mean to normalize the clip image feature (zero-mean, unit variance).
20
+ :param clip_std: std to noramlize the clip image feature (zero-mean, unit variance).
21
+ """
22
+
23
+ def __init__(self, config, tokenizer, clip_mean, clip_std):
24
+ super().__init__()
25
+
26
+ self._conf = config
27
+ self._model_conf = config.model.hparams
28
+ self._diffusion_kwargs = dict(
29
+ steps=config.diffusion.steps,
30
+ learn_sigma=config.diffusion.learn_sigma,
31
+ sigma_small=config.diffusion.sigma_small,
32
+ noise_schedule=config.diffusion.noise_schedule,
33
+ use_kl=config.diffusion.use_kl,
34
+ predict_xstart=config.diffusion.predict_xstart,
35
+ rescale_learned_sigmas=config.diffusion.rescale_learned_sigmas,
36
+ timestep_respacing=config.diffusion.timestep_respacing,
37
+ )
38
+ self._tokenizer = tokenizer
39
+
40
+ self.register_buffer("clip_mean", clip_mean[None, :], persistent=False)
41
+ self.register_buffer("clip_std", clip_std[None, :], persistent=False)
42
+
43
+ causal_mask = self.get_causal_mask()
44
+ self.register_buffer("causal_mask", causal_mask, persistent=False)
45
+
46
+ self.model = PriorTransformer(
47
+ text_ctx=self._model_conf.text_ctx,
48
+ xf_width=self._model_conf.xf_width,
49
+ xf_layers=self._model_conf.xf_layers,
50
+ xf_heads=self._model_conf.xf_heads,
51
+ xf_final_ln=self._model_conf.xf_final_ln,
52
+ clip_dim=self._model_conf.clip_dim,
53
+ )
54
+
55
+ cf_token, cf_mask = self.set_cf_text_tensor()
56
+ self.register_buffer("cf_token", cf_token, persistent=False)
57
+ self.register_buffer("cf_mask", cf_mask, persistent=False)
58
+
59
+ @classmethod
60
+ def load_from_checkpoint(
61
+ cls, config, tokenizer, clip_mean, clip_std, ckpt_path, strict: bool = True
62
+ ):
63
+ ckpt = torch.load(ckpt_path, map_location="cpu")["state_dict"]
64
+
65
+ model = cls(config, tokenizer, clip_mean, clip_std)
66
+ model.load_state_dict(ckpt, strict=strict)
67
+ return model
68
+
69
+ def set_cf_text_tensor(self):
70
+ return self._tokenizer.padded_tokens_and_mask([""], self.model.text_ctx)
71
+
72
+ def get_sample_fn(self, timestep_respacing):
73
+ use_ddim = timestep_respacing.startswith(("ddim", "fast"))
74
+
75
+ diffusion_kwargs = copy.deepcopy(self._diffusion_kwargs)
76
+ diffusion_kwargs.update(timestep_respacing=timestep_respacing)
77
+ diffusion = create_gaussian_diffusion(**diffusion_kwargs)
78
+ sample_fn = diffusion.ddim_sample_loop if use_ddim else diffusion.p_sample_loop
79
+
80
+ return sample_fn
81
+
82
+ def get_causal_mask(self):
83
+ seq_len = self._model_conf.text_ctx + 4
84
+ mask = torch.empty(seq_len, seq_len)
85
+ mask.fill_(float("-inf"))
86
+ mask.triu_(1)
87
+ mask = mask[None, ...]
88
+ return mask
89
+
90
+ def forward(
91
+ self,
92
+ txt_feat,
93
+ txt_feat_seq,
94
+ mask,
95
+ cf_guidance_scales=None,
96
+ timestep_respacing=None,
97
+ denoised_fn=True,
98
+ ):
99
+ # cfg should be enabled in inference
100
+ assert cf_guidance_scales is not None and all(cf_guidance_scales > 0.0)
101
+
102
+ bsz_ = txt_feat.shape[0]
103
+ bsz = bsz_ // 2
104
+
105
+ def guided_model_fn(x_t, ts, **kwargs):
106
+ half = x_t[: len(x_t) // 2]
107
+ combined = torch.cat([half, half], dim=0)
108
+ model_out = self.model(combined, ts, **kwargs)
109
+ eps, rest = (
110
+ model_out[:, : int(x_t.shape[1])],
111
+ model_out[:, int(x_t.shape[1]) :],
112
+ )
113
+ cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
114
+ half_eps = uncond_eps + cf_guidance_scales.view(-1, 1) * (
115
+ cond_eps - uncond_eps
116
+ )
117
+ eps = torch.cat([half_eps, half_eps], dim=0)
118
+ return torch.cat([eps, rest], dim=1)
119
+
120
+ cond = {
121
+ "text_emb": txt_feat,
122
+ "text_enc": txt_feat_seq,
123
+ "mask": mask,
124
+ "causal_mask": self.causal_mask,
125
+ }
126
+ sample_fn = self.get_sample_fn(timestep_respacing)
127
+ sample = sample_fn(
128
+ guided_model_fn,
129
+ (bsz_, self.model.clip_dim),
130
+ noise=None,
131
+ device=txt_feat.device,
132
+ clip_denoised=False,
133
+ denoised_fn=lambda x: torch.clamp(x, -10, 10),
134
+ model_kwargs=cond,
135
+ )
136
+ sample = (sample * self.clip_std) + self.clip_mean
137
+
138
+ return sample[:bsz]
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/sr_256_1k.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Karlo-v1.0.alpha
3
+ # Copyright (c) 2022 KakaoBrain. All Rights Reserved.
4
+ # ------------------------------------------------------------------------------------
5
+
6
+ from ldm.modules.karlo.kakao.models.sr_64_256 import SupRes64to256Progressive
7
+
8
+
9
+ class SupRes256to1kProgressive(SupRes64to256Progressive):
10
+ pass # no difference currently
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/sr_64_256.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Karlo-v1.0.alpha
3
+ # Copyright (c) 2022 KakaoBrain. All Rights Reserved.
4
+ # ------------------------------------------------------------------------------------
5
+
6
+ import copy
7
+ import torch
8
+
9
+ from ldm.modules.karlo.kakao.modules.unet import SuperResUNetModel
10
+ from ldm.modules.karlo.kakao.modules import create_gaussian_diffusion
11
+
12
+
13
+ class ImprovedSupRes64to256ProgressiveModel(torch.nn.Module):
14
+ """
15
+ ImprovedSR model fine-tunes the pretrained DDPM-based SR model by using adversarial and perceptual losses.
16
+ In specific, the low-resolution sample is iteratively recovered by 6 steps with the frozen pretrained SR model.
17
+ In the following additional one step, a seperate fine-tuned model recovers high-frequency details.
18
+ This approach greatly improves the fidelity of images of 256x256px, even with small number of reverse steps.
19
+ """
20
+
21
+ def __init__(self, config):
22
+ super().__init__()
23
+
24
+ self._config = config
25
+ self._diffusion_kwargs = dict(
26
+ steps=config.diffusion.steps,
27
+ learn_sigma=config.diffusion.learn_sigma,
28
+ sigma_small=config.diffusion.sigma_small,
29
+ noise_schedule=config.diffusion.noise_schedule,
30
+ use_kl=config.diffusion.use_kl,
31
+ predict_xstart=config.diffusion.predict_xstart,
32
+ rescale_learned_sigmas=config.diffusion.rescale_learned_sigmas,
33
+ )
34
+
35
+ self.model_first_steps = SuperResUNetModel(
36
+ in_channels=3, # auto-changed to 6 inside the model
37
+ model_channels=config.model.hparams.channels,
38
+ out_channels=3,
39
+ num_res_blocks=config.model.hparams.depth,
40
+ attention_resolutions=(), # no attention
41
+ dropout=config.model.hparams.dropout,
42
+ channel_mult=config.model.hparams.channels_multiple,
43
+ resblock_updown=True,
44
+ use_middle_attention=False,
45
+ )
46
+ self.model_last_step = SuperResUNetModel(
47
+ in_channels=3, # auto-changed to 6 inside the model
48
+ model_channels=config.model.hparams.channels,
49
+ out_channels=3,
50
+ num_res_blocks=config.model.hparams.depth,
51
+ attention_resolutions=(), # no attention
52
+ dropout=config.model.hparams.dropout,
53
+ channel_mult=config.model.hparams.channels_multiple,
54
+ resblock_updown=True,
55
+ use_middle_attention=False,
56
+ )
57
+
58
+ @classmethod
59
+ def load_from_checkpoint(cls, config, ckpt_path, strict: bool = True):
60
+ ckpt = torch.load(ckpt_path, map_location="cpu")["state_dict"]
61
+
62
+ model = cls(config)
63
+ model.load_state_dict(ckpt, strict=strict)
64
+ return model
65
+
66
+ def get_sample_fn(self, timestep_respacing):
67
+ diffusion_kwargs = copy.deepcopy(self._diffusion_kwargs)
68
+ diffusion_kwargs.update(timestep_respacing=timestep_respacing)
69
+ diffusion = create_gaussian_diffusion(**diffusion_kwargs)
70
+ return diffusion.p_sample_loop_progressive_for_improved_sr
71
+
72
+ def forward(self, low_res, timestep_respacing="7", **kwargs):
73
+ assert (
74
+ timestep_respacing == "7"
75
+ ), "different respacing method may work, but no guaranteed"
76
+
77
+ sample_fn = self.get_sample_fn(timestep_respacing)
78
+ sample_outputs = sample_fn(
79
+ self.model_first_steps,
80
+ self.model_last_step,
81
+ shape=low_res.shape,
82
+ clip_denoised=True,
83
+ model_kwargs=dict(low_res=low_res),
84
+ **kwargs,
85
+ )
86
+ for x in sample_outputs:
87
+ sample = x["sample"]
88
+ yield sample
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/__init__.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Adapted from Guided-Diffusion repo (https://github.com/openai/guided-diffusion)
3
+ # ------------------------------------------------------------------------------------
4
+
5
+
6
+ from .diffusion import gaussian_diffusion as gd
7
+ from .diffusion.respace import (
8
+ SpacedDiffusion,
9
+ space_timesteps,
10
+ )
11
+
12
+
13
+ def create_gaussian_diffusion(
14
+ steps,
15
+ learn_sigma,
16
+ sigma_small,
17
+ noise_schedule,
18
+ use_kl,
19
+ predict_xstart,
20
+ rescale_learned_sigmas,
21
+ timestep_respacing,
22
+ ):
23
+ betas = gd.get_named_beta_schedule(noise_schedule, steps)
24
+ if use_kl:
25
+ loss_type = gd.LossType.RESCALED_KL
26
+ elif rescale_learned_sigmas:
27
+ loss_type = gd.LossType.RESCALED_MSE
28
+ else:
29
+ loss_type = gd.LossType.MSE
30
+ if not timestep_respacing:
31
+ timestep_respacing = [steps]
32
+
33
+ return SpacedDiffusion(
34
+ use_timesteps=space_timesteps(steps, timestep_respacing),
35
+ betas=betas,
36
+ model_mean_type=(
37
+ gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
38
+ ),
39
+ model_var_type=(
40
+ (
41
+ gd.ModelVarType.FIXED_LARGE
42
+ if not sigma_small
43
+ else gd.ModelVarType.FIXED_SMALL
44
+ )
45
+ if not learn_sigma
46
+ else gd.ModelVarType.LEARNED_RANGE
47
+ ),
48
+ loss_type=loss_type,
49
+ )
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/diffusion/gaussian_diffusion.py ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Adapted from Guided-Diffusion repo (https://github.com/openai/guided-diffusion)
3
+ # ------------------------------------------------------------------------------------
4
+
5
+ import enum
6
+ import math
7
+
8
+ import numpy as np
9
+ import torch as th
10
+
11
+
12
+ def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
13
+ betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
14
+ warmup_time = int(num_diffusion_timesteps * warmup_frac)
15
+ betas[:warmup_time] = np.linspace(
16
+ beta_start, beta_end, warmup_time, dtype=np.float64
17
+ )
18
+ return betas
19
+
20
+
21
+ def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
22
+ """
23
+ This is the deprecated API for creating beta schedules.
24
+ See get_named_beta_schedule() for the new library of schedules.
25
+ """
26
+ if beta_schedule == "quad":
27
+ betas = (
28
+ np.linspace(
29
+ beta_start**0.5,
30
+ beta_end**0.5,
31
+ num_diffusion_timesteps,
32
+ dtype=np.float64,
33
+ )
34
+ ** 2
35
+ )
36
+ elif beta_schedule == "linear":
37
+ betas = np.linspace(
38
+ beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
39
+ )
40
+ elif beta_schedule == "warmup10":
41
+ betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
42
+ elif beta_schedule == "warmup50":
43
+ betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
44
+ elif beta_schedule == "const":
45
+ betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
46
+ elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
47
+ betas = 1.0 / np.linspace(
48
+ num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
49
+ )
50
+ else:
51
+ raise NotImplementedError(beta_schedule)
52
+ assert betas.shape == (num_diffusion_timesteps,)
53
+ return betas
54
+
55
+
56
+ def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
57
+ """
58
+ Get a pre-defined beta schedule for the given name.
59
+ The beta schedule library consists of beta schedules which remain similar
60
+ in the limit of num_diffusion_timesteps.
61
+ Beta schedules may be added, but should not be removed or changed once
62
+ they are committed to maintain backwards compatibility.
63
+ """
64
+ if schedule_name == "linear":
65
+ # Linear schedule from Ho et al, extended to work for any number of
66
+ # diffusion steps.
67
+ scale = 1000 / num_diffusion_timesteps
68
+ return get_beta_schedule(
69
+ "linear",
70
+ beta_start=scale * 0.0001,
71
+ beta_end=scale * 0.02,
72
+ num_diffusion_timesteps=num_diffusion_timesteps,
73
+ )
74
+ elif schedule_name == "squaredcos_cap_v2":
75
+ return betas_for_alpha_bar(
76
+ num_diffusion_timesteps,
77
+ lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
78
+ )
79
+ else:
80
+ raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
81
+
82
+
83
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
84
+ """
85
+ Create a beta schedule that discretizes the given alpha_t_bar function,
86
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
87
+ :param num_diffusion_timesteps: the number of betas to produce.
88
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
89
+ produces the cumulative product of (1-beta) up to that
90
+ part of the diffusion process.
91
+ :param max_beta: the maximum beta to use; use values lower than 1 to
92
+ prevent singularities.
93
+ """
94
+ betas = []
95
+ for i in range(num_diffusion_timesteps):
96
+ t1 = i / num_diffusion_timesteps
97
+ t2 = (i + 1) / num_diffusion_timesteps
98
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
99
+ return np.array(betas)
100
+
101
+
102
+ class ModelMeanType(enum.Enum):
103
+ """
104
+ Which type of output the model predicts.
105
+ """
106
+
107
+ PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
108
+ START_X = enum.auto() # the model predicts x_0
109
+ EPSILON = enum.auto() # the model predicts epsilon
110
+
111
+
112
+ class ModelVarType(enum.Enum):
113
+ """
114
+ What is used as the model's output variance.
115
+ The LEARNED_RANGE option has been added to allow the model to predict
116
+ values between FIXED_SMALL and FIXED_LARGE, making its job easier.
117
+ """
118
+
119
+ LEARNED = enum.auto()
120
+ FIXED_SMALL = enum.auto()
121
+ FIXED_LARGE = enum.auto()
122
+ LEARNED_RANGE = enum.auto()
123
+
124
+
125
+ class LossType(enum.Enum):
126
+ MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
127
+ RESCALED_MSE = (
128
+ enum.auto()
129
+ ) # use raw MSE loss (with RESCALED_KL when learning variances)
130
+ KL = enum.auto() # use the variational lower-bound
131
+ RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
132
+
133
+ def is_vb(self):
134
+ return self == LossType.KL or self == LossType.RESCALED_KL
135
+
136
+
137
+ class GaussianDiffusion(th.nn.Module):
138
+ """
139
+ Utilities for training and sampling diffusion models.
140
+ Original ported from this codebase:
141
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
142
+ :param betas: a 1-D numpy array of betas for each diffusion timestep,
143
+ starting at T and going to 1.
144
+ """
145
+
146
+ def __init__(
147
+ self,
148
+ *,
149
+ betas,
150
+ model_mean_type,
151
+ model_var_type,
152
+ loss_type,
153
+ ):
154
+ super(GaussianDiffusion, self).__init__()
155
+ self.model_mean_type = model_mean_type
156
+ self.model_var_type = model_var_type
157
+ self.loss_type = loss_type
158
+
159
+ # Use float64 for accuracy.
160
+ betas = np.array(betas, dtype=np.float64)
161
+ assert len(betas.shape) == 1, "betas must be 1-D"
162
+ assert (betas > 0).all() and (betas <= 1).all()
163
+
164
+ self.num_timesteps = int(betas.shape[0])
165
+
166
+ alphas = 1.0 - betas
167
+ alphas_cumprod = np.cumprod(alphas, axis=0)
168
+ alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
169
+ alphas_cumprod_next = np.append(alphas_cumprod[1:], 0.0)
170
+ assert alphas_cumprod_prev.shape == (self.num_timesteps,)
171
+
172
+ # calculations for diffusion q(x_t | x_{t-1}) and others
173
+ sqrt_alphas_cumprod = np.sqrt(alphas_cumprod)
174
+ sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - alphas_cumprod)
175
+ log_one_minus_alphas_cumprod = np.log(1.0 - alphas_cumprod)
176
+ sqrt_recip_alphas_cumprod = np.sqrt(1.0 / alphas_cumprod)
177
+ sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / alphas_cumprod - 1)
178
+
179
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
180
+ posterior_variance = (
181
+ betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
182
+ )
183
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
184
+ posterior_log_variance_clipped = np.log(
185
+ np.append(posterior_variance[1], posterior_variance[1:])
186
+ )
187
+ posterior_mean_coef1 = (
188
+ betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)
189
+ )
190
+ posterior_mean_coef2 = (
191
+ (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
192
+ )
193
+
194
+ self.register_buffer("betas", th.from_numpy(betas), persistent=False)
195
+ self.register_buffer(
196
+ "alphas_cumprod", th.from_numpy(alphas_cumprod), persistent=False
197
+ )
198
+ self.register_buffer(
199
+ "alphas_cumprod_prev", th.from_numpy(alphas_cumprod_prev), persistent=False
200
+ )
201
+ self.register_buffer(
202
+ "alphas_cumprod_next", th.from_numpy(alphas_cumprod_next), persistent=False
203
+ )
204
+
205
+ self.register_buffer(
206
+ "sqrt_alphas_cumprod", th.from_numpy(sqrt_alphas_cumprod), persistent=False
207
+ )
208
+ self.register_buffer(
209
+ "sqrt_one_minus_alphas_cumprod",
210
+ th.from_numpy(sqrt_one_minus_alphas_cumprod),
211
+ persistent=False,
212
+ )
213
+ self.register_buffer(
214
+ "log_one_minus_alphas_cumprod",
215
+ th.from_numpy(log_one_minus_alphas_cumprod),
216
+ persistent=False,
217
+ )
218
+ self.register_buffer(
219
+ "sqrt_recip_alphas_cumprod",
220
+ th.from_numpy(sqrt_recip_alphas_cumprod),
221
+ persistent=False,
222
+ )
223
+ self.register_buffer(
224
+ "sqrt_recipm1_alphas_cumprod",
225
+ th.from_numpy(sqrt_recipm1_alphas_cumprod),
226
+ persistent=False,
227
+ )
228
+
229
+ self.register_buffer(
230
+ "posterior_variance", th.from_numpy(posterior_variance), persistent=False
231
+ )
232
+ self.register_buffer(
233
+ "posterior_log_variance_clipped",
234
+ th.from_numpy(posterior_log_variance_clipped),
235
+ persistent=False,
236
+ )
237
+ self.register_buffer(
238
+ "posterior_mean_coef1",
239
+ th.from_numpy(posterior_mean_coef1),
240
+ persistent=False,
241
+ )
242
+ self.register_buffer(
243
+ "posterior_mean_coef2",
244
+ th.from_numpy(posterior_mean_coef2),
245
+ persistent=False,
246
+ )
247
+
248
+ def q_mean_variance(self, x_start, t):
249
+ """
250
+ Get the distribution q(x_t | x_0).
251
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
252
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
253
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
254
+ """
255
+ mean = (
256
+ _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
257
+ )
258
+ variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
259
+ log_variance = _extract_into_tensor(
260
+ self.log_one_minus_alphas_cumprod, t, x_start.shape
261
+ )
262
+ return mean, variance, log_variance
263
+
264
+ def q_sample(self, x_start, t, noise=None):
265
+ """
266
+ Diffuse the data for a given number of diffusion steps.
267
+ In other words, sample from q(x_t | x_0).
268
+ :param x_start: the initial data batch.
269
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
270
+ :param noise: if specified, the split-out normal noise.
271
+ :return: A noisy version of x_start.
272
+ """
273
+ if noise is None:
274
+ noise = th.randn_like(x_start)
275
+ assert noise.shape == x_start.shape
276
+ return (
277
+ _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
278
+ + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
279
+ * noise
280
+ )
281
+
282
+ def q_posterior_mean_variance(self, x_start, x_t, t):
283
+ """
284
+ Compute the mean and variance of the diffusion posterior:
285
+ q(x_{t-1} | x_t, x_0)
286
+ """
287
+ assert x_start.shape == x_t.shape
288
+ posterior_mean = (
289
+ _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
290
+ + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
291
+ )
292
+ posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
293
+ posterior_log_variance_clipped = _extract_into_tensor(
294
+ self.posterior_log_variance_clipped, t, x_t.shape
295
+ )
296
+ assert (
297
+ posterior_mean.shape[0]
298
+ == posterior_variance.shape[0]
299
+ == posterior_log_variance_clipped.shape[0]
300
+ == x_start.shape[0]
301
+ )
302
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
303
+
304
+ def p_mean_variance(
305
+ self,
306
+ model,
307
+ x,
308
+ t,
309
+ clip_denoised=True,
310
+ denoised_fn=None,
311
+ model_kwargs=None,
312
+ **ignore_kwargs,
313
+ ):
314
+ """
315
+ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
316
+ the initial x, x_0.
317
+ :param model: the model, which takes a signal and a batch of timesteps
318
+ as input.
319
+ :param x: the [N x C x ...] tensor at time t.
320
+ :param t: a 1-D Tensor of timesteps.
321
+ :param clip_denoised: if True, clip the denoised signal into [-1, 1].
322
+ :param denoised_fn: if not None, a function which applies to the
323
+ x_start prediction before it is used to sample. Applies before
324
+ clip_denoised.
325
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
326
+ pass to the model. This can be used for conditioning.
327
+ :return: a dict with the following keys:
328
+ - 'mean': the model mean output.
329
+ - 'variance': the model variance output.
330
+ - 'log_variance': the log of 'variance'.
331
+ - 'pred_xstart': the prediction for x_0.
332
+ """
333
+ if model_kwargs is None:
334
+ model_kwargs = {}
335
+
336
+ B, C = x.shape[:2]
337
+ assert t.shape == (B,)
338
+ model_output = model(x, t, **model_kwargs)
339
+ if isinstance(model_output, tuple):
340
+ model_output, extra = model_output
341
+ else:
342
+ extra = None
343
+
344
+ if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
345
+ assert model_output.shape == (B, C * 2, *x.shape[2:])
346
+ model_output, model_var_values = th.split(model_output, C, dim=1)
347
+ if self.model_var_type == ModelVarType.LEARNED:
348
+ model_log_variance = model_var_values
349
+ model_variance = th.exp(model_log_variance)
350
+ else:
351
+ min_log = _extract_into_tensor(
352
+ self.posterior_log_variance_clipped, t, x.shape
353
+ )
354
+ max_log = _extract_into_tensor(th.log(self.betas), t, x.shape)
355
+ # The model_var_values is [-1, 1] for [min_var, max_var].
356
+ frac = (model_var_values + 1) / 2
357
+ model_log_variance = frac * max_log + (1 - frac) * min_log
358
+ model_variance = th.exp(model_log_variance)
359
+ else:
360
+ model_variance, model_log_variance = {
361
+ # for fixedlarge, we set the initial (log-)variance like so
362
+ # to get a better decoder log likelihood.
363
+ ModelVarType.FIXED_LARGE: (
364
+ th.cat([self.posterior_variance[1][None], self.betas[1:]]),
365
+ th.log(th.cat([self.posterior_variance[1][None], self.betas[1:]])),
366
+ ),
367
+ ModelVarType.FIXED_SMALL: (
368
+ self.posterior_variance,
369
+ self.posterior_log_variance_clipped,
370
+ ),
371
+ }[self.model_var_type]
372
+ model_variance = _extract_into_tensor(model_variance, t, x.shape)
373
+ model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
374
+
375
+ def process_xstart(x):
376
+ if denoised_fn is not None:
377
+ x = denoised_fn(x)
378
+ if clip_denoised:
379
+ return x.clamp(-1, 1)
380
+ return x
381
+
382
+ if self.model_mean_type == ModelMeanType.PREVIOUS_X:
383
+ pred_xstart = process_xstart(
384
+ self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
385
+ )
386
+ model_mean = model_output
387
+ elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
388
+ if self.model_mean_type == ModelMeanType.START_X:
389
+ pred_xstart = process_xstart(model_output)
390
+ else:
391
+ pred_xstart = process_xstart(
392
+ self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
393
+ )
394
+ model_mean, _, _ = self.q_posterior_mean_variance(
395
+ x_start=pred_xstart, x_t=x, t=t
396
+ )
397
+ else:
398
+ raise NotImplementedError(self.model_mean_type)
399
+
400
+ assert (
401
+ model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
402
+ )
403
+ return {
404
+ "mean": model_mean,
405
+ "variance": model_variance,
406
+ "log_variance": model_log_variance,
407
+ "pred_xstart": pred_xstart,
408
+ }
409
+
410
+ def _predict_xstart_from_eps(self, x_t, t, eps):
411
+ assert x_t.shape == eps.shape
412
+ return (
413
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
414
+ - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
415
+ )
416
+
417
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
418
+ return (
419
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
420
+ - pred_xstart
421
+ ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
422
+
423
+ def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
424
+ """
425
+ Compute the mean for the previous step, given a function cond_fn that
426
+ computes the gradient of a conditional log probability with respect to
427
+ x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
428
+ condition on y.
429
+ This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
430
+ """
431
+ gradient = cond_fn(x, t, **model_kwargs)
432
+ new_mean = (
433
+ p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
434
+ )
435
+ return new_mean
436
+
437
+ def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
438
+ """
439
+ Compute what the p_mean_variance output would have been, should the
440
+ model's score function be conditioned by cond_fn.
441
+ See condition_mean() for details on cond_fn.
442
+ Unlike condition_mean(), this instead uses the conditioning strategy
443
+ from Song et al (2020).
444
+ """
445
+ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
446
+
447
+ eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
448
+ eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs)
449
+
450
+ out = p_mean_var.copy()
451
+ out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
452
+ out["mean"], _, _ = self.q_posterior_mean_variance(
453
+ x_start=out["pred_xstart"], x_t=x, t=t
454
+ )
455
+ return out
456
+
457
+ def p_sample(
458
+ self,
459
+ model,
460
+ x,
461
+ t,
462
+ clip_denoised=True,
463
+ denoised_fn=None,
464
+ cond_fn=None,
465
+ model_kwargs=None,
466
+ ):
467
+ """
468
+ Sample x_{t-1} from the model at the given timestep.
469
+ :param model: the model to sample from.
470
+ :param x: the current tensor at x_{t-1}.
471
+ :param t: the value of t, starting at 0 for the first diffusion step.
472
+ :param clip_denoised: if True, clip the x_start prediction to [-1, 1].
473
+ :param denoised_fn: if not None, a function which applies to the
474
+ x_start prediction before it is used to sample.
475
+ :param cond_fn: if not None, this is a gradient function that acts
476
+ similarly to the model.
477
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
478
+ pass to the model. This can be used for conditioning.
479
+ :return: a dict containing the following keys:
480
+ - 'sample': a random sample from the model.
481
+ - 'pred_xstart': a prediction of x_0.
482
+ """
483
+ out = self.p_mean_variance(
484
+ model,
485
+ x,
486
+ t,
487
+ clip_denoised=clip_denoised,
488
+ denoised_fn=denoised_fn,
489
+ model_kwargs=model_kwargs,
490
+ )
491
+ noise = th.randn_like(x)
492
+ nonzero_mask = (
493
+ (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
494
+ ) # no noise when t == 0
495
+ if cond_fn is not None:
496
+ out["mean"] = self.condition_mean(
497
+ cond_fn, out, x, t, model_kwargs=model_kwargs
498
+ )
499
+ sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
500
+ return {"sample": sample, "pred_xstart": out["pred_xstart"]}
501
+
502
+ def p_sample_loop(
503
+ self,
504
+ model,
505
+ shape,
506
+ noise=None,
507
+ clip_denoised=True,
508
+ denoised_fn=None,
509
+ cond_fn=None,
510
+ model_kwargs=None,
511
+ device=None,
512
+ progress=False,
513
+ ):
514
+ """
515
+ Generate samples from the model.
516
+ :param model: the model module.
517
+ :param shape: the shape of the samples, (N, C, H, W).
518
+ :param noise: if specified, the noise from the encoder to sample.
519
+ Should be of the same shape as `shape`.
520
+ :param clip_denoised: if True, clip x_start predictions to [-1, 1].
521
+ :param denoised_fn: if not None, a function which applies to the
522
+ x_start prediction before it is used to sample.
523
+ :param cond_fn: if not None, this is a gradient function that acts
524
+ similarly to the model.
525
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
526
+ pass to the model. This can be used for conditioning.
527
+ :param device: if specified, the device to create the samples on.
528
+ If not specified, use a model parameter's device.
529
+ :param progress: if True, show a tqdm progress bar.
530
+ :return: a non-differentiable batch of samples.
531
+ """
532
+ final = None
533
+ for sample in self.p_sample_loop_progressive(
534
+ model,
535
+ shape,
536
+ noise=noise,
537
+ clip_denoised=clip_denoised,
538
+ denoised_fn=denoised_fn,
539
+ cond_fn=cond_fn,
540
+ model_kwargs=model_kwargs,
541
+ device=device,
542
+ progress=progress,
543
+ ):
544
+ final = sample
545
+ return final["sample"]
546
+
547
+ def p_sample_loop_progressive(
548
+ self,
549
+ model,
550
+ shape,
551
+ noise=None,
552
+ clip_denoised=True,
553
+ denoised_fn=None,
554
+ cond_fn=None,
555
+ model_kwargs=None,
556
+ device=None,
557
+ progress=False,
558
+ ):
559
+ """
560
+ Generate samples from the model and yield intermediate samples from
561
+ each timestep of diffusion.
562
+ Arguments are the same as p_sample_loop().
563
+ Returns a generator over dicts, where each dict is the return value of
564
+ p_sample().
565
+ """
566
+ if device is None:
567
+ device = next(model.parameters()).device
568
+ assert isinstance(shape, (tuple, list))
569
+ if noise is not None:
570
+ img = noise
571
+ else:
572
+ img = th.randn(*shape, device=device)
573
+ indices = list(range(self.num_timesteps))[::-1]
574
+
575
+ if progress:
576
+ # Lazy import so that we don't depend on tqdm.
577
+ from tqdm.auto import tqdm
578
+
579
+ indices = tqdm(indices)
580
+
581
+ for idx, i in enumerate(indices):
582
+ t = th.tensor([i] * shape[0], device=device)
583
+ with th.no_grad():
584
+ out = self.p_sample(
585
+ model,
586
+ img,
587
+ t,
588
+ clip_denoised=clip_denoised,
589
+ denoised_fn=denoised_fn,
590
+ cond_fn=cond_fn,
591
+ model_kwargs=model_kwargs,
592
+ )
593
+ yield out
594
+ img = out["sample"]
595
+
596
+ def p_sample_loop_progressive_for_improved_sr(
597
+ self,
598
+ model,
599
+ model_aux,
600
+ shape,
601
+ noise=None,
602
+ clip_denoised=True,
603
+ denoised_fn=None,
604
+ cond_fn=None,
605
+ model_kwargs=None,
606
+ device=None,
607
+ progress=False,
608
+ ):
609
+ """
610
+ Modified version of p_sample_loop_progressive for sampling from the improved sr model
611
+ """
612
+
613
+ if device is None:
614
+ device = next(model.parameters()).device
615
+ assert isinstance(shape, (tuple, list))
616
+ if noise is not None:
617
+ img = noise
618
+ else:
619
+ img = th.randn(*shape, device=device)
620
+ indices = list(range(self.num_timesteps))[::-1]
621
+
622
+ if progress:
623
+ # Lazy import so that we don't depend on tqdm.
624
+ from tqdm.auto import tqdm
625
+
626
+ indices = tqdm(indices)
627
+
628
+ for idx, i in enumerate(indices):
629
+ t = th.tensor([i] * shape[0], device=device)
630
+ with th.no_grad():
631
+ out = self.p_sample(
632
+ model_aux if len(indices) - 1 == idx else model,
633
+ img,
634
+ t,
635
+ clip_denoised=clip_denoised,
636
+ denoised_fn=denoised_fn,
637
+ cond_fn=cond_fn,
638
+ model_kwargs=model_kwargs,
639
+ )
640
+ yield out
641
+ img = out["sample"]
642
+
643
+ def ddim_sample(
644
+ self,
645
+ model,
646
+ x,
647
+ t,
648
+ clip_denoised=True,
649
+ denoised_fn=None,
650
+ cond_fn=None,
651
+ model_kwargs=None,
652
+ eta=0.0,
653
+ ):
654
+ """
655
+ Sample x_{t-1} from the model using DDIM.
656
+ Same usage as p_sample().
657
+ """
658
+ out = self.p_mean_variance(
659
+ model,
660
+ x,
661
+ t,
662
+ clip_denoised=clip_denoised,
663
+ denoised_fn=denoised_fn,
664
+ model_kwargs=model_kwargs,
665
+ )
666
+ if cond_fn is not None:
667
+ out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
668
+
669
+ # Usually our model outputs epsilon, but we re-derive it
670
+ # in case we used x_start or x_prev prediction.
671
+ eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
672
+
673
+ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
674
+ alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
675
+ sigma = (
676
+ eta
677
+ * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
678
+ * th.sqrt(1 - alpha_bar / alpha_bar_prev)
679
+ )
680
+ # Equation 12.
681
+ noise = th.randn_like(x)
682
+ mean_pred = (
683
+ out["pred_xstart"] * th.sqrt(alpha_bar_prev)
684
+ + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps
685
+ )
686
+ nonzero_mask = (
687
+ (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
688
+ ) # no noise when t == 0
689
+ sample = mean_pred + nonzero_mask * sigma * noise
690
+ return {"sample": sample, "pred_xstart": out["pred_xstart"]}
691
+
692
+ def ddim_reverse_sample(
693
+ self,
694
+ model,
695
+ x,
696
+ t,
697
+ clip_denoised=True,
698
+ denoised_fn=None,
699
+ cond_fn=None,
700
+ model_kwargs=None,
701
+ eta=0.0,
702
+ ):
703
+ """
704
+ Sample x_{t+1} from the model using DDIM reverse ODE.
705
+ """
706
+ assert eta == 0.0, "Reverse ODE only for deterministic path"
707
+ out = self.p_mean_variance(
708
+ model,
709
+ x,
710
+ t,
711
+ clip_denoised=clip_denoised,
712
+ denoised_fn=denoised_fn,
713
+ model_kwargs=model_kwargs,
714
+ )
715
+ if cond_fn is not None:
716
+ out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
717
+ # Usually our model outputs epsilon, but we re-derive it
718
+ # in case we used x_start or x_prev prediction.
719
+ eps = (
720
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
721
+ - out["pred_xstart"]
722
+ ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
723
+ alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
724
+
725
+ # Equation 12. reversed
726
+ mean_pred = (
727
+ out["pred_xstart"] * th.sqrt(alpha_bar_next)
728
+ + th.sqrt(1 - alpha_bar_next) * eps
729
+ )
730
+
731
+ return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
732
+
733
+ def ddim_sample_loop(
734
+ self,
735
+ model,
736
+ shape,
737
+ noise=None,
738
+ clip_denoised=True,
739
+ denoised_fn=None,
740
+ cond_fn=None,
741
+ model_kwargs=None,
742
+ device=None,
743
+ progress=False,
744
+ eta=0.0,
745
+ ):
746
+ """
747
+ Generate samples from the model using DDIM.
748
+ Same usage as p_sample_loop().
749
+ """
750
+ final = None
751
+ for sample in self.ddim_sample_loop_progressive(
752
+ model,
753
+ shape,
754
+ noise=noise,
755
+ clip_denoised=clip_denoised,
756
+ denoised_fn=denoised_fn,
757
+ cond_fn=cond_fn,
758
+ model_kwargs=model_kwargs,
759
+ device=device,
760
+ progress=progress,
761
+ eta=eta,
762
+ ):
763
+ final = sample
764
+ return final["sample"]
765
+
766
+ def ddim_sample_loop_progressive(
767
+ self,
768
+ model,
769
+ shape,
770
+ noise=None,
771
+ clip_denoised=True,
772
+ denoised_fn=None,
773
+ cond_fn=None,
774
+ model_kwargs=None,
775
+ device=None,
776
+ progress=False,
777
+ eta=0.0,
778
+ ):
779
+ """
780
+ Use DDIM to sample from the model and yield intermediate samples from
781
+ each timestep of DDIM.
782
+ Same usage as p_sample_loop_progressive().
783
+ """
784
+ if device is None:
785
+ device = next(model.parameters()).device
786
+ assert isinstance(shape, (tuple, list))
787
+ if noise is not None:
788
+ img = noise
789
+ else:
790
+ img = th.randn(*shape, device=device)
791
+ indices = list(range(self.num_timesteps))[::-1]
792
+
793
+ if progress:
794
+ # Lazy import so that we don't depend on tqdm.
795
+ from tqdm.auto import tqdm
796
+
797
+ indices = tqdm(indices)
798
+
799
+ for i in indices:
800
+ t = th.tensor([i] * shape[0], device=device)
801
+ with th.no_grad():
802
+ out = self.ddim_sample(
803
+ model,
804
+ img,
805
+ t,
806
+ clip_denoised=clip_denoised,
807
+ denoised_fn=denoised_fn,
808
+ cond_fn=cond_fn,
809
+ model_kwargs=model_kwargs,
810
+ eta=eta,
811
+ )
812
+ yield out
813
+ img = out["sample"]
814
+
815
+
816
+ def _extract_into_tensor(arr, timesteps, broadcast_shape):
817
+ """
818
+ Extract values from a 1-D numpy array for a batch of indices.
819
+ :param arr: the 1-D numpy array.
820
+ :param timesteps: a tensor of indices into the array to extract.
821
+ :param broadcast_shape: a larger shape of K dimensions with the batch
822
+ dimension equal to the length of timesteps.
823
+ :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
824
+ """
825
+ res = arr.to(device=timesteps.device)[timesteps].float()
826
+ while len(res.shape) < len(broadcast_shape):
827
+ res = res[..., None]
828
+ return res + th.zeros(broadcast_shape, device=timesteps.device)
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/diffusion/respace.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Adapted from Guided-Diffusion repo (https://github.com/openai/guided-diffusion)
3
+ # ------------------------------------------------------------------------------------
4
+
5
+
6
+ import torch as th
7
+
8
+ from .gaussian_diffusion import GaussianDiffusion
9
+
10
+
11
+ def space_timesteps(num_timesteps, section_counts):
12
+ """
13
+ Create a list of timesteps to use from an original diffusion process,
14
+ given the number of timesteps we want to take from equally-sized portions
15
+ of the original process.
16
+
17
+ For example, if there's 300 timesteps and the section counts are [10,15,20]
18
+ then the first 100 timesteps are strided to be 10 timesteps, the second 100
19
+ are strided to be 15 timesteps, and the final 100 are strided to be 20.
20
+
21
+ :param num_timesteps: the number of diffusion steps in the original
22
+ process to divide up.
23
+ :param section_counts: either a list of numbers, or a string containing
24
+ comma-separated numbers, indicating the step count
25
+ per section. As a special case, use "ddimN" where N
26
+ is a number of steps to use the striding from the
27
+ DDIM paper.
28
+ :return: a set of diffusion steps from the original process to use.
29
+ """
30
+ if isinstance(section_counts, str):
31
+ if section_counts.startswith("ddim"):
32
+ desired_count = int(section_counts[len("ddim") :])
33
+ for i in range(1, num_timesteps):
34
+ if len(range(0, num_timesteps, i)) == desired_count:
35
+ return set(range(0, num_timesteps, i))
36
+ raise ValueError(
37
+ f"cannot create exactly {num_timesteps} steps with an integer stride"
38
+ )
39
+ elif section_counts == "fast27":
40
+ steps = space_timesteps(num_timesteps, "10,10,3,2,2")
41
+ # Help reduce DDIM artifacts from noisiest timesteps.
42
+ steps.remove(num_timesteps - 1)
43
+ steps.add(num_timesteps - 3)
44
+ return steps
45
+ section_counts = [int(x) for x in section_counts.split(",")]
46
+ size_per = num_timesteps // len(section_counts)
47
+ extra = num_timesteps % len(section_counts)
48
+ start_idx = 0
49
+ all_steps = []
50
+ for i, section_count in enumerate(section_counts):
51
+ size = size_per + (1 if i < extra else 0)
52
+ if size < section_count:
53
+ raise ValueError(
54
+ f"cannot divide section of {size} steps into {section_count}"
55
+ )
56
+ if section_count <= 1:
57
+ frac_stride = 1
58
+ else:
59
+ frac_stride = (size - 1) / (section_count - 1)
60
+ cur_idx = 0.0
61
+ taken_steps = []
62
+ for _ in range(section_count):
63
+ taken_steps.append(start_idx + round(cur_idx))
64
+ cur_idx += frac_stride
65
+ all_steps += taken_steps
66
+ start_idx += size
67
+ return set(all_steps)
68
+
69
+
70
+ class SpacedDiffusion(GaussianDiffusion):
71
+ """
72
+ A diffusion process which can skip steps in a base diffusion process.
73
+
74
+ :param use_timesteps: a collection (sequence or set) of timesteps from the
75
+ original diffusion process to retain.
76
+ :param kwargs: the kwargs to create the base diffusion process.
77
+ """
78
+
79
+ def __init__(self, use_timesteps, **kwargs):
80
+ self.use_timesteps = set(use_timesteps)
81
+ self.original_num_steps = len(kwargs["betas"])
82
+
83
+ base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
84
+ last_alpha_cumprod = 1.0
85
+ new_betas = []
86
+ timestep_map = []
87
+ for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
88
+ if i in self.use_timesteps:
89
+ new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
90
+ last_alpha_cumprod = alpha_cumprod
91
+ timestep_map.append(i)
92
+ kwargs["betas"] = th.tensor(new_betas).numpy()
93
+ super().__init__(**kwargs)
94
+ self.register_buffer("timestep_map", th.tensor(timestep_map), persistent=False)
95
+
96
+ def p_mean_variance(self, model, *args, **kwargs):
97
+ return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
98
+
99
+ def condition_mean(self, cond_fn, *args, **kwargs):
100
+ return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
101
+
102
+ def condition_score(self, cond_fn, *args, **kwargs):
103
+ return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
104
+
105
+ def _wrap_model(self, model):
106
+ def wrapped(x, ts, **kwargs):
107
+ ts_cpu = ts.detach().to("cpu")
108
+ return model(
109
+ x, self.timestep_map[ts_cpu].to(device=ts.device, dtype=ts.dtype), **kwargs
110
+ )
111
+
112
+ return wrapped
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/nn.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Adapted from Guided-Diffusion repo (https://github.com/openai/guided-diffusion)
3
+ # ------------------------------------------------------------------------------------
4
+
5
+ import math
6
+
7
+ import torch as th
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+
12
+ class GroupNorm32(nn.GroupNorm):
13
+ def __init__(self, num_groups, num_channels, swish, eps=1e-5):
14
+ super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
15
+ self.swish = swish
16
+
17
+ def forward(self, x):
18
+ y = super().forward(x.float()).to(x.dtype)
19
+ if self.swish == 1.0:
20
+ y = F.silu(y)
21
+ elif self.swish:
22
+ y = y * F.sigmoid(y * float(self.swish))
23
+ return y
24
+
25
+
26
+ def conv_nd(dims, *args, **kwargs):
27
+ """
28
+ Create a 1D, 2D, or 3D convolution module.
29
+ """
30
+ if dims == 1:
31
+ return nn.Conv1d(*args, **kwargs)
32
+ elif dims == 2:
33
+ return nn.Conv2d(*args, **kwargs)
34
+ elif dims == 3:
35
+ return nn.Conv3d(*args, **kwargs)
36
+ raise ValueError(f"unsupported dimensions: {dims}")
37
+
38
+
39
+ def linear(*args, **kwargs):
40
+ """
41
+ Create a linear module.
42
+ """
43
+ return nn.Linear(*args, **kwargs)
44
+
45
+
46
+ def avg_pool_nd(dims, *args, **kwargs):
47
+ """
48
+ Create a 1D, 2D, or 3D average pooling module.
49
+ """
50
+ if dims == 1:
51
+ return nn.AvgPool1d(*args, **kwargs)
52
+ elif dims == 2:
53
+ return nn.AvgPool2d(*args, **kwargs)
54
+ elif dims == 3:
55
+ return nn.AvgPool3d(*args, **kwargs)
56
+ raise ValueError(f"unsupported dimensions: {dims}")
57
+
58
+
59
+ def zero_module(module):
60
+ """
61
+ Zero out the parameters of a module and return it.
62
+ """
63
+ for p in module.parameters():
64
+ p.detach().zero_()
65
+ return module
66
+
67
+
68
+ def scale_module(module, scale):
69
+ """
70
+ Scale the parameters of a module and return it.
71
+ """
72
+ for p in module.parameters():
73
+ p.detach().mul_(scale)
74
+ return module
75
+
76
+
77
+ def normalization(channels, swish=0.0):
78
+ """
79
+ Make a standard normalization layer, with an optional swish activation.
80
+
81
+ :param channels: number of input channels.
82
+ :return: an nn.Module for normalization.
83
+ """
84
+ return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)
85
+
86
+
87
+ def timestep_embedding(timesteps, dim, max_period=10000):
88
+ """
89
+ Create sinusoidal timestep embeddings.
90
+
91
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
92
+ These may be fractional.
93
+ :param dim: the dimension of the output.
94
+ :param max_period: controls the minimum frequency of the embeddings.
95
+ :return: an [N x dim] Tensor of positional embeddings.
96
+ """
97
+ half = dim // 2
98
+ freqs = th.exp(
99
+ -math.log(max_period)
100
+ * th.arange(start=0, end=half, dtype=th.float32, device=timesteps.device)
101
+ / half
102
+ )
103
+ args = timesteps[:, None].float() * freqs[None]
104
+ embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
105
+ if dim % 2:
106
+ embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
107
+ return embedding
108
+
109
+
110
+ def mean_flat(tensor):
111
+ """
112
+ Take the mean over all non-batch dimensions.
113
+ """
114
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/resample.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Modified from Guided-Diffusion (https://github.com/openai/guided-diffusion)
3
+ # ------------------------------------------------------------------------------------
4
+
5
+ from abc import abstractmethod
6
+
7
+ import torch as th
8
+
9
+
10
+ def create_named_schedule_sampler(name, diffusion):
11
+ """
12
+ Create a ScheduleSampler from a library of pre-defined samplers.
13
+
14
+ :param name: the name of the sampler.
15
+ :param diffusion: the diffusion object to sample for.
16
+ """
17
+ if name == "uniform":
18
+ return UniformSampler(diffusion)
19
+ else:
20
+ raise NotImplementedError(f"unknown schedule sampler: {name}")
21
+
22
+
23
+ class ScheduleSampler(th.nn.Module):
24
+ """
25
+ A distribution over timesteps in the diffusion process, intended to reduce
26
+ variance of the objective.
27
+
28
+ By default, samplers perform unbiased importance sampling, in which the
29
+ objective's mean is unchanged.
30
+ However, subclasses may override sample() to change how the resampled
31
+ terms are reweighted, allowing for actual changes in the objective.
32
+ """
33
+
34
+ @abstractmethod
35
+ def weights(self):
36
+ """
37
+ Get a numpy array of weights, one per diffusion step.
38
+
39
+ The weights needn't be normalized, but must be positive.
40
+ """
41
+
42
+ def sample(self, batch_size, device):
43
+ """
44
+ Importance-sample timesteps for a batch.
45
+
46
+ :param batch_size: the number of timesteps.
47
+ :param device: the torch device to save to.
48
+ :return: a tuple (timesteps, weights):
49
+ - timesteps: a tensor of timestep indices.
50
+ - weights: a tensor of weights to scale the resulting losses.
51
+ """
52
+ w = self.weights()
53
+ p = w / th.sum(w)
54
+ indices = p.multinomial(batch_size, replacement=True)
55
+ weights = 1 / (len(p) * p[indices])
56
+ return indices, weights
57
+
58
+
59
+ class UniformSampler(ScheduleSampler):
60
+ def __init__(self, diffusion):
61
+ super(UniformSampler, self).__init__()
62
+ self.diffusion = diffusion
63
+ self.register_buffer(
64
+ "_weights", th.ones([diffusion.num_timesteps]), persistent=False
65
+ )
66
+
67
+ def weights(self):
68
+ return self._weights
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/unet.py ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Modified from Guided-Diffusion (https://github.com/openai/guided-diffusion)
3
+ # ------------------------------------------------------------------------------------
4
+
5
+ import math
6
+ from abc import abstractmethod
7
+
8
+ import torch as th
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+
12
+ from .nn import (
13
+ avg_pool_nd,
14
+ conv_nd,
15
+ linear,
16
+ normalization,
17
+ timestep_embedding,
18
+ zero_module,
19
+ )
20
+ from .xf import LayerNorm
21
+
22
+
23
+ class TimestepBlock(nn.Module):
24
+ """
25
+ Any module where forward() takes timestep embeddings as a second argument.
26
+ """
27
+
28
+ @abstractmethod
29
+ def forward(self, x, emb):
30
+ """
31
+ Apply the module to `x` given `emb` timestep embeddings.
32
+ """
33
+
34
+
35
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
36
+ """
37
+ A sequential module that passes timestep embeddings to the children that
38
+ support it as an extra input.
39
+ """
40
+
41
+ def forward(self, x, emb, encoder_out=None, mask=None):
42
+ for layer in self:
43
+ if isinstance(layer, TimestepBlock):
44
+ x = layer(x, emb)
45
+ elif isinstance(layer, AttentionBlock):
46
+ x = layer(x, encoder_out, mask=mask)
47
+ else:
48
+ x = layer(x)
49
+ return x
50
+
51
+
52
+ class Upsample(nn.Module):
53
+ """
54
+ An upsampling layer with an optional convolution.
55
+
56
+ :param channels: channels in the inputs and outputs.
57
+ :param use_conv: a bool determining if a convolution is applied.
58
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
59
+ upsampling occurs in the inner-two dimensions.
60
+ """
61
+
62
+ def __init__(self, channels, use_conv, dims=2, out_channels=None):
63
+ super().__init__()
64
+ self.channels = channels
65
+ self.out_channels = out_channels or channels
66
+ self.use_conv = use_conv
67
+ self.dims = dims
68
+ if use_conv:
69
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
70
+
71
+ def forward(self, x):
72
+ assert x.shape[1] == self.channels
73
+ if self.dims == 3:
74
+ x = F.interpolate(
75
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
76
+ )
77
+ else:
78
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
79
+ if self.use_conv:
80
+ x = self.conv(x)
81
+ return x
82
+
83
+
84
+ class Downsample(nn.Module):
85
+ """
86
+ A downsampling layer with an optional convolution.
87
+
88
+ :param channels: channels in the inputs and outputs.
89
+ :param use_conv: a bool determining if a convolution is applied.
90
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
91
+ downsampling occurs in the inner-two dimensions.
92
+ """
93
+
94
+ def __init__(self, channels, use_conv, dims=2, out_channels=None):
95
+ super().__init__()
96
+ self.channels = channels
97
+ self.out_channels = out_channels or channels
98
+ self.use_conv = use_conv
99
+ self.dims = dims
100
+ stride = 2 if dims != 3 else (1, 2, 2)
101
+ if use_conv:
102
+ self.op = conv_nd(
103
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=1
104
+ )
105
+ else:
106
+ assert self.channels == self.out_channels
107
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
108
+
109
+ def forward(self, x):
110
+ assert x.shape[1] == self.channels
111
+ return self.op(x)
112
+
113
+
114
+ class ResBlock(TimestepBlock):
115
+ """
116
+ A residual block that can optionally change the number of channels.
117
+
118
+ :param channels: the number of input channels.
119
+ :param emb_channels: the number of timestep embedding channels.
120
+ :param dropout: the rate of dropout.
121
+ :param out_channels: if specified, the number of out channels.
122
+ :param use_conv: if True and out_channels is specified, use a spatial
123
+ convolution instead of a smaller 1x1 convolution to change the
124
+ channels in the skip connection.
125
+ :param dims: determines if the signal is 1D, 2D, or 3D.
126
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
127
+ :param up: if True, use this block for upsampling.
128
+ :param down: if True, use this block for downsampling.
129
+ """
130
+
131
+ def __init__(
132
+ self,
133
+ channels,
134
+ emb_channels,
135
+ dropout,
136
+ out_channels=None,
137
+ use_conv=False,
138
+ use_scale_shift_norm=False,
139
+ dims=2,
140
+ use_checkpoint=False,
141
+ up=False,
142
+ down=False,
143
+ ):
144
+ super().__init__()
145
+ self.channels = channels
146
+ self.emb_channels = emb_channels
147
+ self.dropout = dropout
148
+ self.out_channels = out_channels or channels
149
+ self.use_conv = use_conv
150
+ self.use_checkpoint = use_checkpoint
151
+ self.use_scale_shift_norm = use_scale_shift_norm
152
+
153
+ self.in_layers = nn.Sequential(
154
+ normalization(channels, swish=1.0),
155
+ nn.Identity(),
156
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
157
+ )
158
+
159
+ self.updown = up or down
160
+
161
+ if up:
162
+ self.h_upd = Upsample(channels, False, dims)
163
+ self.x_upd = Upsample(channels, False, dims)
164
+ elif down:
165
+ self.h_upd = Downsample(channels, False, dims)
166
+ self.x_upd = Downsample(channels, False, dims)
167
+ else:
168
+ self.h_upd = self.x_upd = nn.Identity()
169
+
170
+ self.emb_layers = nn.Sequential(
171
+ nn.SiLU(),
172
+ linear(
173
+ emb_channels,
174
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
175
+ ),
176
+ )
177
+ self.out_layers = nn.Sequential(
178
+ normalization(
179
+ self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0
180
+ ),
181
+ nn.SiLU() if use_scale_shift_norm else nn.Identity(),
182
+ nn.Dropout(p=dropout),
183
+ zero_module(
184
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
185
+ ),
186
+ )
187
+
188
+ if self.out_channels == channels:
189
+ self.skip_connection = nn.Identity()
190
+ elif use_conv:
191
+ self.skip_connection = conv_nd(
192
+ dims, channels, self.out_channels, 3, padding=1
193
+ )
194
+ else:
195
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
196
+
197
+ def forward(self, x, emb):
198
+ """
199
+ Apply the block to a Tensor, conditioned on a timestep embedding.
200
+
201
+ :param x: an [N x C x ...] Tensor of features.
202
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
203
+ :return: an [N x C x ...] Tensor of outputs.
204
+ """
205
+ if self.updown:
206
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
207
+ h = in_rest(x)
208
+ h = self.h_upd(h)
209
+ x = self.x_upd(x)
210
+ h = in_conv(h)
211
+ else:
212
+ h = self.in_layers(x)
213
+ emb_out = self.emb_layers(emb)
214
+ while len(emb_out.shape) < len(h.shape):
215
+ emb_out = emb_out[..., None]
216
+ if self.use_scale_shift_norm:
217
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
218
+ scale, shift = th.chunk(emb_out, 2, dim=1)
219
+ h = out_norm(h) * (1 + scale) + shift
220
+ h = out_rest(h)
221
+ else:
222
+ h = h + emb_out
223
+ h = self.out_layers(h)
224
+ return self.skip_connection(x) + h
225
+
226
+
227
+ class ResBlockNoTimeEmbedding(nn.Module):
228
+ """
229
+ A residual block without time embedding
230
+
231
+ :param channels: the number of input channels.
232
+ :param emb_channels: the number of timestep embedding channels.
233
+ :param dropout: the rate of dropout.
234
+ :param out_channels: if specified, the number of out channels.
235
+ :param use_conv: if True and out_channels is specified, use a spatial
236
+ convolution instead of a smaller 1x1 convolution to change the
237
+ channels in the skip connection.
238
+ :param dims: determines if the signal is 1D, 2D, or 3D.
239
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
240
+ :param up: if True, use this block for upsampling.
241
+ :param down: if True, use this block for downsampling.
242
+ """
243
+
244
+ def __init__(
245
+ self,
246
+ channels,
247
+ emb_channels,
248
+ dropout,
249
+ out_channels=None,
250
+ use_conv=False,
251
+ dims=2,
252
+ use_checkpoint=False,
253
+ up=False,
254
+ down=False,
255
+ **kwargs,
256
+ ):
257
+ super().__init__()
258
+ self.channels = channels
259
+ self.emb_channels = emb_channels
260
+ self.dropout = dropout
261
+ self.out_channels = out_channels or channels
262
+ self.use_conv = use_conv
263
+ self.use_checkpoint = use_checkpoint
264
+
265
+ self.in_layers = nn.Sequential(
266
+ normalization(channels, swish=1.0),
267
+ nn.Identity(),
268
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
269
+ )
270
+
271
+ self.updown = up or down
272
+
273
+ if up:
274
+ self.h_upd = Upsample(channels, False, dims)
275
+ self.x_upd = Upsample(channels, False, dims)
276
+ elif down:
277
+ self.h_upd = Downsample(channels, False, dims)
278
+ self.x_upd = Downsample(channels, False, dims)
279
+ else:
280
+ self.h_upd = self.x_upd = nn.Identity()
281
+
282
+ self.out_layers = nn.Sequential(
283
+ normalization(self.out_channels, swish=1.0),
284
+ nn.Dropout(p=dropout),
285
+ zero_module(
286
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
287
+ ),
288
+ )
289
+
290
+ if self.out_channels == channels:
291
+ self.skip_connection = nn.Identity()
292
+ elif use_conv:
293
+ self.skip_connection = conv_nd(
294
+ dims, channels, self.out_channels, 3, padding=1
295
+ )
296
+ else:
297
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
298
+
299
+ def forward(self, x, emb=None):
300
+ """
301
+ Apply the block to a Tensor, NOT conditioned on a timestep embedding.
302
+
303
+ :param x: an [N x C x ...] Tensor of features.
304
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
305
+ :return: an [N x C x ...] Tensor of outputs.
306
+ """
307
+ assert emb is None
308
+
309
+ if self.updown:
310
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
311
+ h = in_rest(x)
312
+ h = self.h_upd(h)
313
+ x = self.x_upd(x)
314
+ h = in_conv(h)
315
+ else:
316
+ h = self.in_layers(x)
317
+ h = self.out_layers(h)
318
+ return self.skip_connection(x) + h
319
+
320
+
321
+ class AttentionBlock(nn.Module):
322
+ """
323
+ An attention block that allows spatial positions to attend to each other.
324
+
325
+ Originally ported from here, but adapted to the N-d case.
326
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
327
+ """
328
+
329
+ def __init__(
330
+ self,
331
+ channels,
332
+ num_heads=1,
333
+ num_head_channels=-1,
334
+ use_checkpoint=False,
335
+ encoder_channels=None,
336
+ ):
337
+ super().__init__()
338
+ self.channels = channels
339
+ if num_head_channels == -1:
340
+ self.num_heads = num_heads
341
+ else:
342
+ assert (
343
+ channels % num_head_channels == 0
344
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
345
+ self.num_heads = channels // num_head_channels
346
+ self.use_checkpoint = use_checkpoint
347
+ self.norm = normalization(channels, swish=0.0)
348
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
349
+ self.attention = QKVAttention(self.num_heads)
350
+
351
+ if encoder_channels is not None:
352
+ self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1)
353
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
354
+
355
+ def forward(self, x, encoder_out=None, mask=None):
356
+ b, c, *spatial = x.shape
357
+ qkv = self.qkv(self.norm(x).view(b, c, -1))
358
+ if encoder_out is not None:
359
+ encoder_out = self.encoder_kv(encoder_out)
360
+ h = self.attention(qkv, encoder_out, mask=mask)
361
+ else:
362
+ h = self.attention(qkv)
363
+ h = self.proj_out(h)
364
+ return x + h.reshape(b, c, *spatial)
365
+
366
+
367
+ class QKVAttention(nn.Module):
368
+ """
369
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
370
+ """
371
+
372
+ def __init__(self, n_heads):
373
+ super().__init__()
374
+ self.n_heads = n_heads
375
+
376
+ def forward(self, qkv, encoder_kv=None, mask=None):
377
+ """
378
+ Apply QKV attention.
379
+
380
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
381
+ :return: an [N x (H * C) x T] tensor after attention.
382
+ """
383
+ bs, width, length = qkv.shape
384
+ assert width % (3 * self.n_heads) == 0
385
+ ch = width // (3 * self.n_heads)
386
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
387
+ if encoder_kv is not None:
388
+ assert encoder_kv.shape[1] == self.n_heads * ch * 2
389
+ ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
390
+ k = th.cat([ek, k], dim=-1)
391
+ v = th.cat([ev, v], dim=-1)
392
+ scale = 1 / math.sqrt(math.sqrt(ch))
393
+ weight = th.einsum("bct,bcs->bts", q * scale, k * scale)
394
+ if mask is not None:
395
+ mask = F.pad(mask, (0, length), value=0.0)
396
+ mask = (
397
+ mask.unsqueeze(1)
398
+ .expand(-1, self.n_heads, -1)
399
+ .reshape(bs * self.n_heads, 1, -1)
400
+ )
401
+ weight = weight + mask
402
+ weight = th.softmax(weight, dim=-1)
403
+ a = th.einsum("bts,bcs->bct", weight, v)
404
+ return a.reshape(bs, -1, length)
405
+
406
+
407
+ class UNetModel(nn.Module):
408
+ """
409
+ The full UNet model with attention and timestep embedding.
410
+
411
+ :param in_channels: channels in the input Tensor.
412
+ :param model_channels: base channel count for the model.
413
+ :param out_channels: channels in the output Tensor.
414
+ :param num_res_blocks: number of residual blocks per downsample.
415
+ :param attention_resolutions: a collection of downsample rates at which
416
+ attention will take place. May be a set, list, or tuple.
417
+ For example, if this contains 4, then at 4x downsampling, attention
418
+ will be used.
419
+ :param dropout: the dropout probability.
420
+ :param channel_mult: channel multiplier for each level of the UNet.
421
+ :param conv_resample: if True, use learned convolutions for upsampling and
422
+ downsampling.
423
+ :param dims: determines if the signal is 1D, 2D, or 3D.
424
+ :param clip_dim: dimension of clip feature.
425
+ :param num_classes: if specified (as an int), then this model will be
426
+ class-conditional with `num_classes` classes.
427
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
428
+ :param num_heads: the number of attention heads in each attention layer.
429
+ :param num_heads_channels: if specified, ignore num_heads and instead use
430
+ a fixed channel width per attention head.
431
+ :param num_heads_upsample: works with num_heads to set a different number
432
+ of heads for upsampling. Deprecated.
433
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
434
+ :param resblock_updown: use residual blocks for up/downsampling.
435
+ :param encoder_channels: use to make the dimension of query and kv same in AttentionBlock.
436
+ :param use_time_embedding: use time embedding for condition.
437
+ """
438
+
439
+ def __init__(
440
+ self,
441
+ in_channels,
442
+ model_channels,
443
+ out_channels,
444
+ num_res_blocks,
445
+ attention_resolutions,
446
+ dropout=0,
447
+ channel_mult=(1, 2, 4, 8),
448
+ conv_resample=True,
449
+ dims=2,
450
+ clip_dim=None,
451
+ use_checkpoint=False,
452
+ num_heads=1,
453
+ num_head_channels=-1,
454
+ num_heads_upsample=-1,
455
+ use_scale_shift_norm=False,
456
+ use_middle_attention=True,
457
+ resblock_updown=False,
458
+ encoder_channels=None,
459
+ use_time_embedding=True,
460
+ ):
461
+ super().__init__()
462
+
463
+ if num_heads_upsample == -1:
464
+ num_heads_upsample = num_heads
465
+
466
+ self.in_channels = in_channels
467
+ self.model_channels = model_channels
468
+ self.out_channels = out_channels
469
+ self.num_res_blocks = num_res_blocks
470
+ self.attention_resolutions = attention_resolutions
471
+ self.dropout = dropout
472
+ self.channel_mult = channel_mult
473
+ self.conv_resample = conv_resample
474
+ self.clip_dim = clip_dim
475
+ self.use_checkpoint = use_checkpoint
476
+ self.num_heads = num_heads
477
+ self.num_head_channels = num_head_channels
478
+ self.num_heads_upsample = num_heads_upsample
479
+ self.use_middle_attention = use_middle_attention
480
+ self.use_time_embedding = use_time_embedding
481
+
482
+ if self.use_time_embedding:
483
+ time_embed_dim = model_channels * 4
484
+ self.time_embed = nn.Sequential(
485
+ linear(model_channels, time_embed_dim),
486
+ nn.SiLU(),
487
+ linear(time_embed_dim, time_embed_dim),
488
+ )
489
+
490
+ if self.clip_dim is not None:
491
+ self.clip_emb = nn.Linear(clip_dim, time_embed_dim)
492
+ else:
493
+ time_embed_dim = None
494
+
495
+ CustomResidualBlock = (
496
+ ResBlock if self.use_time_embedding else ResBlockNoTimeEmbedding
497
+ )
498
+ ch = input_ch = int(channel_mult[0] * model_channels)
499
+ self.input_blocks = nn.ModuleList(
500
+ [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
501
+ )
502
+ self._feature_size = ch
503
+ input_block_chans = [ch]
504
+ ds = 1
505
+ for level, mult in enumerate(channel_mult):
506
+ for _ in range(num_res_blocks):
507
+ layers = [
508
+ CustomResidualBlock(
509
+ ch,
510
+ time_embed_dim,
511
+ dropout,
512
+ out_channels=int(mult * model_channels),
513
+ dims=dims,
514
+ use_checkpoint=use_checkpoint,
515
+ use_scale_shift_norm=use_scale_shift_norm,
516
+ )
517
+ ]
518
+ ch = int(mult * model_channels)
519
+ if ds in attention_resolutions:
520
+ layers.append(
521
+ AttentionBlock(
522
+ ch,
523
+ use_checkpoint=use_checkpoint,
524
+ num_heads=num_heads,
525
+ num_head_channels=num_head_channels,
526
+ encoder_channels=encoder_channels,
527
+ )
528
+ )
529
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
530
+ self._feature_size += ch
531
+ input_block_chans.append(ch)
532
+ if level != len(channel_mult) - 1:
533
+ out_ch = ch
534
+ self.input_blocks.append(
535
+ TimestepEmbedSequential(
536
+ CustomResidualBlock(
537
+ ch,
538
+ time_embed_dim,
539
+ dropout,
540
+ out_channels=out_ch,
541
+ dims=dims,
542
+ use_checkpoint=use_checkpoint,
543
+ use_scale_shift_norm=use_scale_shift_norm,
544
+ down=True,
545
+ )
546
+ if resblock_updown
547
+ else Downsample(
548
+ ch, conv_resample, dims=dims, out_channels=out_ch
549
+ )
550
+ )
551
+ )
552
+ ch = out_ch
553
+ input_block_chans.append(ch)
554
+ ds *= 2
555
+ self._feature_size += ch
556
+
557
+ self.middle_block = TimestepEmbedSequential(
558
+ CustomResidualBlock(
559
+ ch,
560
+ time_embed_dim,
561
+ dropout,
562
+ dims=dims,
563
+ use_checkpoint=use_checkpoint,
564
+ use_scale_shift_norm=use_scale_shift_norm,
565
+ ),
566
+ *(
567
+ AttentionBlock(
568
+ ch,
569
+ use_checkpoint=use_checkpoint,
570
+ num_heads=num_heads,
571
+ num_head_channels=num_head_channels,
572
+ encoder_channels=encoder_channels,
573
+ ),
574
+ )
575
+ if self.use_middle_attention
576
+ else tuple(), # add AttentionBlock or not
577
+ CustomResidualBlock(
578
+ ch,
579
+ time_embed_dim,
580
+ dropout,
581
+ dims=dims,
582
+ use_checkpoint=use_checkpoint,
583
+ use_scale_shift_norm=use_scale_shift_norm,
584
+ ),
585
+ )
586
+ self._feature_size += ch
587
+
588
+ self.output_blocks = nn.ModuleList([])
589
+ for level, mult in list(enumerate(channel_mult))[::-1]:
590
+ for i in range(num_res_blocks + 1):
591
+ ich = input_block_chans.pop()
592
+ layers = [
593
+ CustomResidualBlock(
594
+ ch + ich,
595
+ time_embed_dim,
596
+ dropout,
597
+ out_channels=int(model_channels * mult),
598
+ dims=dims,
599
+ use_checkpoint=use_checkpoint,
600
+ use_scale_shift_norm=use_scale_shift_norm,
601
+ )
602
+ ]
603
+ ch = int(model_channels * mult)
604
+ if ds in attention_resolutions:
605
+ layers.append(
606
+ AttentionBlock(
607
+ ch,
608
+ use_checkpoint=use_checkpoint,
609
+ num_heads=num_heads_upsample,
610
+ num_head_channels=num_head_channels,
611
+ encoder_channels=encoder_channels,
612
+ )
613
+ )
614
+ if level and i == num_res_blocks:
615
+ out_ch = ch
616
+ layers.append(
617
+ CustomResidualBlock(
618
+ ch,
619
+ time_embed_dim,
620
+ dropout,
621
+ out_channels=out_ch,
622
+ dims=dims,
623
+ use_checkpoint=use_checkpoint,
624
+ use_scale_shift_norm=use_scale_shift_norm,
625
+ up=True,
626
+ )
627
+ if resblock_updown
628
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
629
+ )
630
+ ds //= 2
631
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
632
+ self._feature_size += ch
633
+
634
+ self.out = nn.Sequential(
635
+ normalization(ch, swish=1.0),
636
+ nn.Identity(),
637
+ zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
638
+ )
639
+
640
+ def forward(self, x, timesteps, y=None):
641
+ """
642
+ Apply the model to an input batch.
643
+
644
+ :param x: an [N x C x ...] Tensor of inputs.
645
+ :param timesteps: a 1-D batch of timesteps.
646
+ :param y: an [N] Tensor of labels, if class-conditional.
647
+ :return: an [N x C x ...] Tensor of outputs.
648
+ """
649
+ assert (y is not None) == (
650
+ self.clip_dim is not None
651
+ ), "must specify y if and only if the model is clip-rep-conditional"
652
+
653
+ hs = []
654
+ if self.use_time_embedding:
655
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
656
+ if self.clip_dim is not None:
657
+ emb = emb + self.clip_emb(y)
658
+ else:
659
+ emb = None
660
+
661
+ h = x
662
+ for module in self.input_blocks:
663
+ h = module(h, emb)
664
+ hs.append(h)
665
+ h = self.middle_block(h, emb)
666
+ for module in self.output_blocks:
667
+ h = th.cat([h, hs.pop()], dim=1)
668
+ h = module(h, emb)
669
+
670
+ return self.out(h)
671
+
672
+
673
+ class SuperResUNetModel(UNetModel):
674
+ """
675
+ A UNetModel that performs super-resolution.
676
+
677
+ Expects an extra kwarg `low_res` to condition on a low-resolution image.
678
+ Assumes that the shape of low-resolution and the input should be the same.
679
+ """
680
+
681
+ def __init__(self, *args, **kwargs):
682
+ if "in_channels" in kwargs:
683
+ kwargs = dict(kwargs)
684
+ kwargs["in_channels"] = kwargs["in_channels"] * 2
685
+ else:
686
+ # Curse you, Python. Or really, just curse positional arguments :|.
687
+ args = list(args)
688
+ args[1] = args[1] * 2
689
+ super().__init__(*args, **kwargs)
690
+
691
+ def forward(self, x, timesteps, low_res=None, **kwargs):
692
+ _, _, new_height, new_width = x.shape
693
+ assert new_height == low_res.shape[2] and new_width == low_res.shape[3]
694
+
695
+ x = th.cat([x, low_res], dim=1)
696
+ return super().forward(x, timesteps, **kwargs)
697
+
698
+
699
+ class PLMImUNet(UNetModel):
700
+ """
701
+ A UNetModel that conditions on text with a pretrained text encoder in CLIP.
702
+
703
+ :param text_ctx: number of text tokens to expect.
704
+ :param xf_width: width of the transformer.
705
+ :param clip_emb_mult: #extra tokens by projecting clip text feature.
706
+ :param clip_emb_type: type of condition (here, we fix clip image feature).
707
+ :param clip_emb_drop: dropout rato of clip image feature for cfg.
708
+ """
709
+
710
+ def __init__(
711
+ self,
712
+ text_ctx,
713
+ xf_width,
714
+ *args,
715
+ clip_emb_mult=None,
716
+ clip_emb_type="image",
717
+ clip_emb_drop=0.0,
718
+ **kwargs,
719
+ ):
720
+ self.text_ctx = text_ctx
721
+ self.xf_width = xf_width
722
+ self.clip_emb_mult = clip_emb_mult
723
+ self.clip_emb_type = clip_emb_type
724
+ self.clip_emb_drop = clip_emb_drop
725
+
726
+ if not xf_width:
727
+ super().__init__(*args, **kwargs, encoder_channels=None)
728
+ else:
729
+ super().__init__(*args, **kwargs, encoder_channels=xf_width)
730
+
731
+ # Project text encoded feat seq from pre-trained text encoder in CLIP
732
+ self.text_seq_proj = nn.Sequential(
733
+ nn.Linear(self.clip_dim, xf_width),
734
+ LayerNorm(xf_width),
735
+ )
736
+ # Project CLIP text feat
737
+ self.text_feat_proj = nn.Linear(self.clip_dim, self.model_channels * 4)
738
+
739
+ assert clip_emb_mult is not None
740
+ assert clip_emb_type == "image"
741
+ assert self.clip_dim is not None, "CLIP representation dim should be specified"
742
+
743
+ self.clip_tok_proj = nn.Linear(
744
+ self.clip_dim, self.xf_width * self.clip_emb_mult
745
+ )
746
+ if self.clip_emb_drop > 0:
747
+ self.cf_param = nn.Parameter(th.empty(self.clip_dim, dtype=th.float32))
748
+
749
+ def proc_clip_emb_drop(self, feat):
750
+ if self.clip_emb_drop > 0:
751
+ bsz, feat_dim = feat.shape
752
+ assert (
753
+ feat_dim == self.clip_dim
754
+ ), f"CLIP input dim: {feat_dim}, model CLIP dim: {self.clip_dim}"
755
+ drop_idx = th.rand((bsz,), device=feat.device) < self.clip_emb_drop
756
+ feat = th.where(
757
+ drop_idx[..., None], self.cf_param[None].type_as(feat), feat
758
+ )
759
+ return feat
760
+
761
+ def forward(
762
+ self, x, timesteps, txt_feat=None, txt_feat_seq=None, mask=None, y=None
763
+ ):
764
+ bsz = x.shape[0]
765
+ hs = []
766
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
767
+ emb = emb + self.clip_emb(y)
768
+
769
+ xf_out = self.text_seq_proj(txt_feat_seq)
770
+ xf_out = xf_out.permute(0, 2, 1)
771
+ emb = emb + self.text_feat_proj(txt_feat)
772
+ xf_out = th.cat(
773
+ [
774
+ self.clip_tok_proj(y).reshape(bsz, -1, self.clip_emb_mult),
775
+ xf_out,
776
+ ],
777
+ dim=2,
778
+ )
779
+ mask = F.pad(mask, (self.clip_emb_mult, 0), value=True)
780
+ mask = th.where(mask, 0.0, float("-inf"))
781
+
782
+ h = x
783
+ for module in self.input_blocks:
784
+ h = module(h, emb, xf_out, mask=mask)
785
+ hs.append(h)
786
+ h = self.middle_block(h, emb, xf_out, mask=mask)
787
+ for module in self.output_blocks:
788
+ h = th.cat([h, hs.pop()], dim=1)
789
+ h = module(h, emb, xf_out, mask=mask)
790
+ h = self.out(h)
791
+
792
+ return h
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/xf.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Adapted from the repos below:
3
+ # (a) Guided-Diffusion (https://github.com/openai/guided-diffusion)
4
+ # (b) CLIP ViT (https://github.com/openai/CLIP/)
5
+ # ------------------------------------------------------------------------------------
6
+
7
+ import math
8
+
9
+ import torch as th
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+ from .nn import timestep_embedding
14
+
15
+
16
+ def convert_module_to_f16(param):
17
+ """
18
+ Convert primitive modules to float16.
19
+ """
20
+ if isinstance(param, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
21
+ param.weight.data = param.weight.data.half()
22
+ if param.bias is not None:
23
+ param.bias.data = param.bias.data.half()
24
+
25
+
26
+ class LayerNorm(nn.LayerNorm):
27
+ """
28
+ Implementation that supports fp16 inputs but fp32 gains/biases.
29
+ """
30
+
31
+ def forward(self, x: th.Tensor):
32
+ return super().forward(x.float()).to(x.dtype)
33
+
34
+
35
+ class MultiheadAttention(nn.Module):
36
+ def __init__(self, n_ctx, width, heads):
37
+ super().__init__()
38
+ self.n_ctx = n_ctx
39
+ self.width = width
40
+ self.heads = heads
41
+ self.c_qkv = nn.Linear(width, width * 3)
42
+ self.c_proj = nn.Linear(width, width)
43
+ self.attention = QKVMultiheadAttention(heads, n_ctx)
44
+
45
+ def forward(self, x, mask=None):
46
+ x = self.c_qkv(x)
47
+ x = self.attention(x, mask=mask)
48
+ x = self.c_proj(x)
49
+ return x
50
+
51
+
52
+ class MLP(nn.Module):
53
+ def __init__(self, width):
54
+ super().__init__()
55
+ self.width = width
56
+ self.c_fc = nn.Linear(width, width * 4)
57
+ self.c_proj = nn.Linear(width * 4, width)
58
+ self.gelu = nn.GELU()
59
+
60
+ def forward(self, x):
61
+ return self.c_proj(self.gelu(self.c_fc(x)))
62
+
63
+
64
+ class QKVMultiheadAttention(nn.Module):
65
+ def __init__(self, n_heads: int, n_ctx: int):
66
+ super().__init__()
67
+ self.n_heads = n_heads
68
+ self.n_ctx = n_ctx
69
+
70
+ def forward(self, qkv, mask=None):
71
+ bs, n_ctx, width = qkv.shape
72
+ attn_ch = width // self.n_heads // 3
73
+ scale = 1 / math.sqrt(math.sqrt(attn_ch))
74
+ qkv = qkv.view(bs, n_ctx, self.n_heads, -1)
75
+ q, k, v = th.split(qkv, attn_ch, dim=-1)
76
+ weight = th.einsum("bthc,bshc->bhts", q * scale, k * scale)
77
+ wdtype = weight.dtype
78
+ if mask is not None:
79
+ weight = weight + mask[:, None, ...]
80
+ weight = th.softmax(weight, dim=-1).type(wdtype)
81
+ return th.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
82
+
83
+
84
+ class ResidualAttentionBlock(nn.Module):
85
+ def __init__(
86
+ self,
87
+ n_ctx: int,
88
+ width: int,
89
+ heads: int,
90
+ ):
91
+ super().__init__()
92
+
93
+ self.attn = MultiheadAttention(
94
+ n_ctx,
95
+ width,
96
+ heads,
97
+ )
98
+ self.ln_1 = LayerNorm(width)
99
+ self.mlp = MLP(width)
100
+ self.ln_2 = LayerNorm(width)
101
+
102
+ def forward(self, x, mask=None):
103
+ x = x + self.attn(self.ln_1(x), mask=mask)
104
+ x = x + self.mlp(self.ln_2(x))
105
+ return x
106
+
107
+
108
+ class Transformer(nn.Module):
109
+ def __init__(
110
+ self,
111
+ n_ctx: int,
112
+ width: int,
113
+ layers: int,
114
+ heads: int,
115
+ ):
116
+ super().__init__()
117
+ self.n_ctx = n_ctx
118
+ self.width = width
119
+ self.layers = layers
120
+ self.resblocks = nn.ModuleList(
121
+ [
122
+ ResidualAttentionBlock(
123
+ n_ctx,
124
+ width,
125
+ heads,
126
+ )
127
+ for _ in range(layers)
128
+ ]
129
+ )
130
+
131
+ def forward(self, x, mask=None):
132
+ for block in self.resblocks:
133
+ x = block(x, mask=mask)
134
+ return x
135
+
136
+
137
+ class PriorTransformer(nn.Module):
138
+ """
139
+ A Causal Transformer that conditions on CLIP text embedding, text.
140
+
141
+ :param text_ctx: number of text tokens to expect.
142
+ :param xf_width: width of the transformer.
143
+ :param xf_layers: depth of the transformer.
144
+ :param xf_heads: heads in the transformer.
145
+ :param xf_final_ln: use a LayerNorm after the output layer.
146
+ :param clip_dim: dimension of clip feature.
147
+ """
148
+
149
+ def __init__(
150
+ self,
151
+ text_ctx,
152
+ xf_width,
153
+ xf_layers,
154
+ xf_heads,
155
+ xf_final_ln,
156
+ clip_dim,
157
+ ):
158
+ super().__init__()
159
+
160
+ self.text_ctx = text_ctx
161
+ self.xf_width = xf_width
162
+ self.xf_layers = xf_layers
163
+ self.xf_heads = xf_heads
164
+ self.clip_dim = clip_dim
165
+ self.ext_len = 4
166
+
167
+ self.time_embed = nn.Sequential(
168
+ nn.Linear(xf_width, xf_width),
169
+ nn.SiLU(),
170
+ nn.Linear(xf_width, xf_width),
171
+ )
172
+ self.text_enc_proj = nn.Linear(clip_dim, xf_width)
173
+ self.text_emb_proj = nn.Linear(clip_dim, xf_width)
174
+ self.clip_img_proj = nn.Linear(clip_dim, xf_width)
175
+ self.out_proj = nn.Linear(xf_width, clip_dim)
176
+ self.transformer = Transformer(
177
+ text_ctx + self.ext_len,
178
+ xf_width,
179
+ xf_layers,
180
+ xf_heads,
181
+ )
182
+ if xf_final_ln:
183
+ self.final_ln = LayerNorm(xf_width)
184
+ else:
185
+ self.final_ln = None
186
+
187
+ self.positional_embedding = nn.Parameter(
188
+ th.empty(1, text_ctx + self.ext_len, xf_width)
189
+ )
190
+ self.prd_emb = nn.Parameter(th.randn((1, 1, xf_width)))
191
+
192
+ nn.init.normal_(self.prd_emb, std=0.01)
193
+ nn.init.normal_(self.positional_embedding, std=0.01)
194
+
195
+ def forward(
196
+ self,
197
+ x,
198
+ timesteps,
199
+ text_emb=None,
200
+ text_enc=None,
201
+ mask=None,
202
+ causal_mask=None,
203
+ ):
204
+ bsz = x.shape[0]
205
+ mask = F.pad(mask, (0, self.ext_len), value=True)
206
+
207
+ t_emb = self.time_embed(timestep_embedding(timesteps, self.xf_width))
208
+ text_enc = self.text_enc_proj(text_enc)
209
+ text_emb = self.text_emb_proj(text_emb)
210
+ x = self.clip_img_proj(x)
211
+
212
+ input_seq = [
213
+ text_enc,
214
+ text_emb[:, None, :],
215
+ t_emb[:, None, :],
216
+ x[:, None, :],
217
+ self.prd_emb.to(x.dtype).expand(bsz, -1, -1),
218
+ ]
219
+ input = th.cat(input_seq, dim=1)
220
+ input = input + self.positional_embedding.to(input.dtype)
221
+
222
+ mask = th.where(mask, 0.0, float("-inf"))
223
+ mask = (mask[:, None, :] + causal_mask).to(input.dtype)
224
+
225
+ out = self.transformer(input, mask=mask)
226
+ if self.final_ln is not None:
227
+ out = self.final_ln(out)
228
+
229
+ out = self.out_proj(out[:, -1])
230
+
231
+ return out
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/sampler.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------------
2
+ # Karlo-v1.0.alpha
3
+ # Copyright (c) 2022 KakaoBrain. All Rights Reserved.
4
+
5
+ # source: https://github.com/kakaobrain/karlo/blob/3c68a50a16d76b48a15c181d1c5a5e0879a90f85/karlo/sampler/t2i.py#L15
6
+ # ------------------------------------------------------------------------------------
7
+
8
+ from typing import Iterator
9
+
10
+ import torch
11
+ import torchvision.transforms.functional as TVF
12
+ from torchvision.transforms import InterpolationMode
13
+
14
+ from .template import BaseSampler, CKPT_PATH
15
+
16
+
17
+ class T2ISampler(BaseSampler):
18
+ """
19
+ A sampler for text-to-image generation.
20
+ :param root_dir: directory for model checkpoints.
21
+ :param sampling_type: ["default", "fast"]
22
+ """
23
+
24
+ def __init__(
25
+ self,
26
+ root_dir: str,
27
+ sampling_type: str = "default",
28
+ ):
29
+ super().__init__(root_dir, sampling_type)
30
+
31
+ @classmethod
32
+ def from_pretrained(
33
+ cls,
34
+ root_dir: str,
35
+ clip_model_path: str,
36
+ clip_stat_path: str,
37
+ sampling_type: str = "default",
38
+ ):
39
+
40
+ model = cls(
41
+ root_dir=root_dir,
42
+ sampling_type=sampling_type,
43
+ )
44
+ model.load_clip(clip_model_path)
45
+ model.load_prior(
46
+ f"{CKPT_PATH['prior']}",
47
+ clip_stat_path=clip_stat_path,
48
+ prior_config="configs/karlo/prior_1B_vit_l.yaml"
49
+ )
50
+ model.load_decoder(f"{CKPT_PATH['decoder']}", decoder_config="configs/karlo/decoder_900M_vit_l.yaml")
51
+ model.load_sr_64_256(CKPT_PATH["sr_256"], sr_config="configs/karlo/improved_sr_64_256_1.4B.yaml")
52
+ return model
53
+
54
+ def preprocess(
55
+ self,
56
+ prompt: str,
57
+ bsz: int,
58
+ ):
59
+ """Setup prompts & cfg scales"""
60
+ prompts_batch = [prompt for _ in range(bsz)]
61
+
62
+ prior_cf_scales_batch = [self._prior_cf_scale] * len(prompts_batch)
63
+ prior_cf_scales_batch = torch.tensor(prior_cf_scales_batch, device="cuda")
64
+
65
+ decoder_cf_scales_batch = [self._decoder_cf_scale] * len(prompts_batch)
66
+ decoder_cf_scales_batch = torch.tensor(decoder_cf_scales_batch, device="cuda")
67
+
68
+ """ Get CLIP text feature """
69
+ clip_model = self._clip
70
+ tokenizer = self._tokenizer
71
+ max_txt_length = self._prior.model.text_ctx
72
+
73
+ tok, mask = tokenizer.padded_tokens_and_mask(prompts_batch, max_txt_length)
74
+ cf_token, cf_mask = tokenizer.padded_tokens_and_mask([""], max_txt_length)
75
+ if not (cf_token.shape == tok.shape):
76
+ cf_token = cf_token.expand(tok.shape[0], -1)
77
+ cf_mask = cf_mask.expand(tok.shape[0], -1)
78
+
79
+ tok = torch.cat([tok, cf_token], dim=0)
80
+ mask = torch.cat([mask, cf_mask], dim=0)
81
+
82
+ tok, mask = tok.to(device="cuda"), mask.to(device="cuda")
83
+ txt_feat, txt_feat_seq = clip_model.encode_text(tok)
84
+
85
+ return (
86
+ prompts_batch,
87
+ prior_cf_scales_batch,
88
+ decoder_cf_scales_batch,
89
+ txt_feat,
90
+ txt_feat_seq,
91
+ tok,
92
+ mask,
93
+ )
94
+
95
+ def __call__(
96
+ self,
97
+ prompt: str,
98
+ bsz: int,
99
+ progressive_mode=None,
100
+ ) -> Iterator[torch.Tensor]:
101
+ assert progressive_mode in ("loop", "stage", "final")
102
+ with torch.no_grad(), torch.cuda.amp.autocast():
103
+ (
104
+ prompts_batch,
105
+ prior_cf_scales_batch,
106
+ decoder_cf_scales_batch,
107
+ txt_feat,
108
+ txt_feat_seq,
109
+ tok,
110
+ mask,
111
+ ) = self.preprocess(
112
+ prompt,
113
+ bsz,
114
+ )
115
+
116
+ """ Transform CLIP text feature into image feature """
117
+ img_feat = self._prior(
118
+ txt_feat,
119
+ txt_feat_seq,
120
+ mask,
121
+ prior_cf_scales_batch,
122
+ timestep_respacing=self._prior_sm,
123
+ )
124
+
125
+ """ Generate 64x64px images """
126
+ images_64_outputs = self._decoder(
127
+ txt_feat,
128
+ txt_feat_seq,
129
+ tok,
130
+ mask,
131
+ img_feat,
132
+ cf_guidance_scales=decoder_cf_scales_batch,
133
+ timestep_respacing=self._decoder_sm,
134
+ )
135
+
136
+ images_64 = None
137
+ for k, out in enumerate(images_64_outputs):
138
+ images_64 = out
139
+ if progressive_mode == "loop":
140
+ yield torch.clamp(out * 0.5 + 0.5, 0.0, 1.0)
141
+ if progressive_mode == "stage":
142
+ yield torch.clamp(out * 0.5 + 0.5, 0.0, 1.0)
143
+
144
+ images_64 = torch.clamp(images_64, -1, 1)
145
+
146
+ """ Upsample 64x64 to 256x256 """
147
+ images_256 = TVF.resize(
148
+ images_64,
149
+ [256, 256],
150
+ interpolation=InterpolationMode.BICUBIC,
151
+ antialias=True,
152
+ )
153
+ images_256_outputs = self._sr_64_256(
154
+ images_256, timestep_respacing=self._sr_sm
155
+ )
156
+
157
+ for k, out in enumerate(images_256_outputs):
158
+ images_256 = out
159
+ if progressive_mode == "loop":
160
+ yield torch.clamp(out * 0.5 + 0.5, 0.0, 1.0)
161
+ if progressive_mode == "stage":
162
+ yield torch.clamp(out * 0.5 + 0.5, 0.0, 1.0)
163
+
164
+ yield torch.clamp(images_256 * 0.5 + 0.5, 0.0, 1.0)
165
+
166
+
167
+ class PriorSampler(BaseSampler):
168
+ """
169
+ A sampler for text-to-image generation, but only the prior.
170
+ :param root_dir: directory for model checkpoints.
171
+ :param sampling_type: ["default", "fast"]
172
+ """
173
+
174
+ def __init__(
175
+ self,
176
+ root_dir: str,
177
+ sampling_type: str = "default",
178
+ ):
179
+ super().__init__(root_dir, sampling_type)
180
+
181
+ @classmethod
182
+ def from_pretrained(
183
+ cls,
184
+ root_dir: str,
185
+ clip_model_path: str,
186
+ clip_stat_path: str,
187
+ sampling_type: str = "default",
188
+ ):
189
+ model = cls(
190
+ root_dir=root_dir,
191
+ sampling_type=sampling_type,
192
+ )
193
+ model.load_clip(clip_model_path)
194
+ model.load_prior(
195
+ f"{CKPT_PATH['prior']}",
196
+ clip_stat_path=clip_stat_path,
197
+ prior_config="configs/karlo/prior_1B_vit_l.yaml"
198
+ )
199
+ return model
200
+
201
+ def preprocess(
202
+ self,
203
+ prompt: str,
204
+ bsz: int,
205
+ ):
206
+ """Setup prompts & cfg scales"""
207
+ prompts_batch = [prompt for _ in range(bsz)]
208
+
209
+ prior_cf_scales_batch = [self._prior_cf_scale] * len(prompts_batch)
210
+ prior_cf_scales_batch = torch.tensor(prior_cf_scales_batch, device="cuda")
211
+
212
+ decoder_cf_scales_batch = [self._decoder_cf_scale] * len(prompts_batch)
213
+ decoder_cf_scales_batch = torch.tensor(decoder_cf_scales_batch, device="cuda")
214
+
215
+ """ Get CLIP text feature """
216
+ clip_model = self._clip
217
+ tokenizer = self._tokenizer
218
+ max_txt_length = self._prior.model.text_ctx
219
+
220
+ tok, mask = tokenizer.padded_tokens_and_mask(prompts_batch, max_txt_length)
221
+ cf_token, cf_mask = tokenizer.padded_tokens_and_mask([""], max_txt_length)
222
+ if not (cf_token.shape == tok.shape):
223
+ cf_token = cf_token.expand(tok.shape[0], -1)
224
+ cf_mask = cf_mask.expand(tok.shape[0], -1)
225
+
226
+ tok = torch.cat([tok, cf_token], dim=0)
227
+ mask = torch.cat([mask, cf_mask], dim=0)
228
+
229
+ tok, mask = tok.to(device="cuda"), mask.to(device="cuda")
230
+ txt_feat, txt_feat_seq = clip_model.encode_text(tok)
231
+
232
+ return (
233
+ prompts_batch,
234
+ prior_cf_scales_batch,
235
+ decoder_cf_scales_batch,
236
+ txt_feat,
237
+ txt_feat_seq,
238
+ tok,
239
+ mask,
240
+ )
241
+
242
+ def __call__(
243
+ self,
244
+ prompt: str,
245
+ bsz: int,
246
+ progressive_mode=None,
247
+ ) -> Iterator[torch.Tensor]:
248
+ assert progressive_mode in ("loop", "stage", "final")
249
+ with torch.no_grad(), torch.cuda.amp.autocast():
250
+ (
251
+ prompts_batch,
252
+ prior_cf_scales_batch,
253
+ decoder_cf_scales_batch,
254
+ txt_feat,
255
+ txt_feat_seq,
256
+ tok,
257
+ mask,
258
+ ) = self.preprocess(
259
+ prompt,
260
+ bsz,
261
+ )
262
+
263
+ """ Transform CLIP text feature into image feature """
264
+ img_feat = self._prior(
265
+ txt_feat,
266
+ txt_feat_seq,
267
+ mask,
268
+ prior_cf_scales_batch,
269
+ timestep_respacing=self._prior_sm,
270
+ )
271
+
272
+ yield img_feat