1af29e4a2e648127c5236914996e822389508dcfbc7ba8919ea3fe390311ea16
Browse files- repositories/stable-diffusion-stability-ai/ldm/models/diffusion/ddpm.py +1873 -0
- repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
- repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/dpm_solver.py +1163 -0
- repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/sampler.py +96 -0
- repositories/stable-diffusion-stability-ai/ldm/models/diffusion/plms.py +245 -0
- repositories/stable-diffusion-stability-ai/ldm/models/diffusion/sampling_util.py +22 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/__pycache__/ema.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/attention.py +341 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__init__.py +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/model.py +852 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/openaimodel.py +807 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/upscaling.py +81 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/util.py +278 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__init__.py +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/distributions/distributions.py +92 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/ema.py +80 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__init__.py +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__pycache__/modules.cpython-310.pyc +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/encoders/modules.py +350 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/__init__.py +2 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/bsrgan.py +730 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/bsrgan_light.py +651 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/utils/test.png +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/utils_image.py +916 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/__init__.py +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/diffusers_pipeline.py +512 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/__init__.py +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/__init__.py +0 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/clip.py +182 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/decoder_model.py +193 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/prior_model.py +138 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/sr_256_1k.py +10 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/sr_64_256.py +88 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/__init__.py +49 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/diffusion/gaussian_diffusion.py +828 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/diffusion/respace.py +112 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/nn.py +114 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/resample.py +68 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/unet.py +792 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/xf.py +231 -0
- repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/sampler.py +272 -0
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/ddpm.py
ADDED
@@ -0,0 +1,1873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import numpy as np
|
12 |
+
import pytorch_lightning as pl
|
13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
from contextlib import contextmanager, nullcontext
|
16 |
+
from functools import partial
|
17 |
+
import itertools
|
18 |
+
from tqdm import tqdm
|
19 |
+
from torchvision.utils import make_grid
|
20 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
21 |
+
from omegaconf import ListConfig
|
22 |
+
|
23 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
24 |
+
from ldm.modules.ema import LitEma
|
25 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
26 |
+
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
|
27 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
28 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
29 |
+
|
30 |
+
|
31 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
32 |
+
'crossattn': 'c_crossattn',
|
33 |
+
'adm': 'y'}
|
34 |
+
|
35 |
+
|
36 |
+
def disabled_train(self, mode=True):
|
37 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
38 |
+
does not change anymore."""
|
39 |
+
return self
|
40 |
+
|
41 |
+
|
42 |
+
def uniform_on_device(r1, r2, shape, device):
|
43 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
44 |
+
|
45 |
+
|
46 |
+
class DDPM(pl.LightningModule):
|
47 |
+
# classic DDPM with Gaussian diffusion, in image space
|
48 |
+
def __init__(self,
|
49 |
+
unet_config,
|
50 |
+
timesteps=1000,
|
51 |
+
beta_schedule="linear",
|
52 |
+
loss_type="l2",
|
53 |
+
ckpt_path=None,
|
54 |
+
ignore_keys=[],
|
55 |
+
load_only_unet=False,
|
56 |
+
monitor="val/loss",
|
57 |
+
use_ema=True,
|
58 |
+
first_stage_key="image",
|
59 |
+
image_size=256,
|
60 |
+
channels=3,
|
61 |
+
log_every_t=100,
|
62 |
+
clip_denoised=True,
|
63 |
+
linear_start=1e-4,
|
64 |
+
linear_end=2e-2,
|
65 |
+
cosine_s=8e-3,
|
66 |
+
given_betas=None,
|
67 |
+
original_elbo_weight=0.,
|
68 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
69 |
+
l_simple_weight=1.,
|
70 |
+
conditioning_key=None,
|
71 |
+
parameterization="eps", # all assuming fixed variance schedules
|
72 |
+
scheduler_config=None,
|
73 |
+
use_positional_encodings=False,
|
74 |
+
learn_logvar=False,
|
75 |
+
logvar_init=0.,
|
76 |
+
make_it_fit=False,
|
77 |
+
ucg_training=None,
|
78 |
+
reset_ema=False,
|
79 |
+
reset_num_ema_updates=False,
|
80 |
+
):
|
81 |
+
super().__init__()
|
82 |
+
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
|
83 |
+
self.parameterization = parameterization
|
84 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
85 |
+
self.cond_stage_model = None
|
86 |
+
self.clip_denoised = clip_denoised
|
87 |
+
self.log_every_t = log_every_t
|
88 |
+
self.first_stage_key = first_stage_key
|
89 |
+
self.image_size = image_size # try conv?
|
90 |
+
self.channels = channels
|
91 |
+
self.use_positional_encodings = use_positional_encodings
|
92 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
93 |
+
count_params(self.model, verbose=True)
|
94 |
+
self.use_ema = use_ema
|
95 |
+
if self.use_ema:
|
96 |
+
self.model_ema = LitEma(self.model)
|
97 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
98 |
+
|
99 |
+
self.use_scheduler = scheduler_config is not None
|
100 |
+
if self.use_scheduler:
|
101 |
+
self.scheduler_config = scheduler_config
|
102 |
+
|
103 |
+
self.v_posterior = v_posterior
|
104 |
+
self.original_elbo_weight = original_elbo_weight
|
105 |
+
self.l_simple_weight = l_simple_weight
|
106 |
+
|
107 |
+
if monitor is not None:
|
108 |
+
self.monitor = monitor
|
109 |
+
self.make_it_fit = make_it_fit
|
110 |
+
if reset_ema: assert exists(ckpt_path)
|
111 |
+
if ckpt_path is not None:
|
112 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
113 |
+
if reset_ema:
|
114 |
+
assert self.use_ema
|
115 |
+
print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
|
116 |
+
self.model_ema = LitEma(self.model)
|
117 |
+
if reset_num_ema_updates:
|
118 |
+
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
|
119 |
+
assert self.use_ema
|
120 |
+
self.model_ema.reset_num_updates()
|
121 |
+
|
122 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
123 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
124 |
+
|
125 |
+
self.loss_type = loss_type
|
126 |
+
|
127 |
+
self.learn_logvar = learn_logvar
|
128 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
129 |
+
if self.learn_logvar:
|
130 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
131 |
+
|
132 |
+
self.ucg_training = ucg_training or dict()
|
133 |
+
if self.ucg_training:
|
134 |
+
self.ucg_prng = np.random.RandomState()
|
135 |
+
|
136 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
137 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
138 |
+
if exists(given_betas):
|
139 |
+
betas = given_betas
|
140 |
+
else:
|
141 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
142 |
+
cosine_s=cosine_s)
|
143 |
+
alphas = 1. - betas
|
144 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
145 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
146 |
+
|
147 |
+
timesteps, = betas.shape
|
148 |
+
self.num_timesteps = int(timesteps)
|
149 |
+
self.linear_start = linear_start
|
150 |
+
self.linear_end = linear_end
|
151 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
152 |
+
|
153 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
154 |
+
|
155 |
+
self.register_buffer('betas', to_torch(betas))
|
156 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
157 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
158 |
+
|
159 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
160 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
161 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
162 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
163 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
164 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
165 |
+
|
166 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
167 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
168 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
169 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
170 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
171 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
172 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
173 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
174 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
175 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
176 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
177 |
+
|
178 |
+
if self.parameterization == "eps":
|
179 |
+
lvlb_weights = self.betas ** 2 / (
|
180 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
181 |
+
elif self.parameterization == "x0":
|
182 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
183 |
+
elif self.parameterization == "v":
|
184 |
+
lvlb_weights = torch.ones_like(self.betas ** 2 / (
|
185 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
|
186 |
+
else:
|
187 |
+
raise NotImplementedError("mu not supported")
|
188 |
+
lvlb_weights[0] = lvlb_weights[1]
|
189 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
190 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
191 |
+
|
192 |
+
@contextmanager
|
193 |
+
def ema_scope(self, context=None):
|
194 |
+
if self.use_ema:
|
195 |
+
self.model_ema.store(self.model.parameters())
|
196 |
+
self.model_ema.copy_to(self.model)
|
197 |
+
if context is not None:
|
198 |
+
print(f"{context}: Switched to EMA weights")
|
199 |
+
try:
|
200 |
+
yield None
|
201 |
+
finally:
|
202 |
+
if self.use_ema:
|
203 |
+
self.model_ema.restore(self.model.parameters())
|
204 |
+
if context is not None:
|
205 |
+
print(f"{context}: Restored training weights")
|
206 |
+
|
207 |
+
@torch.no_grad()
|
208 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
209 |
+
sd = torch.load(path, map_location="cpu")
|
210 |
+
if "state_dict" in list(sd.keys()):
|
211 |
+
sd = sd["state_dict"]
|
212 |
+
keys = list(sd.keys())
|
213 |
+
for k in keys:
|
214 |
+
for ik in ignore_keys:
|
215 |
+
if k.startswith(ik):
|
216 |
+
print("Deleting key {} from state_dict.".format(k))
|
217 |
+
del sd[k]
|
218 |
+
if self.make_it_fit:
|
219 |
+
n_params = len([name for name, _ in
|
220 |
+
itertools.chain(self.named_parameters(),
|
221 |
+
self.named_buffers())])
|
222 |
+
for name, param in tqdm(
|
223 |
+
itertools.chain(self.named_parameters(),
|
224 |
+
self.named_buffers()),
|
225 |
+
desc="Fitting old weights to new weights",
|
226 |
+
total=n_params
|
227 |
+
):
|
228 |
+
if not name in sd:
|
229 |
+
continue
|
230 |
+
old_shape = sd[name].shape
|
231 |
+
new_shape = param.shape
|
232 |
+
assert len(old_shape) == len(new_shape)
|
233 |
+
if len(new_shape) > 2:
|
234 |
+
# we only modify first two axes
|
235 |
+
assert new_shape[2:] == old_shape[2:]
|
236 |
+
# assumes first axis corresponds to output dim
|
237 |
+
if not new_shape == old_shape:
|
238 |
+
new_param = param.clone()
|
239 |
+
old_param = sd[name]
|
240 |
+
if len(new_shape) == 1:
|
241 |
+
for i in range(new_param.shape[0]):
|
242 |
+
new_param[i] = old_param[i % old_shape[0]]
|
243 |
+
elif len(new_shape) >= 2:
|
244 |
+
for i in range(new_param.shape[0]):
|
245 |
+
for j in range(new_param.shape[1]):
|
246 |
+
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
|
247 |
+
|
248 |
+
n_used_old = torch.ones(old_shape[1])
|
249 |
+
for j in range(new_param.shape[1]):
|
250 |
+
n_used_old[j % old_shape[1]] += 1
|
251 |
+
n_used_new = torch.zeros(new_shape[1])
|
252 |
+
for j in range(new_param.shape[1]):
|
253 |
+
n_used_new[j] = n_used_old[j % old_shape[1]]
|
254 |
+
|
255 |
+
n_used_new = n_used_new[None, :]
|
256 |
+
while len(n_used_new.shape) < len(new_shape):
|
257 |
+
n_used_new = n_used_new.unsqueeze(-1)
|
258 |
+
new_param /= n_used_new
|
259 |
+
|
260 |
+
sd[name] = new_param
|
261 |
+
|
262 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
263 |
+
sd, strict=False)
|
264 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
265 |
+
if len(missing) > 0:
|
266 |
+
print(f"Missing Keys:\n {missing}")
|
267 |
+
if len(unexpected) > 0:
|
268 |
+
print(f"\nUnexpected Keys:\n {unexpected}")
|
269 |
+
|
270 |
+
def q_mean_variance(self, x_start, t):
|
271 |
+
"""
|
272 |
+
Get the distribution q(x_t | x_0).
|
273 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
274 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
275 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
276 |
+
"""
|
277 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
278 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
279 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
280 |
+
return mean, variance, log_variance
|
281 |
+
|
282 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
283 |
+
return (
|
284 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
285 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
286 |
+
)
|
287 |
+
|
288 |
+
def predict_start_from_z_and_v(self, x_t, t, v):
|
289 |
+
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
290 |
+
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
291 |
+
return (
|
292 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
|
293 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
294 |
+
)
|
295 |
+
|
296 |
+
def predict_eps_from_z_and_v(self, x_t, t, v):
|
297 |
+
return (
|
298 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
|
299 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
|
300 |
+
)
|
301 |
+
|
302 |
+
def q_posterior(self, x_start, x_t, t):
|
303 |
+
posterior_mean = (
|
304 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
305 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
306 |
+
)
|
307 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
308 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
309 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
310 |
+
|
311 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
312 |
+
model_out = self.model(x, t)
|
313 |
+
if self.parameterization == "eps":
|
314 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
315 |
+
elif self.parameterization == "x0":
|
316 |
+
x_recon = model_out
|
317 |
+
if clip_denoised:
|
318 |
+
x_recon.clamp_(-1., 1.)
|
319 |
+
|
320 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
321 |
+
return model_mean, posterior_variance, posterior_log_variance
|
322 |
+
|
323 |
+
@torch.no_grad()
|
324 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
325 |
+
b, *_, device = *x.shape, x.device
|
326 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
327 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
328 |
+
# no noise when t == 0
|
329 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
330 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
331 |
+
|
332 |
+
@torch.no_grad()
|
333 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
334 |
+
device = self.betas.device
|
335 |
+
b = shape[0]
|
336 |
+
img = torch.randn(shape, device=device)
|
337 |
+
intermediates = [img]
|
338 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
339 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
340 |
+
clip_denoised=self.clip_denoised)
|
341 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
342 |
+
intermediates.append(img)
|
343 |
+
if return_intermediates:
|
344 |
+
return img, intermediates
|
345 |
+
return img
|
346 |
+
|
347 |
+
@torch.no_grad()
|
348 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
349 |
+
image_size = self.image_size
|
350 |
+
channels = self.channels
|
351 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
352 |
+
return_intermediates=return_intermediates)
|
353 |
+
|
354 |
+
def q_sample(self, x_start, t, noise=None):
|
355 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
356 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
357 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
358 |
+
|
359 |
+
def get_v(self, x, noise, t):
|
360 |
+
return (
|
361 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
|
362 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
363 |
+
)
|
364 |
+
|
365 |
+
def get_loss(self, pred, target, mean=True):
|
366 |
+
if self.loss_type == 'l1':
|
367 |
+
loss = (target - pred).abs()
|
368 |
+
if mean:
|
369 |
+
loss = loss.mean()
|
370 |
+
elif self.loss_type == 'l2':
|
371 |
+
if mean:
|
372 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
373 |
+
else:
|
374 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
375 |
+
else:
|
376 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
377 |
+
|
378 |
+
return loss
|
379 |
+
|
380 |
+
def p_losses(self, x_start, t, noise=None):
|
381 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
382 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
383 |
+
model_out = self.model(x_noisy, t)
|
384 |
+
|
385 |
+
loss_dict = {}
|
386 |
+
if self.parameterization == "eps":
|
387 |
+
target = noise
|
388 |
+
elif self.parameterization == "x0":
|
389 |
+
target = x_start
|
390 |
+
elif self.parameterization == "v":
|
391 |
+
target = self.get_v(x_start, noise, t)
|
392 |
+
else:
|
393 |
+
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
|
394 |
+
|
395 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
396 |
+
|
397 |
+
log_prefix = 'train' if self.training else 'val'
|
398 |
+
|
399 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
400 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
401 |
+
|
402 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
403 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
404 |
+
|
405 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
406 |
+
|
407 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
408 |
+
|
409 |
+
return loss, loss_dict
|
410 |
+
|
411 |
+
def forward(self, x, *args, **kwargs):
|
412 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
413 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
414 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
415 |
+
return self.p_losses(x, t, *args, **kwargs)
|
416 |
+
|
417 |
+
def get_input(self, batch, k):
|
418 |
+
x = batch[k]
|
419 |
+
if len(x.shape) == 3:
|
420 |
+
x = x[..., None]
|
421 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
422 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
423 |
+
return x
|
424 |
+
|
425 |
+
def shared_step(self, batch):
|
426 |
+
x = self.get_input(batch, self.first_stage_key)
|
427 |
+
loss, loss_dict = self(x)
|
428 |
+
return loss, loss_dict
|
429 |
+
|
430 |
+
def training_step(self, batch, batch_idx):
|
431 |
+
for k in self.ucg_training:
|
432 |
+
p = self.ucg_training[k]["p"]
|
433 |
+
val = self.ucg_training[k]["val"]
|
434 |
+
if val is None:
|
435 |
+
val = ""
|
436 |
+
for i in range(len(batch[k])):
|
437 |
+
if self.ucg_prng.choice(2, p=[1 - p, p]):
|
438 |
+
batch[k][i] = val
|
439 |
+
|
440 |
+
loss, loss_dict = self.shared_step(batch)
|
441 |
+
|
442 |
+
self.log_dict(loss_dict, prog_bar=True,
|
443 |
+
logger=True, on_step=True, on_epoch=True)
|
444 |
+
|
445 |
+
self.log("global_step", self.global_step,
|
446 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
447 |
+
|
448 |
+
if self.use_scheduler:
|
449 |
+
lr = self.optimizers().param_groups[0]['lr']
|
450 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
451 |
+
|
452 |
+
return loss
|
453 |
+
|
454 |
+
@torch.no_grad()
|
455 |
+
def validation_step(self, batch, batch_idx):
|
456 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
457 |
+
with self.ema_scope():
|
458 |
+
_, loss_dict_ema = self.shared_step(batch)
|
459 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
460 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
461 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
462 |
+
|
463 |
+
def on_train_batch_end(self, *args, **kwargs):
|
464 |
+
if self.use_ema:
|
465 |
+
self.model_ema(self.model)
|
466 |
+
|
467 |
+
def _get_rows_from_list(self, samples):
|
468 |
+
n_imgs_per_row = len(samples)
|
469 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
470 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
471 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
472 |
+
return denoise_grid
|
473 |
+
|
474 |
+
@torch.no_grad()
|
475 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
476 |
+
log = dict()
|
477 |
+
x = self.get_input(batch, self.first_stage_key)
|
478 |
+
N = min(x.shape[0], N)
|
479 |
+
n_row = min(x.shape[0], n_row)
|
480 |
+
x = x.to(self.device)[:N]
|
481 |
+
log["inputs"] = x
|
482 |
+
|
483 |
+
# get diffusion row
|
484 |
+
diffusion_row = list()
|
485 |
+
x_start = x[:n_row]
|
486 |
+
|
487 |
+
for t in range(self.num_timesteps):
|
488 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
489 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
490 |
+
t = t.to(self.device).long()
|
491 |
+
noise = torch.randn_like(x_start)
|
492 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
493 |
+
diffusion_row.append(x_noisy)
|
494 |
+
|
495 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
496 |
+
|
497 |
+
if sample:
|
498 |
+
# get denoise row
|
499 |
+
with self.ema_scope("Plotting"):
|
500 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
501 |
+
|
502 |
+
log["samples"] = samples
|
503 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
504 |
+
|
505 |
+
if return_keys:
|
506 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
507 |
+
return log
|
508 |
+
else:
|
509 |
+
return {key: log[key] for key in return_keys}
|
510 |
+
return log
|
511 |
+
|
512 |
+
def configure_optimizers(self):
|
513 |
+
lr = self.learning_rate
|
514 |
+
params = list(self.model.parameters())
|
515 |
+
if self.learn_logvar:
|
516 |
+
params = params + [self.logvar]
|
517 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
518 |
+
return opt
|
519 |
+
|
520 |
+
|
521 |
+
class LatentDiffusion(DDPM):
|
522 |
+
"""main class"""
|
523 |
+
|
524 |
+
def __init__(self,
|
525 |
+
first_stage_config,
|
526 |
+
cond_stage_config,
|
527 |
+
num_timesteps_cond=None,
|
528 |
+
cond_stage_key="image",
|
529 |
+
cond_stage_trainable=False,
|
530 |
+
concat_mode=True,
|
531 |
+
cond_stage_forward=None,
|
532 |
+
conditioning_key=None,
|
533 |
+
scale_factor=1.0,
|
534 |
+
scale_by_std=False,
|
535 |
+
force_null_conditioning=False,
|
536 |
+
*args, **kwargs):
|
537 |
+
self.force_null_conditioning = force_null_conditioning
|
538 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
539 |
+
self.scale_by_std = scale_by_std
|
540 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
541 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
542 |
+
if conditioning_key is None:
|
543 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
544 |
+
if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
|
545 |
+
conditioning_key = None
|
546 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
547 |
+
reset_ema = kwargs.pop("reset_ema", False)
|
548 |
+
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
|
549 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
550 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
551 |
+
self.concat_mode = concat_mode
|
552 |
+
self.cond_stage_trainable = cond_stage_trainable
|
553 |
+
self.cond_stage_key = cond_stage_key
|
554 |
+
try:
|
555 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
556 |
+
except:
|
557 |
+
self.num_downs = 0
|
558 |
+
if not scale_by_std:
|
559 |
+
self.scale_factor = scale_factor
|
560 |
+
else:
|
561 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
562 |
+
self.instantiate_first_stage(first_stage_config)
|
563 |
+
self.instantiate_cond_stage(cond_stage_config)
|
564 |
+
self.cond_stage_forward = cond_stage_forward
|
565 |
+
self.clip_denoised = False
|
566 |
+
self.bbox_tokenizer = None
|
567 |
+
|
568 |
+
self.restarted_from_ckpt = False
|
569 |
+
if ckpt_path is not None:
|
570 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
571 |
+
self.restarted_from_ckpt = True
|
572 |
+
if reset_ema:
|
573 |
+
assert self.use_ema
|
574 |
+
print(
|
575 |
+
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
|
576 |
+
self.model_ema = LitEma(self.model)
|
577 |
+
if reset_num_ema_updates:
|
578 |
+
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
|
579 |
+
assert self.use_ema
|
580 |
+
self.model_ema.reset_num_updates()
|
581 |
+
|
582 |
+
def make_cond_schedule(self, ):
|
583 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
584 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
585 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
586 |
+
|
587 |
+
@rank_zero_only
|
588 |
+
@torch.no_grad()
|
589 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
590 |
+
# only for very first batch
|
591 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
592 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
593 |
+
# set rescale weight to 1./std of encodings
|
594 |
+
print("### USING STD-RESCALING ###")
|
595 |
+
x = super().get_input(batch, self.first_stage_key)
|
596 |
+
x = x.to(self.device)
|
597 |
+
encoder_posterior = self.encode_first_stage(x)
|
598 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
599 |
+
del self.scale_factor
|
600 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
601 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
602 |
+
print("### USING STD-RESCALING ###")
|
603 |
+
|
604 |
+
def register_schedule(self,
|
605 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
606 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
607 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
608 |
+
|
609 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
610 |
+
if self.shorten_cond_schedule:
|
611 |
+
self.make_cond_schedule()
|
612 |
+
|
613 |
+
def instantiate_first_stage(self, config):
|
614 |
+
model = instantiate_from_config(config)
|
615 |
+
self.first_stage_model = model.eval()
|
616 |
+
self.first_stage_model.train = disabled_train
|
617 |
+
for param in self.first_stage_model.parameters():
|
618 |
+
param.requires_grad = False
|
619 |
+
|
620 |
+
def instantiate_cond_stage(self, config):
|
621 |
+
if not self.cond_stage_trainable:
|
622 |
+
if config == "__is_first_stage__":
|
623 |
+
print("Using first stage also as cond stage.")
|
624 |
+
self.cond_stage_model = self.first_stage_model
|
625 |
+
elif config == "__is_unconditional__":
|
626 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
627 |
+
self.cond_stage_model = None
|
628 |
+
# self.be_unconditional = True
|
629 |
+
else:
|
630 |
+
model = instantiate_from_config(config)
|
631 |
+
self.cond_stage_model = model.eval()
|
632 |
+
self.cond_stage_model.train = disabled_train
|
633 |
+
for param in self.cond_stage_model.parameters():
|
634 |
+
param.requires_grad = False
|
635 |
+
else:
|
636 |
+
assert config != '__is_first_stage__'
|
637 |
+
assert config != '__is_unconditional__'
|
638 |
+
model = instantiate_from_config(config)
|
639 |
+
self.cond_stage_model = model
|
640 |
+
|
641 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
642 |
+
denoise_row = []
|
643 |
+
for zd in tqdm(samples, desc=desc):
|
644 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
645 |
+
force_not_quantize=force_no_decoder_quantization))
|
646 |
+
n_imgs_per_row = len(denoise_row)
|
647 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
648 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
649 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
650 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
651 |
+
return denoise_grid
|
652 |
+
|
653 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
654 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
655 |
+
z = encoder_posterior.sample()
|
656 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
657 |
+
z = encoder_posterior
|
658 |
+
else:
|
659 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
660 |
+
return self.scale_factor * z
|
661 |
+
|
662 |
+
def get_learned_conditioning(self, c):
|
663 |
+
if self.cond_stage_forward is None:
|
664 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
665 |
+
c = self.cond_stage_model.encode(c)
|
666 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
667 |
+
c = c.mode()
|
668 |
+
else:
|
669 |
+
c = self.cond_stage_model(c)
|
670 |
+
else:
|
671 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
672 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
673 |
+
return c
|
674 |
+
|
675 |
+
def meshgrid(self, h, w):
|
676 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
677 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
678 |
+
|
679 |
+
arr = torch.cat([y, x], dim=-1)
|
680 |
+
return arr
|
681 |
+
|
682 |
+
def delta_border(self, h, w):
|
683 |
+
"""
|
684 |
+
:param h: height
|
685 |
+
:param w: width
|
686 |
+
:return: normalized distance to image border,
|
687 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
688 |
+
"""
|
689 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
690 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
691 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
692 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
693 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
694 |
+
return edge_dist
|
695 |
+
|
696 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
697 |
+
weighting = self.delta_border(h, w)
|
698 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
699 |
+
self.split_input_params["clip_max_weight"], )
|
700 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
701 |
+
|
702 |
+
if self.split_input_params["tie_braker"]:
|
703 |
+
L_weighting = self.delta_border(Ly, Lx)
|
704 |
+
L_weighting = torch.clip(L_weighting,
|
705 |
+
self.split_input_params["clip_min_tie_weight"],
|
706 |
+
self.split_input_params["clip_max_tie_weight"])
|
707 |
+
|
708 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
709 |
+
weighting = weighting * L_weighting
|
710 |
+
return weighting
|
711 |
+
|
712 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
713 |
+
"""
|
714 |
+
:param x: img of size (bs, c, h, w)
|
715 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
716 |
+
"""
|
717 |
+
bs, nc, h, w = x.shape
|
718 |
+
|
719 |
+
# number of crops in image
|
720 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
721 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
722 |
+
|
723 |
+
if uf == 1 and df == 1:
|
724 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
725 |
+
unfold = torch.nn.Unfold(**fold_params)
|
726 |
+
|
727 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
728 |
+
|
729 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
730 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
731 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
732 |
+
|
733 |
+
elif uf > 1 and df == 1:
|
734 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
735 |
+
unfold = torch.nn.Unfold(**fold_params)
|
736 |
+
|
737 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
738 |
+
dilation=1, padding=0,
|
739 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
740 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
741 |
+
|
742 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
743 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
744 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
745 |
+
|
746 |
+
elif df > 1 and uf == 1:
|
747 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
748 |
+
unfold = torch.nn.Unfold(**fold_params)
|
749 |
+
|
750 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
751 |
+
dilation=1, padding=0,
|
752 |
+
stride=(stride[0] // df, stride[1] // df))
|
753 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
754 |
+
|
755 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
756 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
757 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
758 |
+
|
759 |
+
else:
|
760 |
+
raise NotImplementedError
|
761 |
+
|
762 |
+
return fold, unfold, normalization, weighting
|
763 |
+
|
764 |
+
@torch.no_grad()
|
765 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
766 |
+
cond_key=None, return_original_cond=False, bs=None, return_x=False):
|
767 |
+
x = super().get_input(batch, k)
|
768 |
+
if bs is not None:
|
769 |
+
x = x[:bs]
|
770 |
+
x = x.to(self.device)
|
771 |
+
encoder_posterior = self.encode_first_stage(x)
|
772 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
773 |
+
|
774 |
+
if self.model.conditioning_key is not None and not self.force_null_conditioning:
|
775 |
+
if cond_key is None:
|
776 |
+
cond_key = self.cond_stage_key
|
777 |
+
if cond_key != self.first_stage_key:
|
778 |
+
if cond_key in ['caption', 'coordinates_bbox', "txt"]:
|
779 |
+
xc = batch[cond_key]
|
780 |
+
elif cond_key in ['class_label', 'cls']:
|
781 |
+
xc = batch
|
782 |
+
else:
|
783 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
784 |
+
else:
|
785 |
+
xc = x
|
786 |
+
if not self.cond_stage_trainable or force_c_encode:
|
787 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
788 |
+
c = self.get_learned_conditioning(xc)
|
789 |
+
else:
|
790 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
791 |
+
else:
|
792 |
+
c = xc
|
793 |
+
if bs is not None:
|
794 |
+
c = c[:bs]
|
795 |
+
|
796 |
+
if self.use_positional_encodings:
|
797 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
798 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
799 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
800 |
+
|
801 |
+
else:
|
802 |
+
c = None
|
803 |
+
xc = None
|
804 |
+
if self.use_positional_encodings:
|
805 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
806 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
807 |
+
out = [z, c]
|
808 |
+
if return_first_stage_outputs:
|
809 |
+
xrec = self.decode_first_stage(z)
|
810 |
+
out.extend([x, xrec])
|
811 |
+
if return_x:
|
812 |
+
out.extend([x])
|
813 |
+
if return_original_cond:
|
814 |
+
out.append(xc)
|
815 |
+
return out
|
816 |
+
|
817 |
+
@torch.no_grad()
|
818 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
819 |
+
if predict_cids:
|
820 |
+
if z.dim() == 4:
|
821 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
822 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
823 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
824 |
+
|
825 |
+
z = 1. / self.scale_factor * z
|
826 |
+
return self.first_stage_model.decode(z)
|
827 |
+
|
828 |
+
@torch.no_grad()
|
829 |
+
def encode_first_stage(self, x):
|
830 |
+
return self.first_stage_model.encode(x)
|
831 |
+
|
832 |
+
def shared_step(self, batch, **kwargs):
|
833 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
834 |
+
loss = self(x, c)
|
835 |
+
return loss
|
836 |
+
|
837 |
+
def forward(self, x, c, *args, **kwargs):
|
838 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
839 |
+
if self.model.conditioning_key is not None:
|
840 |
+
assert c is not None
|
841 |
+
if self.cond_stage_trainable:
|
842 |
+
c = self.get_learned_conditioning(c)
|
843 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
844 |
+
tc = self.cond_ids[t].to(self.device)
|
845 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
846 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
847 |
+
|
848 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
849 |
+
if isinstance(cond, dict):
|
850 |
+
# hybrid case, cond is expected to be a dict
|
851 |
+
pass
|
852 |
+
else:
|
853 |
+
if not isinstance(cond, list):
|
854 |
+
cond = [cond]
|
855 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
856 |
+
cond = {key: cond}
|
857 |
+
|
858 |
+
x_recon = self.model(x_noisy, t, **cond)
|
859 |
+
|
860 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
861 |
+
return x_recon[0]
|
862 |
+
else:
|
863 |
+
return x_recon
|
864 |
+
|
865 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
866 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
867 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
868 |
+
|
869 |
+
def _prior_bpd(self, x_start):
|
870 |
+
"""
|
871 |
+
Get the prior KL term for the variational lower-bound, measured in
|
872 |
+
bits-per-dim.
|
873 |
+
This term can't be optimized, as it only depends on the encoder.
|
874 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
875 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
876 |
+
"""
|
877 |
+
batch_size = x_start.shape[0]
|
878 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
879 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
880 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
881 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
882 |
+
|
883 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
884 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
885 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
886 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
887 |
+
|
888 |
+
loss_dict = {}
|
889 |
+
prefix = 'train' if self.training else 'val'
|
890 |
+
|
891 |
+
if self.parameterization == "x0":
|
892 |
+
target = x_start
|
893 |
+
elif self.parameterization == "eps":
|
894 |
+
target = noise
|
895 |
+
elif self.parameterization == "v":
|
896 |
+
target = self.get_v(x_start, noise, t)
|
897 |
+
else:
|
898 |
+
raise NotImplementedError()
|
899 |
+
|
900 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
901 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
902 |
+
|
903 |
+
logvar_t = self.logvar[t].to(self.device)
|
904 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
905 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
906 |
+
if self.learn_logvar:
|
907 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
908 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
909 |
+
|
910 |
+
loss = self.l_simple_weight * loss.mean()
|
911 |
+
|
912 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
913 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
914 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
915 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
916 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
917 |
+
|
918 |
+
return loss, loss_dict
|
919 |
+
|
920 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
921 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
922 |
+
t_in = t
|
923 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
924 |
+
|
925 |
+
if score_corrector is not None:
|
926 |
+
assert self.parameterization == "eps"
|
927 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
928 |
+
|
929 |
+
if return_codebook_ids:
|
930 |
+
model_out, logits = model_out
|
931 |
+
|
932 |
+
if self.parameterization == "eps":
|
933 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
934 |
+
elif self.parameterization == "x0":
|
935 |
+
x_recon = model_out
|
936 |
+
else:
|
937 |
+
raise NotImplementedError()
|
938 |
+
|
939 |
+
if clip_denoised:
|
940 |
+
x_recon.clamp_(-1., 1.)
|
941 |
+
if quantize_denoised:
|
942 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
943 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
944 |
+
if return_codebook_ids:
|
945 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
946 |
+
elif return_x0:
|
947 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
948 |
+
else:
|
949 |
+
return model_mean, posterior_variance, posterior_log_variance
|
950 |
+
|
951 |
+
@torch.no_grad()
|
952 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
953 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
954 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
955 |
+
b, *_, device = *x.shape, x.device
|
956 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
957 |
+
return_codebook_ids=return_codebook_ids,
|
958 |
+
quantize_denoised=quantize_denoised,
|
959 |
+
return_x0=return_x0,
|
960 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
961 |
+
if return_codebook_ids:
|
962 |
+
raise DeprecationWarning("Support dropped.")
|
963 |
+
model_mean, _, model_log_variance, logits = outputs
|
964 |
+
elif return_x0:
|
965 |
+
model_mean, _, model_log_variance, x0 = outputs
|
966 |
+
else:
|
967 |
+
model_mean, _, model_log_variance = outputs
|
968 |
+
|
969 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
970 |
+
if noise_dropout > 0.:
|
971 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
972 |
+
# no noise when t == 0
|
973 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
974 |
+
|
975 |
+
if return_codebook_ids:
|
976 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
977 |
+
if return_x0:
|
978 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
979 |
+
else:
|
980 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
981 |
+
|
982 |
+
@torch.no_grad()
|
983 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
984 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
985 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
986 |
+
log_every_t=None):
|
987 |
+
if not log_every_t:
|
988 |
+
log_every_t = self.log_every_t
|
989 |
+
timesteps = self.num_timesteps
|
990 |
+
if batch_size is not None:
|
991 |
+
b = batch_size if batch_size is not None else shape[0]
|
992 |
+
shape = [batch_size] + list(shape)
|
993 |
+
else:
|
994 |
+
b = batch_size = shape[0]
|
995 |
+
if x_T is None:
|
996 |
+
img = torch.randn(shape, device=self.device)
|
997 |
+
else:
|
998 |
+
img = x_T
|
999 |
+
intermediates = []
|
1000 |
+
if cond is not None:
|
1001 |
+
if isinstance(cond, dict):
|
1002 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1003 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1004 |
+
else:
|
1005 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1006 |
+
|
1007 |
+
if start_T is not None:
|
1008 |
+
timesteps = min(timesteps, start_T)
|
1009 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1010 |
+
total=timesteps) if verbose else reversed(
|
1011 |
+
range(0, timesteps))
|
1012 |
+
if type(temperature) == float:
|
1013 |
+
temperature = [temperature] * timesteps
|
1014 |
+
|
1015 |
+
for i in iterator:
|
1016 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1017 |
+
if self.shorten_cond_schedule:
|
1018 |
+
assert self.model.conditioning_key != 'hybrid'
|
1019 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1020 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1021 |
+
|
1022 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1023 |
+
clip_denoised=self.clip_denoised,
|
1024 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1025 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1026 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1027 |
+
if mask is not None:
|
1028 |
+
assert x0 is not None
|
1029 |
+
img_orig = self.q_sample(x0, ts)
|
1030 |
+
img = img_orig * mask + (1. - mask) * img
|
1031 |
+
|
1032 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1033 |
+
intermediates.append(x0_partial)
|
1034 |
+
if callback: callback(i)
|
1035 |
+
if img_callback: img_callback(img, i)
|
1036 |
+
return img, intermediates
|
1037 |
+
|
1038 |
+
@torch.no_grad()
|
1039 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1040 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1041 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1042 |
+
log_every_t=None):
|
1043 |
+
|
1044 |
+
if not log_every_t:
|
1045 |
+
log_every_t = self.log_every_t
|
1046 |
+
device = self.betas.device
|
1047 |
+
b = shape[0]
|
1048 |
+
if x_T is None:
|
1049 |
+
img = torch.randn(shape, device=device)
|
1050 |
+
else:
|
1051 |
+
img = x_T
|
1052 |
+
|
1053 |
+
intermediates = [img]
|
1054 |
+
if timesteps is None:
|
1055 |
+
timesteps = self.num_timesteps
|
1056 |
+
|
1057 |
+
if start_T is not None:
|
1058 |
+
timesteps = min(timesteps, start_T)
|
1059 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1060 |
+
range(0, timesteps))
|
1061 |
+
|
1062 |
+
if mask is not None:
|
1063 |
+
assert x0 is not None
|
1064 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1065 |
+
|
1066 |
+
for i in iterator:
|
1067 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1068 |
+
if self.shorten_cond_schedule:
|
1069 |
+
assert self.model.conditioning_key != 'hybrid'
|
1070 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1071 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1072 |
+
|
1073 |
+
img = self.p_sample(img, cond, ts,
|
1074 |
+
clip_denoised=self.clip_denoised,
|
1075 |
+
quantize_denoised=quantize_denoised)
|
1076 |
+
if mask is not None:
|
1077 |
+
img_orig = self.q_sample(x0, ts)
|
1078 |
+
img = img_orig * mask + (1. - mask) * img
|
1079 |
+
|
1080 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1081 |
+
intermediates.append(img)
|
1082 |
+
if callback: callback(i)
|
1083 |
+
if img_callback: img_callback(img, i)
|
1084 |
+
|
1085 |
+
if return_intermediates:
|
1086 |
+
return img, intermediates
|
1087 |
+
return img
|
1088 |
+
|
1089 |
+
@torch.no_grad()
|
1090 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1091 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1092 |
+
mask=None, x0=None, shape=None, **kwargs):
|
1093 |
+
if shape is None:
|
1094 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1095 |
+
if cond is not None:
|
1096 |
+
if isinstance(cond, dict):
|
1097 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1098 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1099 |
+
else:
|
1100 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1101 |
+
return self.p_sample_loop(cond,
|
1102 |
+
shape,
|
1103 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1104 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1105 |
+
mask=mask, x0=x0)
|
1106 |
+
|
1107 |
+
@torch.no_grad()
|
1108 |
+
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
1109 |
+
if ddim:
|
1110 |
+
ddim_sampler = DDIMSampler(self)
|
1111 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1112 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
|
1113 |
+
shape, cond, verbose=False, **kwargs)
|
1114 |
+
|
1115 |
+
else:
|
1116 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1117 |
+
return_intermediates=True, **kwargs)
|
1118 |
+
|
1119 |
+
return samples, intermediates
|
1120 |
+
|
1121 |
+
@torch.no_grad()
|
1122 |
+
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
1123 |
+
if null_label is not None:
|
1124 |
+
xc = null_label
|
1125 |
+
if isinstance(xc, ListConfig):
|
1126 |
+
xc = list(xc)
|
1127 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
1128 |
+
c = self.get_learned_conditioning(xc)
|
1129 |
+
else:
|
1130 |
+
if hasattr(xc, "to"):
|
1131 |
+
xc = xc.to(self.device)
|
1132 |
+
c = self.get_learned_conditioning(xc)
|
1133 |
+
else:
|
1134 |
+
if self.cond_stage_key in ["class_label", "cls"]:
|
1135 |
+
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
|
1136 |
+
return self.get_learned_conditioning(xc)
|
1137 |
+
else:
|
1138 |
+
raise NotImplementedError("todo")
|
1139 |
+
if isinstance(c, list): # in case the encoder gives us a list
|
1140 |
+
for i in range(len(c)):
|
1141 |
+
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
|
1142 |
+
else:
|
1143 |
+
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
|
1144 |
+
return c
|
1145 |
+
|
1146 |
+
@torch.no_grad()
|
1147 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
|
1148 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1149 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1150 |
+
use_ema_scope=True,
|
1151 |
+
**kwargs):
|
1152 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1153 |
+
use_ddim = ddim_steps is not None
|
1154 |
+
|
1155 |
+
log = dict()
|
1156 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1157 |
+
return_first_stage_outputs=True,
|
1158 |
+
force_c_encode=True,
|
1159 |
+
return_original_cond=True,
|
1160 |
+
bs=N)
|
1161 |
+
N = min(x.shape[0], N)
|
1162 |
+
n_row = min(x.shape[0], n_row)
|
1163 |
+
log["inputs"] = x
|
1164 |
+
log["reconstruction"] = xrec
|
1165 |
+
if self.model.conditioning_key is not None:
|
1166 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1167 |
+
xc = self.cond_stage_model.decode(c)
|
1168 |
+
log["conditioning"] = xc
|
1169 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1170 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1171 |
+
log["conditioning"] = xc
|
1172 |
+
elif self.cond_stage_key in ['class_label', "cls"]:
|
1173 |
+
try:
|
1174 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
1175 |
+
log['conditioning'] = xc
|
1176 |
+
except KeyError:
|
1177 |
+
# probably no "human_label" in batch
|
1178 |
+
pass
|
1179 |
+
elif isimage(xc):
|
1180 |
+
log["conditioning"] = xc
|
1181 |
+
if ismap(xc):
|
1182 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1183 |
+
|
1184 |
+
if plot_diffusion_rows:
|
1185 |
+
# get diffusion row
|
1186 |
+
diffusion_row = list()
|
1187 |
+
z_start = z[:n_row]
|
1188 |
+
for t in range(self.num_timesteps):
|
1189 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1190 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1191 |
+
t = t.to(self.device).long()
|
1192 |
+
noise = torch.randn_like(z_start)
|
1193 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1194 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1195 |
+
|
1196 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1197 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1198 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1199 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1200 |
+
log["diffusion_row"] = diffusion_grid
|
1201 |
+
|
1202 |
+
if sample:
|
1203 |
+
# get denoise row
|
1204 |
+
with ema_scope("Sampling"):
|
1205 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1206 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
1207 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1208 |
+
x_samples = self.decode_first_stage(samples)
|
1209 |
+
log["samples"] = x_samples
|
1210 |
+
if plot_denoise_rows:
|
1211 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1212 |
+
log["denoise_row"] = denoise_grid
|
1213 |
+
|
1214 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1215 |
+
self.first_stage_model, IdentityFirstStage):
|
1216 |
+
# also display when quantizing x0 while sampling
|
1217 |
+
with ema_scope("Plotting Quantized Denoised"):
|
1218 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1219 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1220 |
+
quantize_denoised=True)
|
1221 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1222 |
+
# quantize_denoised=True)
|
1223 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1224 |
+
log["samples_x0_quantized"] = x_samples
|
1225 |
+
|
1226 |
+
if unconditional_guidance_scale > 1.0:
|
1227 |
+
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1228 |
+
if self.model.conditioning_key == "crossattn-adm":
|
1229 |
+
uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
|
1230 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1231 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1232 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1233 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1234 |
+
unconditional_conditioning=uc,
|
1235 |
+
)
|
1236 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1237 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1238 |
+
|
1239 |
+
if inpaint:
|
1240 |
+
# make a simple center square
|
1241 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1242 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1243 |
+
# zeros will be filled in
|
1244 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1245 |
+
mask = mask[:, None, ...]
|
1246 |
+
with ema_scope("Plotting Inpaint"):
|
1247 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
|
1248 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1249 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1250 |
+
log["samples_inpainting"] = x_samples
|
1251 |
+
log["mask"] = mask
|
1252 |
+
|
1253 |
+
# outpaint
|
1254 |
+
mask = 1. - mask
|
1255 |
+
with ema_scope("Plotting Outpaint"):
|
1256 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
|
1257 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1258 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1259 |
+
log["samples_outpainting"] = x_samples
|
1260 |
+
|
1261 |
+
if plot_progressive_rows:
|
1262 |
+
with ema_scope("Plotting Progressives"):
|
1263 |
+
img, progressives = self.progressive_denoising(c,
|
1264 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1265 |
+
batch_size=N)
|
1266 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1267 |
+
log["progressive_row"] = prog_row
|
1268 |
+
|
1269 |
+
if return_keys:
|
1270 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1271 |
+
return log
|
1272 |
+
else:
|
1273 |
+
return {key: log[key] for key in return_keys}
|
1274 |
+
return log
|
1275 |
+
|
1276 |
+
def configure_optimizers(self):
|
1277 |
+
lr = self.learning_rate
|
1278 |
+
params = list(self.model.parameters())
|
1279 |
+
if self.cond_stage_trainable:
|
1280 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1281 |
+
params = params + list(self.cond_stage_model.parameters())
|
1282 |
+
if self.learn_logvar:
|
1283 |
+
print('Diffusion model optimizing logvar')
|
1284 |
+
params.append(self.logvar)
|
1285 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1286 |
+
if self.use_scheduler:
|
1287 |
+
assert 'target' in self.scheduler_config
|
1288 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1289 |
+
|
1290 |
+
print("Setting up LambdaLR scheduler...")
|
1291 |
+
scheduler = [
|
1292 |
+
{
|
1293 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1294 |
+
'interval': 'step',
|
1295 |
+
'frequency': 1
|
1296 |
+
}]
|
1297 |
+
return [opt], scheduler
|
1298 |
+
return opt
|
1299 |
+
|
1300 |
+
@torch.no_grad()
|
1301 |
+
def to_rgb(self, x):
|
1302 |
+
x = x.float()
|
1303 |
+
if not hasattr(self, "colorize"):
|
1304 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1305 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1306 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1307 |
+
return x
|
1308 |
+
|
1309 |
+
|
1310 |
+
class DiffusionWrapper(pl.LightningModule):
|
1311 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1312 |
+
super().__init__()
|
1313 |
+
self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
|
1314 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1315 |
+
self.conditioning_key = conditioning_key
|
1316 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
|
1317 |
+
|
1318 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
|
1319 |
+
if self.conditioning_key is None:
|
1320 |
+
out = self.diffusion_model(x, t)
|
1321 |
+
elif self.conditioning_key == 'concat':
|
1322 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1323 |
+
out = self.diffusion_model(xc, t)
|
1324 |
+
elif self.conditioning_key == 'crossattn':
|
1325 |
+
if not self.sequential_cross_attn:
|
1326 |
+
cc = torch.cat(c_crossattn, 1)
|
1327 |
+
else:
|
1328 |
+
cc = c_crossattn
|
1329 |
+
if hasattr(self, "scripted_diffusion_model"):
|
1330 |
+
# TorchScript changes names of the arguments
|
1331 |
+
# with argument cc defined as context=cc scripted model will produce
|
1332 |
+
# an error: RuntimeError: forward() is missing value for argument 'argument_3'.
|
1333 |
+
out = self.scripted_diffusion_model(x, t, cc)
|
1334 |
+
else:
|
1335 |
+
out = self.diffusion_model(x, t, context=cc)
|
1336 |
+
elif self.conditioning_key == 'hybrid':
|
1337 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1338 |
+
cc = torch.cat(c_crossattn, 1)
|
1339 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1340 |
+
elif self.conditioning_key == 'hybrid-adm':
|
1341 |
+
assert c_adm is not None
|
1342 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1343 |
+
cc = torch.cat(c_crossattn, 1)
|
1344 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
1345 |
+
elif self.conditioning_key == 'crossattn-adm':
|
1346 |
+
assert c_adm is not None
|
1347 |
+
cc = torch.cat(c_crossattn, 1)
|
1348 |
+
out = self.diffusion_model(x, t, context=cc, y=c_adm)
|
1349 |
+
elif self.conditioning_key == 'adm':
|
1350 |
+
cc = c_crossattn[0]
|
1351 |
+
out = self.diffusion_model(x, t, y=cc)
|
1352 |
+
else:
|
1353 |
+
raise NotImplementedError()
|
1354 |
+
|
1355 |
+
return out
|
1356 |
+
|
1357 |
+
|
1358 |
+
class LatentUpscaleDiffusion(LatentDiffusion):
|
1359 |
+
def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
|
1360 |
+
super().__init__(*args, **kwargs)
|
1361 |
+
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
1362 |
+
assert not self.cond_stage_trainable
|
1363 |
+
self.instantiate_low_stage(low_scale_config)
|
1364 |
+
self.low_scale_key = low_scale_key
|
1365 |
+
self.noise_level_key = noise_level_key
|
1366 |
+
|
1367 |
+
def instantiate_low_stage(self, config):
|
1368 |
+
model = instantiate_from_config(config)
|
1369 |
+
self.low_scale_model = model.eval()
|
1370 |
+
self.low_scale_model.train = disabled_train
|
1371 |
+
for param in self.low_scale_model.parameters():
|
1372 |
+
param.requires_grad = False
|
1373 |
+
|
1374 |
+
@torch.no_grad()
|
1375 |
+
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
1376 |
+
if not log_mode:
|
1377 |
+
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
1378 |
+
else:
|
1379 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1380 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1381 |
+
x_low = batch[self.low_scale_key][:bs]
|
1382 |
+
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
1383 |
+
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
1384 |
+
zx, noise_level = self.low_scale_model(x_low)
|
1385 |
+
if self.noise_level_key is not None:
|
1386 |
+
# get noise level from batch instead, e.g. when extracting a custom noise level for bsr
|
1387 |
+
raise NotImplementedError('TODO')
|
1388 |
+
|
1389 |
+
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
|
1390 |
+
if log_mode:
|
1391 |
+
# TODO: maybe disable if too expensive
|
1392 |
+
x_low_rec = self.low_scale_model.decode(zx)
|
1393 |
+
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
|
1394 |
+
return z, all_conds
|
1395 |
+
|
1396 |
+
@torch.no_grad()
|
1397 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1398 |
+
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
1399 |
+
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
1400 |
+
**kwargs):
|
1401 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1402 |
+
use_ddim = ddim_steps is not None
|
1403 |
+
|
1404 |
+
log = dict()
|
1405 |
+
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
|
1406 |
+
log_mode=True)
|
1407 |
+
N = min(x.shape[0], N)
|
1408 |
+
n_row = min(x.shape[0], n_row)
|
1409 |
+
log["inputs"] = x
|
1410 |
+
log["reconstruction"] = xrec
|
1411 |
+
log["x_lr"] = x_low
|
1412 |
+
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
|
1413 |
+
if self.model.conditioning_key is not None:
|
1414 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1415 |
+
xc = self.cond_stage_model.decode(c)
|
1416 |
+
log["conditioning"] = xc
|
1417 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1418 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1419 |
+
log["conditioning"] = xc
|
1420 |
+
elif self.cond_stage_key in ['class_label', 'cls']:
|
1421 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
1422 |
+
log['conditioning'] = xc
|
1423 |
+
elif isimage(xc):
|
1424 |
+
log["conditioning"] = xc
|
1425 |
+
if ismap(xc):
|
1426 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1427 |
+
|
1428 |
+
if plot_diffusion_rows:
|
1429 |
+
# get diffusion row
|
1430 |
+
diffusion_row = list()
|
1431 |
+
z_start = z[:n_row]
|
1432 |
+
for t in range(self.num_timesteps):
|
1433 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1434 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1435 |
+
t = t.to(self.device).long()
|
1436 |
+
noise = torch.randn_like(z_start)
|
1437 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1438 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1439 |
+
|
1440 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1441 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1442 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1443 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1444 |
+
log["diffusion_row"] = diffusion_grid
|
1445 |
+
|
1446 |
+
if sample:
|
1447 |
+
# get denoise row
|
1448 |
+
with ema_scope("Sampling"):
|
1449 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1450 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
1451 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1452 |
+
x_samples = self.decode_first_stage(samples)
|
1453 |
+
log["samples"] = x_samples
|
1454 |
+
if plot_denoise_rows:
|
1455 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1456 |
+
log["denoise_row"] = denoise_grid
|
1457 |
+
|
1458 |
+
if unconditional_guidance_scale > 1.0:
|
1459 |
+
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1460 |
+
# TODO explore better "unconditional" choices for the other keys
|
1461 |
+
# maybe guide away from empty text label and highest noise level and maximally degraded zx?
|
1462 |
+
uc = dict()
|
1463 |
+
for k in c:
|
1464 |
+
if k == "c_crossattn":
|
1465 |
+
assert isinstance(c[k], list) and len(c[k]) == 1
|
1466 |
+
uc[k] = [uc_tmp]
|
1467 |
+
elif k == "c_adm": # todo: only run with text-based guidance?
|
1468 |
+
assert isinstance(c[k], torch.Tensor)
|
1469 |
+
#uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
|
1470 |
+
uc[k] = c[k]
|
1471 |
+
elif isinstance(c[k], list):
|
1472 |
+
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
1473 |
+
else:
|
1474 |
+
uc[k] = c[k]
|
1475 |
+
|
1476 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1477 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1478 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1479 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1480 |
+
unconditional_conditioning=uc,
|
1481 |
+
)
|
1482 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1483 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1484 |
+
|
1485 |
+
if plot_progressive_rows:
|
1486 |
+
with ema_scope("Plotting Progressives"):
|
1487 |
+
img, progressives = self.progressive_denoising(c,
|
1488 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1489 |
+
batch_size=N)
|
1490 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1491 |
+
log["progressive_row"] = prog_row
|
1492 |
+
|
1493 |
+
return log
|
1494 |
+
|
1495 |
+
|
1496 |
+
class LatentFinetuneDiffusion(LatentDiffusion):
|
1497 |
+
"""
|
1498 |
+
Basis for different finetunas, such as inpainting or depth2image
|
1499 |
+
To disable finetuning mode, set finetune_keys to None
|
1500 |
+
"""
|
1501 |
+
|
1502 |
+
def __init__(self,
|
1503 |
+
concat_keys: tuple,
|
1504 |
+
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
|
1505 |
+
"model_ema.diffusion_modelinput_blocks00weight"
|
1506 |
+
),
|
1507 |
+
keep_finetune_dims=4,
|
1508 |
+
# if model was trained without concat mode before and we would like to keep these channels
|
1509 |
+
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
1510 |
+
c_concat_log_end=None,
|
1511 |
+
*args, **kwargs
|
1512 |
+
):
|
1513 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
1514 |
+
ignore_keys = kwargs.pop("ignore_keys", list())
|
1515 |
+
super().__init__(*args, **kwargs)
|
1516 |
+
self.finetune_keys = finetune_keys
|
1517 |
+
self.concat_keys = concat_keys
|
1518 |
+
self.keep_dims = keep_finetune_dims
|
1519 |
+
self.c_concat_log_start = c_concat_log_start
|
1520 |
+
self.c_concat_log_end = c_concat_log_end
|
1521 |
+
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
1522 |
+
if exists(ckpt_path):
|
1523 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
1524 |
+
|
1525 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
1526 |
+
sd = torch.load(path, map_location="cpu")
|
1527 |
+
if "state_dict" in list(sd.keys()):
|
1528 |
+
sd = sd["state_dict"]
|
1529 |
+
keys = list(sd.keys())
|
1530 |
+
for k in keys:
|
1531 |
+
for ik in ignore_keys:
|
1532 |
+
if k.startswith(ik):
|
1533 |
+
print("Deleting key {} from state_dict.".format(k))
|
1534 |
+
del sd[k]
|
1535 |
+
|
1536 |
+
# make it explicit, finetune by including extra input channels
|
1537 |
+
if exists(self.finetune_keys) and k in self.finetune_keys:
|
1538 |
+
new_entry = None
|
1539 |
+
for name, param in self.named_parameters():
|
1540 |
+
if name in self.finetune_keys:
|
1541 |
+
print(
|
1542 |
+
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
1543 |
+
new_entry = torch.zeros_like(param) # zero init
|
1544 |
+
assert exists(new_entry), 'did not find matching parameter to modify'
|
1545 |
+
new_entry[:, :self.keep_dims, ...] = sd[k]
|
1546 |
+
sd[k] = new_entry
|
1547 |
+
|
1548 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
1549 |
+
sd, strict=False)
|
1550 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
1551 |
+
if len(missing) > 0:
|
1552 |
+
print(f"Missing Keys: {missing}")
|
1553 |
+
if len(unexpected) > 0:
|
1554 |
+
print(f"Unexpected Keys: {unexpected}")
|
1555 |
+
|
1556 |
+
@torch.no_grad()
|
1557 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1558 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1559 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1560 |
+
use_ema_scope=True,
|
1561 |
+
**kwargs):
|
1562 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1563 |
+
use_ddim = ddim_steps is not None
|
1564 |
+
|
1565 |
+
log = dict()
|
1566 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
1567 |
+
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
1568 |
+
N = min(x.shape[0], N)
|
1569 |
+
n_row = min(x.shape[0], n_row)
|
1570 |
+
log["inputs"] = x
|
1571 |
+
log["reconstruction"] = xrec
|
1572 |
+
if self.model.conditioning_key is not None:
|
1573 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1574 |
+
xc = self.cond_stage_model.decode(c)
|
1575 |
+
log["conditioning"] = xc
|
1576 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1577 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1578 |
+
log["conditioning"] = xc
|
1579 |
+
elif self.cond_stage_key in ['class_label', 'cls']:
|
1580 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
1581 |
+
log['conditioning'] = xc
|
1582 |
+
elif isimage(xc):
|
1583 |
+
log["conditioning"] = xc
|
1584 |
+
if ismap(xc):
|
1585 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1586 |
+
|
1587 |
+
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
1588 |
+
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
|
1589 |
+
|
1590 |
+
if plot_diffusion_rows:
|
1591 |
+
# get diffusion row
|
1592 |
+
diffusion_row = list()
|
1593 |
+
z_start = z[:n_row]
|
1594 |
+
for t in range(self.num_timesteps):
|
1595 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1596 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1597 |
+
t = t.to(self.device).long()
|
1598 |
+
noise = torch.randn_like(z_start)
|
1599 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1600 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1601 |
+
|
1602 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1603 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1604 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1605 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1606 |
+
log["diffusion_row"] = diffusion_grid
|
1607 |
+
|
1608 |
+
if sample:
|
1609 |
+
# get denoise row
|
1610 |
+
with ema_scope("Sampling"):
|
1611 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1612 |
+
batch_size=N, ddim=use_ddim,
|
1613 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
1614 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1615 |
+
x_samples = self.decode_first_stage(samples)
|
1616 |
+
log["samples"] = x_samples
|
1617 |
+
if plot_denoise_rows:
|
1618 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1619 |
+
log["denoise_row"] = denoise_grid
|
1620 |
+
|
1621 |
+
if unconditional_guidance_scale > 1.0:
|
1622 |
+
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1623 |
+
uc_cat = c_cat
|
1624 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
1625 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1626 |
+
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1627 |
+
batch_size=N, ddim=use_ddim,
|
1628 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1629 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1630 |
+
unconditional_conditioning=uc_full,
|
1631 |
+
)
|
1632 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1633 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1634 |
+
|
1635 |
+
return log
|
1636 |
+
|
1637 |
+
|
1638 |
+
class LatentInpaintDiffusion(LatentFinetuneDiffusion):
|
1639 |
+
"""
|
1640 |
+
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
1641 |
+
e.g. mask as concat and text via cross-attn.
|
1642 |
+
To disable finetuning mode, set finetune_keys to None
|
1643 |
+
"""
|
1644 |
+
|
1645 |
+
def __init__(self,
|
1646 |
+
concat_keys=("mask", "masked_image"),
|
1647 |
+
masked_image_key="masked_image",
|
1648 |
+
*args, **kwargs
|
1649 |
+
):
|
1650 |
+
super().__init__(concat_keys, *args, **kwargs)
|
1651 |
+
self.masked_image_key = masked_image_key
|
1652 |
+
assert self.masked_image_key in concat_keys
|
1653 |
+
|
1654 |
+
@torch.no_grad()
|
1655 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1656 |
+
# note: restricted to non-trainable encoders currently
|
1657 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
|
1658 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1659 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1660 |
+
|
1661 |
+
assert exists(self.concat_keys)
|
1662 |
+
c_cat = list()
|
1663 |
+
for ck in self.concat_keys:
|
1664 |
+
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1665 |
+
if bs is not None:
|
1666 |
+
cc = cc[:bs]
|
1667 |
+
cc = cc.to(self.device)
|
1668 |
+
bchw = z.shape
|
1669 |
+
if ck != self.masked_image_key:
|
1670 |
+
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
1671 |
+
else:
|
1672 |
+
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
1673 |
+
c_cat.append(cc)
|
1674 |
+
c_cat = torch.cat(c_cat, dim=1)
|
1675 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1676 |
+
if return_first_stage_outputs:
|
1677 |
+
return z, all_conds, x, xrec, xc
|
1678 |
+
return z, all_conds
|
1679 |
+
|
1680 |
+
@torch.no_grad()
|
1681 |
+
def log_images(self, *args, **kwargs):
|
1682 |
+
log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
|
1683 |
+
log["masked_image"] = rearrange(args[0]["masked_image"],
|
1684 |
+
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1685 |
+
return log
|
1686 |
+
|
1687 |
+
|
1688 |
+
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
|
1689 |
+
"""
|
1690 |
+
condition on monocular depth estimation
|
1691 |
+
"""
|
1692 |
+
|
1693 |
+
def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
|
1694 |
+
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
1695 |
+
self.depth_model = instantiate_from_config(depth_stage_config)
|
1696 |
+
self.depth_stage_key = concat_keys[0]
|
1697 |
+
|
1698 |
+
@torch.no_grad()
|
1699 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1700 |
+
# note: restricted to non-trainable encoders currently
|
1701 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
|
1702 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1703 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1704 |
+
|
1705 |
+
assert exists(self.concat_keys)
|
1706 |
+
assert len(self.concat_keys) == 1
|
1707 |
+
c_cat = list()
|
1708 |
+
for ck in self.concat_keys:
|
1709 |
+
cc = batch[ck]
|
1710 |
+
if bs is not None:
|
1711 |
+
cc = cc[:bs]
|
1712 |
+
cc = cc.to(self.device)
|
1713 |
+
cc = self.depth_model(cc)
|
1714 |
+
cc = torch.nn.functional.interpolate(
|
1715 |
+
cc,
|
1716 |
+
size=z.shape[2:],
|
1717 |
+
mode="bicubic",
|
1718 |
+
align_corners=False,
|
1719 |
+
)
|
1720 |
+
|
1721 |
+
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
|
1722 |
+
keepdim=True)
|
1723 |
+
cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
|
1724 |
+
c_cat.append(cc)
|
1725 |
+
c_cat = torch.cat(c_cat, dim=1)
|
1726 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1727 |
+
if return_first_stage_outputs:
|
1728 |
+
return z, all_conds, x, xrec, xc
|
1729 |
+
return z, all_conds
|
1730 |
+
|
1731 |
+
@torch.no_grad()
|
1732 |
+
def log_images(self, *args, **kwargs):
|
1733 |
+
log = super().log_images(*args, **kwargs)
|
1734 |
+
depth = self.depth_model(args[0][self.depth_stage_key])
|
1735 |
+
depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
|
1736 |
+
torch.amax(depth, dim=[1, 2, 3], keepdim=True)
|
1737 |
+
log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
|
1738 |
+
return log
|
1739 |
+
|
1740 |
+
|
1741 |
+
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
|
1742 |
+
"""
|
1743 |
+
condition on low-res image (and optionally on some spatial noise augmentation)
|
1744 |
+
"""
|
1745 |
+
def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
|
1746 |
+
low_scale_config=None, low_scale_key=None, *args, **kwargs):
|
1747 |
+
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
1748 |
+
self.reshuffle_patch_size = reshuffle_patch_size
|
1749 |
+
self.low_scale_model = None
|
1750 |
+
if low_scale_config is not None:
|
1751 |
+
print("Initializing a low-scale model")
|
1752 |
+
assert exists(low_scale_key)
|
1753 |
+
self.instantiate_low_stage(low_scale_config)
|
1754 |
+
self.low_scale_key = low_scale_key
|
1755 |
+
|
1756 |
+
def instantiate_low_stage(self, config):
|
1757 |
+
model = instantiate_from_config(config)
|
1758 |
+
self.low_scale_model = model.eval()
|
1759 |
+
self.low_scale_model.train = disabled_train
|
1760 |
+
for param in self.low_scale_model.parameters():
|
1761 |
+
param.requires_grad = False
|
1762 |
+
|
1763 |
+
@torch.no_grad()
|
1764 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1765 |
+
# note: restricted to non-trainable encoders currently
|
1766 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
|
1767 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1768 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1769 |
+
|
1770 |
+
assert exists(self.concat_keys)
|
1771 |
+
assert len(self.concat_keys) == 1
|
1772 |
+
# optionally make spatial noise_level here
|
1773 |
+
c_cat = list()
|
1774 |
+
noise_level = None
|
1775 |
+
for ck in self.concat_keys:
|
1776 |
+
cc = batch[ck]
|
1777 |
+
cc = rearrange(cc, 'b h w c -> b c h w')
|
1778 |
+
if exists(self.reshuffle_patch_size):
|
1779 |
+
assert isinstance(self.reshuffle_patch_size, int)
|
1780 |
+
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
|
1781 |
+
p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
|
1782 |
+
if bs is not None:
|
1783 |
+
cc = cc[:bs]
|
1784 |
+
cc = cc.to(self.device)
|
1785 |
+
if exists(self.low_scale_model) and ck == self.low_scale_key:
|
1786 |
+
cc, noise_level = self.low_scale_model(cc)
|
1787 |
+
c_cat.append(cc)
|
1788 |
+
c_cat = torch.cat(c_cat, dim=1)
|
1789 |
+
if exists(noise_level):
|
1790 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
|
1791 |
+
else:
|
1792 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1793 |
+
if return_first_stage_outputs:
|
1794 |
+
return z, all_conds, x, xrec, xc
|
1795 |
+
return z, all_conds
|
1796 |
+
|
1797 |
+
@torch.no_grad()
|
1798 |
+
def log_images(self, *args, **kwargs):
|
1799 |
+
log = super().log_images(*args, **kwargs)
|
1800 |
+
log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
|
1801 |
+
return log
|
1802 |
+
|
1803 |
+
|
1804 |
+
class ImageEmbeddingConditionedLatentDiffusion(LatentDiffusion):
|
1805 |
+
def __init__(self, embedder_config, embedding_key="jpg", embedding_dropout=0.5,
|
1806 |
+
freeze_embedder=True, noise_aug_config=None, *args, **kwargs):
|
1807 |
+
super().__init__(*args, **kwargs)
|
1808 |
+
self.embed_key = embedding_key
|
1809 |
+
self.embedding_dropout = embedding_dropout
|
1810 |
+
self._init_embedder(embedder_config, freeze_embedder)
|
1811 |
+
self._init_noise_aug(noise_aug_config)
|
1812 |
+
|
1813 |
+
def _init_embedder(self, config, freeze=True):
|
1814 |
+
embedder = instantiate_from_config(config)
|
1815 |
+
if freeze:
|
1816 |
+
self.embedder = embedder.eval()
|
1817 |
+
self.embedder.train = disabled_train
|
1818 |
+
for param in self.embedder.parameters():
|
1819 |
+
param.requires_grad = False
|
1820 |
+
|
1821 |
+
def _init_noise_aug(self, config):
|
1822 |
+
if config is not None:
|
1823 |
+
# use the KARLO schedule for noise augmentation on CLIP image embeddings
|
1824 |
+
noise_augmentor = instantiate_from_config(config)
|
1825 |
+
assert isinstance(noise_augmentor, nn.Module)
|
1826 |
+
noise_augmentor = noise_augmentor.eval()
|
1827 |
+
noise_augmentor.train = disabled_train
|
1828 |
+
self.noise_augmentor = noise_augmentor
|
1829 |
+
else:
|
1830 |
+
self.noise_augmentor = None
|
1831 |
+
|
1832 |
+
def get_input(self, batch, k, cond_key=None, bs=None, **kwargs):
|
1833 |
+
outputs = LatentDiffusion.get_input(self, batch, k, bs=bs, **kwargs)
|
1834 |
+
z, c = outputs[0], outputs[1]
|
1835 |
+
img = batch[self.embed_key][:bs]
|
1836 |
+
img = rearrange(img, 'b h w c -> b c h w')
|
1837 |
+
c_adm = self.embedder(img)
|
1838 |
+
if self.noise_augmentor is not None:
|
1839 |
+
c_adm, noise_level_emb = self.noise_augmentor(c_adm)
|
1840 |
+
# assume this gives embeddings of noise levels
|
1841 |
+
c_adm = torch.cat((c_adm, noise_level_emb), 1)
|
1842 |
+
if self.training:
|
1843 |
+
c_adm = torch.bernoulli((1. - self.embedding_dropout) * torch.ones(c_adm.shape[0],
|
1844 |
+
device=c_adm.device)[:, None]) * c_adm
|
1845 |
+
all_conds = {"c_crossattn": [c], "c_adm": c_adm}
|
1846 |
+
noutputs = [z, all_conds]
|
1847 |
+
noutputs.extend(outputs[2:])
|
1848 |
+
return noutputs
|
1849 |
+
|
1850 |
+
@torch.no_grad()
|
1851 |
+
def log_images(self, batch, N=8, n_row=4, **kwargs):
|
1852 |
+
log = dict()
|
1853 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True,
|
1854 |
+
return_original_cond=True)
|
1855 |
+
log["inputs"] = x
|
1856 |
+
log["reconstruction"] = xrec
|
1857 |
+
assert self.model.conditioning_key is not None
|
1858 |
+
assert self.cond_stage_key in ["caption", "txt"]
|
1859 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1860 |
+
log["conditioning"] = xc
|
1861 |
+
uc = self.get_unconditional_conditioning(N, kwargs.get('unconditional_guidance_label', ''))
|
1862 |
+
unconditional_guidance_scale = kwargs.get('unconditional_guidance_scale', 5.)
|
1863 |
+
|
1864 |
+
uc_ = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
|
1865 |
+
ema_scope = self.ema_scope if kwargs.get('use_ema_scope', True) else nullcontext
|
1866 |
+
with ema_scope(f"Sampling"):
|
1867 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=True,
|
1868 |
+
ddim_steps=kwargs.get('ddim_steps', 50), eta=kwargs.get('ddim_eta', 0.),
|
1869 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1870 |
+
unconditional_conditioning=uc_, )
|
1871 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1872 |
+
log[f"samplescfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1873 |
+
return log
|
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .sampler import DPMSolverSampler
|
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/dpm_solver.py
ADDED
@@ -0,0 +1,1163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import math
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
class NoiseScheduleVP:
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
schedule='discrete',
|
11 |
+
betas=None,
|
12 |
+
alphas_cumprod=None,
|
13 |
+
continuous_beta_0=0.1,
|
14 |
+
continuous_beta_1=20.,
|
15 |
+
):
|
16 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
17 |
+
***
|
18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
+
***
|
21 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
22 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
23 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
24 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
25 |
+
sigma_t = self.marginal_std(t)
|
26 |
+
lambda_t = self.marginal_lambda(t)
|
27 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
28 |
+
t = self.inverse_lambda(lambda_t)
|
29 |
+
===============================================================
|
30 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
31 |
+
1. For discrete-time DPMs:
|
32 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
33 |
+
t_i = (i + 1) / N
|
34 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
35 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
36 |
+
Args:
|
37 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
38 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
39 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
40 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
41 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
42 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
43 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
44 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
45 |
+
and
|
46 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
47 |
+
2. For continuous-time DPMs:
|
48 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
49 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
50 |
+
Args:
|
51 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
52 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
53 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
54 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
55 |
+
T: A `float` number. The ending time of the forward process.
|
56 |
+
===============================================================
|
57 |
+
Args:
|
58 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
59 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
60 |
+
Returns:
|
61 |
+
A wrapper object of the forward SDE (VP type).
|
62 |
+
|
63 |
+
===============================================================
|
64 |
+
Example:
|
65 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
66 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
67 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
68 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
69 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
70 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
71 |
+
"""
|
72 |
+
|
73 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
74 |
+
raise ValueError(
|
75 |
+
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
|
76 |
+
schedule))
|
77 |
+
|
78 |
+
self.schedule = schedule
|
79 |
+
if schedule == 'discrete':
|
80 |
+
if betas is not None:
|
81 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
82 |
+
else:
|
83 |
+
assert alphas_cumprod is not None
|
84 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
85 |
+
self.total_N = len(log_alphas)
|
86 |
+
self.T = 1.
|
87 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
88 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
89 |
+
else:
|
90 |
+
self.total_N = 1000
|
91 |
+
self.beta_0 = continuous_beta_0
|
92 |
+
self.beta_1 = continuous_beta_1
|
93 |
+
self.cosine_s = 0.008
|
94 |
+
self.cosine_beta_max = 999.
|
95 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
|
96 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
97 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
98 |
+
self.schedule = schedule
|
99 |
+
if schedule == 'cosine':
|
100 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
101 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
102 |
+
self.T = 0.9946
|
103 |
+
else:
|
104 |
+
self.T = 1.
|
105 |
+
|
106 |
+
def marginal_log_mean_coeff(self, t):
|
107 |
+
"""
|
108 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
109 |
+
"""
|
110 |
+
if self.schedule == 'discrete':
|
111 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
|
112 |
+
self.log_alpha_array.to(t.device)).reshape((-1))
|
113 |
+
elif self.schedule == 'linear':
|
114 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
115 |
+
elif self.schedule == 'cosine':
|
116 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
117 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
118 |
+
return log_alpha_t
|
119 |
+
|
120 |
+
def marginal_alpha(self, t):
|
121 |
+
"""
|
122 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
123 |
+
"""
|
124 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
125 |
+
|
126 |
+
def marginal_std(self, t):
|
127 |
+
"""
|
128 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
129 |
+
"""
|
130 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
131 |
+
|
132 |
+
def marginal_lambda(self, t):
|
133 |
+
"""
|
134 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
135 |
+
"""
|
136 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
137 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
138 |
+
return log_mean_coeff - log_std
|
139 |
+
|
140 |
+
def inverse_lambda(self, lamb):
|
141 |
+
"""
|
142 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
143 |
+
"""
|
144 |
+
if self.schedule == 'linear':
|
145 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
146 |
+
Delta = self.beta_0 ** 2 + tmp
|
147 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
148 |
+
elif self.schedule == 'discrete':
|
149 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
150 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
|
151 |
+
torch.flip(self.t_array.to(lamb.device), [1]))
|
152 |
+
return t.reshape((-1,))
|
153 |
+
else:
|
154 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
155 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
|
156 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
157 |
+
t = t_fn(log_alpha)
|
158 |
+
return t
|
159 |
+
|
160 |
+
|
161 |
+
def model_wrapper(
|
162 |
+
model,
|
163 |
+
noise_schedule,
|
164 |
+
model_type="noise",
|
165 |
+
model_kwargs={},
|
166 |
+
guidance_type="uncond",
|
167 |
+
condition=None,
|
168 |
+
unconditional_condition=None,
|
169 |
+
guidance_scale=1.,
|
170 |
+
classifier_fn=None,
|
171 |
+
classifier_kwargs={},
|
172 |
+
):
|
173 |
+
"""Create a wrapper function for the noise prediction model.
|
174 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
175 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
176 |
+
We support four types of the diffusion model by setting `model_type`:
|
177 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
178 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
179 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
180 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
181 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
182 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
183 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
184 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
185 |
+
|
186 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
187 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
188 |
+
```
|
189 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
190 |
+
```
|
191 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
192 |
+
1. "uncond": unconditional sampling by DPMs.
|
193 |
+
The input `model` has the following format:
|
194 |
+
``
|
195 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
196 |
+
``
|
197 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
198 |
+
The input `model` has the following format:
|
199 |
+
``
|
200 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
201 |
+
``
|
202 |
+
The input `classifier_fn` has the following format:
|
203 |
+
``
|
204 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
205 |
+
``
|
206 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
207 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
208 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
209 |
+
The input `model` has the following format:
|
210 |
+
``
|
211 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
212 |
+
``
|
213 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
214 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
215 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
216 |
+
|
217 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
218 |
+
or continuous-time labels (i.e. epsilon to T).
|
219 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
220 |
+
``
|
221 |
+
def model_fn(x, t_continuous) -> noise:
|
222 |
+
t_input = get_model_input_time(t_continuous)
|
223 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
224 |
+
``
|
225 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
226 |
+
===============================================================
|
227 |
+
Args:
|
228 |
+
model: A diffusion model with the corresponding format described above.
|
229 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
230 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
231 |
+
"noise" or "x_start" or "v" or "score".
|
232 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
233 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
234 |
+
"uncond" or "classifier" or "classifier-free".
|
235 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
236 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
237 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
238 |
+
Only used for "classifier-free" guidance type.
|
239 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
240 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
241 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
242 |
+
Returns:
|
243 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
244 |
+
"""
|
245 |
+
|
246 |
+
def get_model_input_time(t_continuous):
|
247 |
+
"""
|
248 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
249 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
250 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
251 |
+
"""
|
252 |
+
if noise_schedule.schedule == 'discrete':
|
253 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
254 |
+
else:
|
255 |
+
return t_continuous
|
256 |
+
|
257 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
258 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
259 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
260 |
+
t_input = get_model_input_time(t_continuous)
|
261 |
+
if cond is None:
|
262 |
+
output = model(x, t_input, **model_kwargs)
|
263 |
+
else:
|
264 |
+
output = model(x, t_input, cond, **model_kwargs)
|
265 |
+
if model_type == "noise":
|
266 |
+
return output
|
267 |
+
elif model_type == "x_start":
|
268 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
269 |
+
dims = x.dim()
|
270 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
271 |
+
elif model_type == "v":
|
272 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
273 |
+
dims = x.dim()
|
274 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
275 |
+
elif model_type == "score":
|
276 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
277 |
+
dims = x.dim()
|
278 |
+
return -expand_dims(sigma_t, dims) * output
|
279 |
+
|
280 |
+
def cond_grad_fn(x, t_input):
|
281 |
+
"""
|
282 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
283 |
+
"""
|
284 |
+
with torch.enable_grad():
|
285 |
+
x_in = x.detach().requires_grad_(True)
|
286 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
287 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
288 |
+
|
289 |
+
def model_fn(x, t_continuous):
|
290 |
+
"""
|
291 |
+
The noise predicition model function that is used for DPM-Solver.
|
292 |
+
"""
|
293 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
294 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
295 |
+
if guidance_type == "uncond":
|
296 |
+
return noise_pred_fn(x, t_continuous)
|
297 |
+
elif guidance_type == "classifier":
|
298 |
+
assert classifier_fn is not None
|
299 |
+
t_input = get_model_input_time(t_continuous)
|
300 |
+
cond_grad = cond_grad_fn(x, t_input)
|
301 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
302 |
+
noise = noise_pred_fn(x, t_continuous)
|
303 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
304 |
+
elif guidance_type == "classifier-free":
|
305 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
306 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
307 |
+
else:
|
308 |
+
x_in = torch.cat([x] * 2)
|
309 |
+
t_in = torch.cat([t_continuous] * 2)
|
310 |
+
if isinstance(condition, dict):
|
311 |
+
assert isinstance(unconditional_condition, dict)
|
312 |
+
c_in = dict()
|
313 |
+
for k in condition:
|
314 |
+
if isinstance(condition[k], list):
|
315 |
+
c_in[k] = [torch.cat([unconditional_condition[k][i], condition[k][i]]) for i in range(len(condition[k]))]
|
316 |
+
else:
|
317 |
+
c_in[k] = torch.cat([unconditional_condition[k], condition[k]])
|
318 |
+
else:
|
319 |
+
c_in = torch.cat([unconditional_condition, condition])
|
320 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
321 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
322 |
+
|
323 |
+
assert model_type in ["noise", "x_start", "v"]
|
324 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
325 |
+
return model_fn
|
326 |
+
|
327 |
+
|
328 |
+
class DPM_Solver:
|
329 |
+
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
330 |
+
"""Construct a DPM-Solver.
|
331 |
+
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
332 |
+
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
333 |
+
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
334 |
+
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
335 |
+
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
336 |
+
Args:
|
337 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
338 |
+
``
|
339 |
+
def model_fn(x, t_continuous):
|
340 |
+
return noise
|
341 |
+
``
|
342 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
343 |
+
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
344 |
+
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
345 |
+
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
346 |
+
|
347 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
348 |
+
"""
|
349 |
+
self.model = model_fn
|
350 |
+
self.noise_schedule = noise_schedule
|
351 |
+
self.predict_x0 = predict_x0
|
352 |
+
self.thresholding = thresholding
|
353 |
+
self.max_val = max_val
|
354 |
+
|
355 |
+
def noise_prediction_fn(self, x, t):
|
356 |
+
"""
|
357 |
+
Return the noise prediction model.
|
358 |
+
"""
|
359 |
+
return self.model(x, t)
|
360 |
+
|
361 |
+
def data_prediction_fn(self, x, t):
|
362 |
+
"""
|
363 |
+
Return the data prediction model (with thresholding).
|
364 |
+
"""
|
365 |
+
noise = self.noise_prediction_fn(x, t)
|
366 |
+
dims = x.dim()
|
367 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
368 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
369 |
+
if self.thresholding:
|
370 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
371 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
372 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
373 |
+
x0 = torch.clamp(x0, -s, s) / s
|
374 |
+
return x0
|
375 |
+
|
376 |
+
def model_fn(self, x, t):
|
377 |
+
"""
|
378 |
+
Convert the model to the noise prediction model or the data prediction model.
|
379 |
+
"""
|
380 |
+
if self.predict_x0:
|
381 |
+
return self.data_prediction_fn(x, t)
|
382 |
+
else:
|
383 |
+
return self.noise_prediction_fn(x, t)
|
384 |
+
|
385 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
386 |
+
"""Compute the intermediate time steps for sampling.
|
387 |
+
Args:
|
388 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
389 |
+
- 'logSNR': uniform logSNR for the time steps.
|
390 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
391 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
392 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
393 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
394 |
+
N: A `int`. The total number of the spacing of the time steps.
|
395 |
+
device: A torch device.
|
396 |
+
Returns:
|
397 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
398 |
+
"""
|
399 |
+
if skip_type == 'logSNR':
|
400 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
401 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
402 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
403 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
404 |
+
elif skip_type == 'time_uniform':
|
405 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
406 |
+
elif skip_type == 'time_quadratic':
|
407 |
+
t_order = 2
|
408 |
+
t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
|
409 |
+
return t
|
410 |
+
else:
|
411 |
+
raise ValueError(
|
412 |
+
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
413 |
+
|
414 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
415 |
+
"""
|
416 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
417 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
418 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
419 |
+
- If order == 1:
|
420 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
421 |
+
- If order == 2:
|
422 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
423 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
424 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
425 |
+
- If order == 3:
|
426 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
427 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
428 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
429 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
430 |
+
============================================
|
431 |
+
Args:
|
432 |
+
order: A `int`. The max order for the solver (2 or 3).
|
433 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
434 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
435 |
+
- 'logSNR': uniform logSNR for the time steps.
|
436 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
437 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
438 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
439 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
440 |
+
device: A torch device.
|
441 |
+
Returns:
|
442 |
+
orders: A list of the solver order of each step.
|
443 |
+
"""
|
444 |
+
if order == 3:
|
445 |
+
K = steps // 3 + 1
|
446 |
+
if steps % 3 == 0:
|
447 |
+
orders = [3, ] * (K - 2) + [2, 1]
|
448 |
+
elif steps % 3 == 1:
|
449 |
+
orders = [3, ] * (K - 1) + [1]
|
450 |
+
else:
|
451 |
+
orders = [3, ] * (K - 1) + [2]
|
452 |
+
elif order == 2:
|
453 |
+
if steps % 2 == 0:
|
454 |
+
K = steps // 2
|
455 |
+
orders = [2, ] * K
|
456 |
+
else:
|
457 |
+
K = steps // 2 + 1
|
458 |
+
orders = [2, ] * (K - 1) + [1]
|
459 |
+
elif order == 1:
|
460 |
+
K = 1
|
461 |
+
orders = [1, ] * steps
|
462 |
+
else:
|
463 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
464 |
+
if skip_type == 'logSNR':
|
465 |
+
# To reproduce the results in DPM-Solver paper
|
466 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
467 |
+
else:
|
468 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
|
469 |
+
torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
|
470 |
+
return timesteps_outer, orders
|
471 |
+
|
472 |
+
def denoise_to_zero_fn(self, x, s):
|
473 |
+
"""
|
474 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
475 |
+
"""
|
476 |
+
return self.data_prediction_fn(x, s)
|
477 |
+
|
478 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
479 |
+
"""
|
480 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
481 |
+
Args:
|
482 |
+
x: A pytorch tensor. The initial value at time `s`.
|
483 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
484 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
485 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
486 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
487 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
488 |
+
Returns:
|
489 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
490 |
+
"""
|
491 |
+
ns = self.noise_schedule
|
492 |
+
dims = x.dim()
|
493 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
494 |
+
h = lambda_t - lambda_s
|
495 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
496 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
497 |
+
alpha_t = torch.exp(log_alpha_t)
|
498 |
+
|
499 |
+
if self.predict_x0:
|
500 |
+
phi_1 = torch.expm1(-h)
|
501 |
+
if model_s is None:
|
502 |
+
model_s = self.model_fn(x, s)
|
503 |
+
x_t = (
|
504 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
505 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
506 |
+
)
|
507 |
+
if return_intermediate:
|
508 |
+
return x_t, {'model_s': model_s}
|
509 |
+
else:
|
510 |
+
return x_t
|
511 |
+
else:
|
512 |
+
phi_1 = torch.expm1(h)
|
513 |
+
if model_s is None:
|
514 |
+
model_s = self.model_fn(x, s)
|
515 |
+
x_t = (
|
516 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
517 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
518 |
+
)
|
519 |
+
if return_intermediate:
|
520 |
+
return x_t, {'model_s': model_s}
|
521 |
+
else:
|
522 |
+
return x_t
|
523 |
+
|
524 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
|
525 |
+
solver_type='dpm_solver'):
|
526 |
+
"""
|
527 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
528 |
+
Args:
|
529 |
+
x: A pytorch tensor. The initial value at time `s`.
|
530 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
531 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
532 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
533 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
534 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
535 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
536 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
537 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
538 |
+
Returns:
|
539 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
540 |
+
"""
|
541 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
542 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
543 |
+
if r1 is None:
|
544 |
+
r1 = 0.5
|
545 |
+
ns = self.noise_schedule
|
546 |
+
dims = x.dim()
|
547 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
548 |
+
h = lambda_t - lambda_s
|
549 |
+
lambda_s1 = lambda_s + r1 * h
|
550 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
551 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
|
552 |
+
s1), ns.marginal_log_mean_coeff(t)
|
553 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
554 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
555 |
+
|
556 |
+
if self.predict_x0:
|
557 |
+
phi_11 = torch.expm1(-r1 * h)
|
558 |
+
phi_1 = torch.expm1(-h)
|
559 |
+
|
560 |
+
if model_s is None:
|
561 |
+
model_s = self.model_fn(x, s)
|
562 |
+
x_s1 = (
|
563 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
564 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
565 |
+
)
|
566 |
+
model_s1 = self.model_fn(x_s1, s1)
|
567 |
+
if solver_type == 'dpm_solver':
|
568 |
+
x_t = (
|
569 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
570 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
571 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
572 |
+
)
|
573 |
+
elif solver_type == 'taylor':
|
574 |
+
x_t = (
|
575 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
576 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
577 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
|
578 |
+
model_s1 - model_s)
|
579 |
+
)
|
580 |
+
else:
|
581 |
+
phi_11 = torch.expm1(r1 * h)
|
582 |
+
phi_1 = torch.expm1(h)
|
583 |
+
|
584 |
+
if model_s is None:
|
585 |
+
model_s = self.model_fn(x, s)
|
586 |
+
x_s1 = (
|
587 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
588 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
589 |
+
)
|
590 |
+
model_s1 = self.model_fn(x_s1, s1)
|
591 |
+
if solver_type == 'dpm_solver':
|
592 |
+
x_t = (
|
593 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
594 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
595 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
596 |
+
)
|
597 |
+
elif solver_type == 'taylor':
|
598 |
+
x_t = (
|
599 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
600 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
601 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
602 |
+
)
|
603 |
+
if return_intermediate:
|
604 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
605 |
+
else:
|
606 |
+
return x_t
|
607 |
+
|
608 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
|
609 |
+
return_intermediate=False, solver_type='dpm_solver'):
|
610 |
+
"""
|
611 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
612 |
+
Args:
|
613 |
+
x: A pytorch tensor. The initial value at time `s`.
|
614 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
615 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
616 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
617 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
618 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
619 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
620 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
621 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
622 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
623 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
624 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
625 |
+
Returns:
|
626 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
627 |
+
"""
|
628 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
629 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
630 |
+
if r1 is None:
|
631 |
+
r1 = 1. / 3.
|
632 |
+
if r2 is None:
|
633 |
+
r2 = 2. / 3.
|
634 |
+
ns = self.noise_schedule
|
635 |
+
dims = x.dim()
|
636 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
637 |
+
h = lambda_t - lambda_s
|
638 |
+
lambda_s1 = lambda_s + r1 * h
|
639 |
+
lambda_s2 = lambda_s + r2 * h
|
640 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
641 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
642 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
|
643 |
+
s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
644 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
|
645 |
+
s2), ns.marginal_std(t)
|
646 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
647 |
+
|
648 |
+
if self.predict_x0:
|
649 |
+
phi_11 = torch.expm1(-r1 * h)
|
650 |
+
phi_12 = torch.expm1(-r2 * h)
|
651 |
+
phi_1 = torch.expm1(-h)
|
652 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
653 |
+
phi_2 = phi_1 / h + 1.
|
654 |
+
phi_3 = phi_2 / h - 0.5
|
655 |
+
|
656 |
+
if model_s is None:
|
657 |
+
model_s = self.model_fn(x, s)
|
658 |
+
if model_s1 is None:
|
659 |
+
x_s1 = (
|
660 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
661 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
662 |
+
)
|
663 |
+
model_s1 = self.model_fn(x_s1, s1)
|
664 |
+
x_s2 = (
|
665 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
666 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
667 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
668 |
+
)
|
669 |
+
model_s2 = self.model_fn(x_s2, s2)
|
670 |
+
if solver_type == 'dpm_solver':
|
671 |
+
x_t = (
|
672 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
673 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
674 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
675 |
+
)
|
676 |
+
elif solver_type == 'taylor':
|
677 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
678 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
679 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
680 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
681 |
+
x_t = (
|
682 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
683 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
684 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
685 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
686 |
+
)
|
687 |
+
else:
|
688 |
+
phi_11 = torch.expm1(r1 * h)
|
689 |
+
phi_12 = torch.expm1(r2 * h)
|
690 |
+
phi_1 = torch.expm1(h)
|
691 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
692 |
+
phi_2 = phi_1 / h - 1.
|
693 |
+
phi_3 = phi_2 / h - 0.5
|
694 |
+
|
695 |
+
if model_s is None:
|
696 |
+
model_s = self.model_fn(x, s)
|
697 |
+
if model_s1 is None:
|
698 |
+
x_s1 = (
|
699 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
700 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
701 |
+
)
|
702 |
+
model_s1 = self.model_fn(x_s1, s1)
|
703 |
+
x_s2 = (
|
704 |
+
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
705 |
+
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
706 |
+
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
707 |
+
)
|
708 |
+
model_s2 = self.model_fn(x_s2, s2)
|
709 |
+
if solver_type == 'dpm_solver':
|
710 |
+
x_t = (
|
711 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
712 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
713 |
+
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
714 |
+
)
|
715 |
+
elif solver_type == 'taylor':
|
716 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
717 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
718 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
719 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
720 |
+
x_t = (
|
721 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
722 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
723 |
+
- expand_dims(sigma_t * phi_2, dims) * D1
|
724 |
+
- expand_dims(sigma_t * phi_3, dims) * D2
|
725 |
+
)
|
726 |
+
|
727 |
+
if return_intermediate:
|
728 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
729 |
+
else:
|
730 |
+
return x_t
|
731 |
+
|
732 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
733 |
+
"""
|
734 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
735 |
+
Args:
|
736 |
+
x: A pytorch tensor. The initial value at time `s`.
|
737 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
738 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
739 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
740 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
741 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
742 |
+
Returns:
|
743 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
744 |
+
"""
|
745 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
746 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
747 |
+
ns = self.noise_schedule
|
748 |
+
dims = x.dim()
|
749 |
+
model_prev_1, model_prev_0 = model_prev_list
|
750 |
+
t_prev_1, t_prev_0 = t_prev_list
|
751 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
|
752 |
+
t_prev_0), ns.marginal_lambda(t)
|
753 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
754 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
755 |
+
alpha_t = torch.exp(log_alpha_t)
|
756 |
+
|
757 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
758 |
+
h = lambda_t - lambda_prev_0
|
759 |
+
r0 = h_0 / h
|
760 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
761 |
+
if self.predict_x0:
|
762 |
+
if solver_type == 'dpm_solver':
|
763 |
+
x_t = (
|
764 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
765 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
766 |
+
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
767 |
+
)
|
768 |
+
elif solver_type == 'taylor':
|
769 |
+
x_t = (
|
770 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
771 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
772 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
773 |
+
)
|
774 |
+
else:
|
775 |
+
if solver_type == 'dpm_solver':
|
776 |
+
x_t = (
|
777 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
778 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
779 |
+
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
780 |
+
)
|
781 |
+
elif solver_type == 'taylor':
|
782 |
+
x_t = (
|
783 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
784 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
785 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
786 |
+
)
|
787 |
+
return x_t
|
788 |
+
|
789 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
790 |
+
"""
|
791 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
792 |
+
Args:
|
793 |
+
x: A pytorch tensor. The initial value at time `s`.
|
794 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
795 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
796 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
797 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
798 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
799 |
+
Returns:
|
800 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
801 |
+
"""
|
802 |
+
ns = self.noise_schedule
|
803 |
+
dims = x.dim()
|
804 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
805 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
806 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
|
807 |
+
t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
808 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
809 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
810 |
+
alpha_t = torch.exp(log_alpha_t)
|
811 |
+
|
812 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
813 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
814 |
+
h = lambda_t - lambda_prev_0
|
815 |
+
r0, r1 = h_0 / h, h_1 / h
|
816 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
817 |
+
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
818 |
+
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
819 |
+
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
820 |
+
if self.predict_x0:
|
821 |
+
x_t = (
|
822 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
823 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
824 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
825 |
+
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
|
826 |
+
)
|
827 |
+
else:
|
828 |
+
x_t = (
|
829 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
830 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
831 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
832 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
|
833 |
+
)
|
834 |
+
return x_t
|
835 |
+
|
836 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
|
837 |
+
r2=None):
|
838 |
+
"""
|
839 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
840 |
+
Args:
|
841 |
+
x: A pytorch tensor. The initial value at time `s`.
|
842 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
843 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
844 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
845 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
846 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
847 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
848 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
849 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
850 |
+
Returns:
|
851 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
852 |
+
"""
|
853 |
+
if order == 1:
|
854 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
855 |
+
elif order == 2:
|
856 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
|
857 |
+
solver_type=solver_type, r1=r1)
|
858 |
+
elif order == 3:
|
859 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
|
860 |
+
solver_type=solver_type, r1=r1, r2=r2)
|
861 |
+
else:
|
862 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
863 |
+
|
864 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
865 |
+
"""
|
866 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
867 |
+
Args:
|
868 |
+
x: A pytorch tensor. The initial value at time `s`.
|
869 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
870 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
871 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
872 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
873 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
874 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
875 |
+
Returns:
|
876 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
877 |
+
"""
|
878 |
+
if order == 1:
|
879 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
880 |
+
elif order == 2:
|
881 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
882 |
+
elif order == 3:
|
883 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
884 |
+
else:
|
885 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
886 |
+
|
887 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
|
888 |
+
solver_type='dpm_solver'):
|
889 |
+
"""
|
890 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
891 |
+
Args:
|
892 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
893 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
894 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
895 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
896 |
+
h_init: A `float`. The initial step size (for logSNR).
|
897 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
898 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
899 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
900 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
901 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
902 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
903 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
904 |
+
Returns:
|
905 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
906 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
907 |
+
"""
|
908 |
+
ns = self.noise_schedule
|
909 |
+
s = t_T * torch.ones((x.shape[0],)).to(x)
|
910 |
+
lambda_s = ns.marginal_lambda(s)
|
911 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
912 |
+
h = h_init * torch.ones_like(s).to(x)
|
913 |
+
x_prev = x
|
914 |
+
nfe = 0
|
915 |
+
if order == 2:
|
916 |
+
r1 = 0.5
|
917 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
918 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
919 |
+
solver_type=solver_type,
|
920 |
+
**kwargs)
|
921 |
+
elif order == 3:
|
922 |
+
r1, r2 = 1. / 3., 2. / 3.
|
923 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
924 |
+
return_intermediate=True,
|
925 |
+
solver_type=solver_type)
|
926 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
|
927 |
+
solver_type=solver_type,
|
928 |
+
**kwargs)
|
929 |
+
else:
|
930 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
931 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
932 |
+
t = ns.inverse_lambda(lambda_s + h)
|
933 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
934 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
935 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
936 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
937 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
938 |
+
if torch.all(E <= 1.):
|
939 |
+
x = x_higher
|
940 |
+
s = t
|
941 |
+
x_prev = x_lower
|
942 |
+
lambda_s = ns.marginal_lambda(s)
|
943 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
944 |
+
nfe += order
|
945 |
+
print('adaptive solver nfe', nfe)
|
946 |
+
return x
|
947 |
+
|
948 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
949 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
950 |
+
atol=0.0078, rtol=0.05,
|
951 |
+
):
|
952 |
+
"""
|
953 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
954 |
+
=====================================================
|
955 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
956 |
+
- 'singlestep':
|
957 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
958 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
959 |
+
The total number of function evaluations (NFE) == `steps`.
|
960 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
961 |
+
- If `order` == 1:
|
962 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
963 |
+
- If `order` == 2:
|
964 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
965 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
966 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
967 |
+
- If `order` == 3:
|
968 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
969 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
970 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
971 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
972 |
+
- 'multistep':
|
973 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
974 |
+
We initialize the first `order` values by lower order multistep solvers.
|
975 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
976 |
+
Denote K = steps.
|
977 |
+
- If `order` == 1:
|
978 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
979 |
+
- If `order` == 2:
|
980 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
981 |
+
- If `order` == 3:
|
982 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
983 |
+
- 'singlestep_fixed':
|
984 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
985 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
986 |
+
- 'adaptive':
|
987 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
988 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
989 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
990 |
+
(NFE) and the sample quality.
|
991 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
992 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
993 |
+
=====================================================
|
994 |
+
Some advices for choosing the algorithm:
|
995 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
996 |
+
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
997 |
+
e.g.
|
998 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
999 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1000 |
+
skip_type='time_uniform', method='singlestep')
|
1001 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
1002 |
+
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
1003 |
+
e.g.
|
1004 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
1005 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
1006 |
+
skip_type='time_uniform', method='multistep')
|
1007 |
+
We support three types of `skip_type`:
|
1008 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1009 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1010 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1011 |
+
=====================================================
|
1012 |
+
Args:
|
1013 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1014 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1015 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1016 |
+
t_start: A `float`. The starting time of the sampling.
|
1017 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1018 |
+
t_end: A `float`. The ending time of the sampling.
|
1019 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1020 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1021 |
+
For discrete-time DPMs:
|
1022 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1023 |
+
For continuous-time DPMs:
|
1024 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1025 |
+
order: A `int`. The order of DPM-Solver.
|
1026 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1027 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1028 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1029 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1030 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1031 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1032 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1033 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1034 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1035 |
+
it for high-resolutional images.
|
1036 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1037 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1038 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1039 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1040 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
1041 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1042 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1043 |
+
Returns:
|
1044 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1045 |
+
"""
|
1046 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1047 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1048 |
+
device = x.device
|
1049 |
+
if method == 'adaptive':
|
1050 |
+
with torch.no_grad():
|
1051 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
|
1052 |
+
solver_type=solver_type)
|
1053 |
+
elif method == 'multistep':
|
1054 |
+
assert steps >= order
|
1055 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1056 |
+
assert timesteps.shape[0] - 1 == steps
|
1057 |
+
with torch.no_grad():
|
1058 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
1059 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
1060 |
+
t_prev_list = [vec_t]
|
1061 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1062 |
+
for init_order in tqdm(range(1, order), desc="DPM init order"):
|
1063 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
1064 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
|
1065 |
+
solver_type=solver_type)
|
1066 |
+
model_prev_list.append(self.model_fn(x, vec_t))
|
1067 |
+
t_prev_list.append(vec_t)
|
1068 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1069 |
+
for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
|
1070 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
1071 |
+
if lower_order_final and steps < 15:
|
1072 |
+
step_order = min(order, steps + 1 - step)
|
1073 |
+
else:
|
1074 |
+
step_order = order
|
1075 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
|
1076 |
+
solver_type=solver_type)
|
1077 |
+
for i in range(order - 1):
|
1078 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1079 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1080 |
+
t_prev_list[-1] = vec_t
|
1081 |
+
# We do not need to evaluate the final model value.
|
1082 |
+
if step < steps:
|
1083 |
+
model_prev_list[-1] = self.model_fn(x, vec_t)
|
1084 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
1085 |
+
if method == 'singlestep':
|
1086 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
|
1087 |
+
skip_type=skip_type,
|
1088 |
+
t_T=t_T, t_0=t_0,
|
1089 |
+
device=device)
|
1090 |
+
elif method == 'singlestep_fixed':
|
1091 |
+
K = steps // order
|
1092 |
+
orders = [order, ] * K
|
1093 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1094 |
+
for i, order in enumerate(orders):
|
1095 |
+
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
1096 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
|
1097 |
+
N=order, device=device)
|
1098 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1099 |
+
vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
|
1100 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
1101 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1102 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1103 |
+
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1104 |
+
if denoise_to_zero:
|
1105 |
+
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
1106 |
+
return x
|
1107 |
+
|
1108 |
+
|
1109 |
+
#############################################################
|
1110 |
+
# other utility functions
|
1111 |
+
#############################################################
|
1112 |
+
|
1113 |
+
def interpolate_fn(x, xp, yp):
|
1114 |
+
"""
|
1115 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1116 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1117 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1118 |
+
Args:
|
1119 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1120 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1121 |
+
yp: PyTorch tensor with shape [C, K].
|
1122 |
+
Returns:
|
1123 |
+
The function values f(x), with shape [N, C].
|
1124 |
+
"""
|
1125 |
+
N, K = x.shape[0], xp.shape[1]
|
1126 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1127 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1128 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1129 |
+
cand_start_idx = x_idx - 1
|
1130 |
+
start_idx = torch.where(
|
1131 |
+
torch.eq(x_idx, 0),
|
1132 |
+
torch.tensor(1, device=x.device),
|
1133 |
+
torch.where(
|
1134 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1135 |
+
),
|
1136 |
+
)
|
1137 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1138 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1139 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1140 |
+
start_idx2 = torch.where(
|
1141 |
+
torch.eq(x_idx, 0),
|
1142 |
+
torch.tensor(0, device=x.device),
|
1143 |
+
torch.where(
|
1144 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1145 |
+
),
|
1146 |
+
)
|
1147 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1148 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1149 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1150 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1151 |
+
return cand
|
1152 |
+
|
1153 |
+
|
1154 |
+
def expand_dims(v, dims):
|
1155 |
+
"""
|
1156 |
+
Expand the tensor `v` to the dim `dims`.
|
1157 |
+
Args:
|
1158 |
+
`v`: a PyTorch tensor with shape [N].
|
1159 |
+
`dim`: a `int`.
|
1160 |
+
Returns:
|
1161 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1162 |
+
"""
|
1163 |
+
return v[(...,) + (None,) * (dims - 1)]
|
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/dpm_solver/sampler.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
5 |
+
|
6 |
+
MODEL_TYPES = {
|
7 |
+
"eps": "noise",
|
8 |
+
"v": "v"
|
9 |
+
}
|
10 |
+
|
11 |
+
|
12 |
+
class DPMSolverSampler(object):
|
13 |
+
def __init__(self, model, device=torch.device("cuda"), **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.model = model
|
16 |
+
self.device = device
|
17 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
18 |
+
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
19 |
+
|
20 |
+
def register_buffer(self, name, attr):
|
21 |
+
if type(attr) == torch.Tensor:
|
22 |
+
if attr.device != self.device:
|
23 |
+
attr = attr.to(self.device)
|
24 |
+
setattr(self, name, attr)
|
25 |
+
|
26 |
+
@torch.no_grad()
|
27 |
+
def sample(self,
|
28 |
+
S,
|
29 |
+
batch_size,
|
30 |
+
shape,
|
31 |
+
conditioning=None,
|
32 |
+
callback=None,
|
33 |
+
normals_sequence=None,
|
34 |
+
img_callback=None,
|
35 |
+
quantize_x0=False,
|
36 |
+
eta=0.,
|
37 |
+
mask=None,
|
38 |
+
x0=None,
|
39 |
+
temperature=1.,
|
40 |
+
noise_dropout=0.,
|
41 |
+
score_corrector=None,
|
42 |
+
corrector_kwargs=None,
|
43 |
+
verbose=True,
|
44 |
+
x_T=None,
|
45 |
+
log_every_t=100,
|
46 |
+
unconditional_guidance_scale=1.,
|
47 |
+
unconditional_conditioning=None,
|
48 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
49 |
+
**kwargs
|
50 |
+
):
|
51 |
+
if conditioning is not None:
|
52 |
+
if isinstance(conditioning, dict):
|
53 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
54 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
55 |
+
if isinstance(ctmp, torch.Tensor):
|
56 |
+
cbs = ctmp.shape[0]
|
57 |
+
if cbs != batch_size:
|
58 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
59 |
+
elif isinstance(conditioning, list):
|
60 |
+
for ctmp in conditioning:
|
61 |
+
if ctmp.shape[0] != batch_size:
|
62 |
+
print(f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}")
|
63 |
+
else:
|
64 |
+
if isinstance(conditioning, torch.Tensor):
|
65 |
+
if conditioning.shape[0] != batch_size:
|
66 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
67 |
+
|
68 |
+
# sampling
|
69 |
+
C, H, W = shape
|
70 |
+
size = (batch_size, C, H, W)
|
71 |
+
|
72 |
+
print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
73 |
+
|
74 |
+
device = self.model.betas.device
|
75 |
+
if x_T is None:
|
76 |
+
img = torch.randn(size, device=device)
|
77 |
+
else:
|
78 |
+
img = x_T
|
79 |
+
|
80 |
+
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
81 |
+
|
82 |
+
model_fn = model_wrapper(
|
83 |
+
lambda x, t, c: self.model.apply_model(x, t, c),
|
84 |
+
ns,
|
85 |
+
model_type=MODEL_TYPES[self.model.parameterization],
|
86 |
+
guidance_type="classifier-free",
|
87 |
+
condition=conditioning,
|
88 |
+
unconditional_condition=unconditional_conditioning,
|
89 |
+
guidance_scale=unconditional_guidance_scale,
|
90 |
+
)
|
91 |
+
|
92 |
+
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
93 |
+
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2,
|
94 |
+
lower_order_final=True)
|
95 |
+
|
96 |
+
return x.to(device), None
|
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/plms.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
+
from ldm.models.diffusion.sampling_util import norm_thresholding
|
10 |
+
|
11 |
+
|
12 |
+
class PLMSSampler(object):
|
13 |
+
def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.model = model
|
16 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
17 |
+
self.schedule = schedule
|
18 |
+
self.device = device
|
19 |
+
|
20 |
+
def register_buffer(self, name, attr):
|
21 |
+
if type(attr) == torch.Tensor:
|
22 |
+
if attr.device != self.device:
|
23 |
+
attr = attr.to(self.device)
|
24 |
+
setattr(self, name, attr)
|
25 |
+
|
26 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
27 |
+
if ddim_eta != 0:
|
28 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
29 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
30 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
31 |
+
alphas_cumprod = self.model.alphas_cumprod
|
32 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
33 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
34 |
+
|
35 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
36 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
37 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
38 |
+
|
39 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
40 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
43 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
44 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
45 |
+
|
46 |
+
# ddim sampling parameters
|
47 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
48 |
+
ddim_timesteps=self.ddim_timesteps,
|
49 |
+
eta=ddim_eta,verbose=verbose)
|
50 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
51 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
52 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
53 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
54 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
55 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
56 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
57 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def sample(self,
|
61 |
+
S,
|
62 |
+
batch_size,
|
63 |
+
shape,
|
64 |
+
conditioning=None,
|
65 |
+
callback=None,
|
66 |
+
normals_sequence=None,
|
67 |
+
img_callback=None,
|
68 |
+
quantize_x0=False,
|
69 |
+
eta=0.,
|
70 |
+
mask=None,
|
71 |
+
x0=None,
|
72 |
+
temperature=1.,
|
73 |
+
noise_dropout=0.,
|
74 |
+
score_corrector=None,
|
75 |
+
corrector_kwargs=None,
|
76 |
+
verbose=True,
|
77 |
+
x_T=None,
|
78 |
+
log_every_t=100,
|
79 |
+
unconditional_guidance_scale=1.,
|
80 |
+
unconditional_conditioning=None,
|
81 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
82 |
+
dynamic_threshold=None,
|
83 |
+
**kwargs
|
84 |
+
):
|
85 |
+
if conditioning is not None:
|
86 |
+
if isinstance(conditioning, dict):
|
87 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
88 |
+
if cbs != batch_size:
|
89 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
90 |
+
else:
|
91 |
+
if conditioning.shape[0] != batch_size:
|
92 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
93 |
+
|
94 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
95 |
+
# sampling
|
96 |
+
C, H, W = shape
|
97 |
+
size = (batch_size, C, H, W)
|
98 |
+
print(f'Data shape for PLMS sampling is {size}')
|
99 |
+
|
100 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
101 |
+
callback=callback,
|
102 |
+
img_callback=img_callback,
|
103 |
+
quantize_denoised=quantize_x0,
|
104 |
+
mask=mask, x0=x0,
|
105 |
+
ddim_use_original_steps=False,
|
106 |
+
noise_dropout=noise_dropout,
|
107 |
+
temperature=temperature,
|
108 |
+
score_corrector=score_corrector,
|
109 |
+
corrector_kwargs=corrector_kwargs,
|
110 |
+
x_T=x_T,
|
111 |
+
log_every_t=log_every_t,
|
112 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
113 |
+
unconditional_conditioning=unconditional_conditioning,
|
114 |
+
dynamic_threshold=dynamic_threshold,
|
115 |
+
)
|
116 |
+
return samples, intermediates
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def plms_sampling(self, cond, shape,
|
120 |
+
x_T=None, ddim_use_original_steps=False,
|
121 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
122 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
123 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
124 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
125 |
+
dynamic_threshold=None):
|
126 |
+
device = self.model.betas.device
|
127 |
+
b = shape[0]
|
128 |
+
if x_T is None:
|
129 |
+
img = torch.randn(shape, device=device)
|
130 |
+
else:
|
131 |
+
img = x_T
|
132 |
+
|
133 |
+
if timesteps is None:
|
134 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
135 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
136 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
137 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
138 |
+
|
139 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
140 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
141 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
142 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
143 |
+
|
144 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
145 |
+
old_eps = []
|
146 |
+
|
147 |
+
for i, step in enumerate(iterator):
|
148 |
+
index = total_steps - i - 1
|
149 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
150 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
151 |
+
|
152 |
+
if mask is not None:
|
153 |
+
assert x0 is not None
|
154 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
155 |
+
img = img_orig * mask + (1. - mask) * img
|
156 |
+
|
157 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
158 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
159 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
160 |
+
corrector_kwargs=corrector_kwargs,
|
161 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
162 |
+
unconditional_conditioning=unconditional_conditioning,
|
163 |
+
old_eps=old_eps, t_next=ts_next,
|
164 |
+
dynamic_threshold=dynamic_threshold)
|
165 |
+
img, pred_x0, e_t = outs
|
166 |
+
old_eps.append(e_t)
|
167 |
+
if len(old_eps) >= 4:
|
168 |
+
old_eps.pop(0)
|
169 |
+
if callback: callback(i)
|
170 |
+
if img_callback: img_callback(pred_x0, i)
|
171 |
+
|
172 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
173 |
+
intermediates['x_inter'].append(img)
|
174 |
+
intermediates['pred_x0'].append(pred_x0)
|
175 |
+
|
176 |
+
return img, intermediates
|
177 |
+
|
178 |
+
@torch.no_grad()
|
179 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
180 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
181 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
182 |
+
dynamic_threshold=None):
|
183 |
+
b, *_, device = *x.shape, x.device
|
184 |
+
|
185 |
+
def get_model_output(x, t):
|
186 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
187 |
+
e_t = self.model.apply_model(x, t, c)
|
188 |
+
else:
|
189 |
+
x_in = torch.cat([x] * 2)
|
190 |
+
t_in = torch.cat([t] * 2)
|
191 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
192 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
193 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
194 |
+
|
195 |
+
if score_corrector is not None:
|
196 |
+
assert self.model.parameterization == "eps"
|
197 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
198 |
+
|
199 |
+
return e_t
|
200 |
+
|
201 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
202 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
203 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
204 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
205 |
+
|
206 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
207 |
+
# select parameters corresponding to the currently considered timestep
|
208 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
209 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
210 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
211 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
212 |
+
|
213 |
+
# current prediction for x_0
|
214 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
215 |
+
if quantize_denoised:
|
216 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
217 |
+
if dynamic_threshold is not None:
|
218 |
+
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
219 |
+
# direction pointing to x_t
|
220 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
221 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
222 |
+
if noise_dropout > 0.:
|
223 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
224 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
225 |
+
return x_prev, pred_x0
|
226 |
+
|
227 |
+
e_t = get_model_output(x, t)
|
228 |
+
if len(old_eps) == 0:
|
229 |
+
# Pseudo Improved Euler (2nd order)
|
230 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
231 |
+
e_t_next = get_model_output(x_prev, t_next)
|
232 |
+
e_t_prime = (e_t + e_t_next) / 2
|
233 |
+
elif len(old_eps) == 1:
|
234 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
235 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
236 |
+
elif len(old_eps) == 2:
|
237 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
238 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
239 |
+
elif len(old_eps) >= 3:
|
240 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
241 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
242 |
+
|
243 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
244 |
+
|
245 |
+
return x_prev, pred_x0, e_t
|
repositories/stable-diffusion-stability-ai/ldm/models/diffusion/sampling_util.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def append_dims(x, target_dims):
|
6 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
7 |
+
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
8 |
+
dims_to_append = target_dims - x.ndim
|
9 |
+
if dims_to_append < 0:
|
10 |
+
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
11 |
+
return x[(...,) + (None,) * dims_to_append]
|
12 |
+
|
13 |
+
|
14 |
+
def norm_thresholding(x0, value):
|
15 |
+
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
16 |
+
return x0 * (value / s)
|
17 |
+
|
18 |
+
|
19 |
+
def spatial_norm_thresholding(x0, value):
|
20 |
+
# b c h w
|
21 |
+
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
22 |
+
return x0 * (value / s)
|
repositories/stable-diffusion-stability-ai/ldm/modules/__pycache__/attention.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/__pycache__/ema.cpython-310.pyc
ADDED
Binary file (3.23 kB). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/attention.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
from typing import Optional, Any
|
8 |
+
|
9 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
10 |
+
|
11 |
+
|
12 |
+
try:
|
13 |
+
import xformers
|
14 |
+
import xformers.ops
|
15 |
+
XFORMERS_IS_AVAILBLE = True
|
16 |
+
except:
|
17 |
+
XFORMERS_IS_AVAILBLE = False
|
18 |
+
|
19 |
+
# CrossAttn precision handling
|
20 |
+
import os
|
21 |
+
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
22 |
+
|
23 |
+
def exists(val):
|
24 |
+
return val is not None
|
25 |
+
|
26 |
+
|
27 |
+
def uniq(arr):
|
28 |
+
return{el: True for el in arr}.keys()
|
29 |
+
|
30 |
+
|
31 |
+
def default(val, d):
|
32 |
+
if exists(val):
|
33 |
+
return val
|
34 |
+
return d() if isfunction(d) else d
|
35 |
+
|
36 |
+
|
37 |
+
def max_neg_value(t):
|
38 |
+
return -torch.finfo(t.dtype).max
|
39 |
+
|
40 |
+
|
41 |
+
def init_(tensor):
|
42 |
+
dim = tensor.shape[-1]
|
43 |
+
std = 1 / math.sqrt(dim)
|
44 |
+
tensor.uniform_(-std, std)
|
45 |
+
return tensor
|
46 |
+
|
47 |
+
|
48 |
+
# feedforward
|
49 |
+
class GEGLU(nn.Module):
|
50 |
+
def __init__(self, dim_in, dim_out):
|
51 |
+
super().__init__()
|
52 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
56 |
+
return x * F.gelu(gate)
|
57 |
+
|
58 |
+
|
59 |
+
class FeedForward(nn.Module):
|
60 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
61 |
+
super().__init__()
|
62 |
+
inner_dim = int(dim * mult)
|
63 |
+
dim_out = default(dim_out, dim)
|
64 |
+
project_in = nn.Sequential(
|
65 |
+
nn.Linear(dim, inner_dim),
|
66 |
+
nn.GELU()
|
67 |
+
) if not glu else GEGLU(dim, inner_dim)
|
68 |
+
|
69 |
+
self.net = nn.Sequential(
|
70 |
+
project_in,
|
71 |
+
nn.Dropout(dropout),
|
72 |
+
nn.Linear(inner_dim, dim_out)
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
return self.net(x)
|
77 |
+
|
78 |
+
|
79 |
+
def zero_module(module):
|
80 |
+
"""
|
81 |
+
Zero out the parameters of a module and return it.
|
82 |
+
"""
|
83 |
+
for p in module.parameters():
|
84 |
+
p.detach().zero_()
|
85 |
+
return module
|
86 |
+
|
87 |
+
|
88 |
+
def Normalize(in_channels):
|
89 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
90 |
+
|
91 |
+
|
92 |
+
class SpatialSelfAttention(nn.Module):
|
93 |
+
def __init__(self, in_channels):
|
94 |
+
super().__init__()
|
95 |
+
self.in_channels = in_channels
|
96 |
+
|
97 |
+
self.norm = Normalize(in_channels)
|
98 |
+
self.q = torch.nn.Conv2d(in_channels,
|
99 |
+
in_channels,
|
100 |
+
kernel_size=1,
|
101 |
+
stride=1,
|
102 |
+
padding=0)
|
103 |
+
self.k = torch.nn.Conv2d(in_channels,
|
104 |
+
in_channels,
|
105 |
+
kernel_size=1,
|
106 |
+
stride=1,
|
107 |
+
padding=0)
|
108 |
+
self.v = torch.nn.Conv2d(in_channels,
|
109 |
+
in_channels,
|
110 |
+
kernel_size=1,
|
111 |
+
stride=1,
|
112 |
+
padding=0)
|
113 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
114 |
+
in_channels,
|
115 |
+
kernel_size=1,
|
116 |
+
stride=1,
|
117 |
+
padding=0)
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
h_ = x
|
121 |
+
h_ = self.norm(h_)
|
122 |
+
q = self.q(h_)
|
123 |
+
k = self.k(h_)
|
124 |
+
v = self.v(h_)
|
125 |
+
|
126 |
+
# compute attention
|
127 |
+
b,c,h,w = q.shape
|
128 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
129 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
130 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
131 |
+
|
132 |
+
w_ = w_ * (int(c)**(-0.5))
|
133 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
134 |
+
|
135 |
+
# attend to values
|
136 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
137 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
138 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
139 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
140 |
+
h_ = self.proj_out(h_)
|
141 |
+
|
142 |
+
return x+h_
|
143 |
+
|
144 |
+
|
145 |
+
class CrossAttention(nn.Module):
|
146 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
147 |
+
super().__init__()
|
148 |
+
inner_dim = dim_head * heads
|
149 |
+
context_dim = default(context_dim, query_dim)
|
150 |
+
|
151 |
+
self.scale = dim_head ** -0.5
|
152 |
+
self.heads = heads
|
153 |
+
|
154 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
155 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
156 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
157 |
+
|
158 |
+
self.to_out = nn.Sequential(
|
159 |
+
nn.Linear(inner_dim, query_dim),
|
160 |
+
nn.Dropout(dropout)
|
161 |
+
)
|
162 |
+
|
163 |
+
def forward(self, x, context=None, mask=None):
|
164 |
+
h = self.heads
|
165 |
+
|
166 |
+
q = self.to_q(x)
|
167 |
+
context = default(context, x)
|
168 |
+
k = self.to_k(context)
|
169 |
+
v = self.to_v(context)
|
170 |
+
|
171 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
172 |
+
|
173 |
+
# force cast to fp32 to avoid overflowing
|
174 |
+
if _ATTN_PRECISION =="fp32":
|
175 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
176 |
+
q, k = q.float(), k.float()
|
177 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
178 |
+
else:
|
179 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
180 |
+
|
181 |
+
del q, k
|
182 |
+
|
183 |
+
if exists(mask):
|
184 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
185 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
186 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
187 |
+
sim.masked_fill_(~mask, max_neg_value)
|
188 |
+
|
189 |
+
# attention, what we cannot get enough of
|
190 |
+
sim = sim.softmax(dim=-1)
|
191 |
+
|
192 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
193 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
194 |
+
return self.to_out(out)
|
195 |
+
|
196 |
+
|
197 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
198 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
199 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
200 |
+
super().__init__()
|
201 |
+
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
202 |
+
f"{heads} heads.")
|
203 |
+
inner_dim = dim_head * heads
|
204 |
+
context_dim = default(context_dim, query_dim)
|
205 |
+
|
206 |
+
self.heads = heads
|
207 |
+
self.dim_head = dim_head
|
208 |
+
|
209 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
210 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
211 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
212 |
+
|
213 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
214 |
+
self.attention_op: Optional[Any] = None
|
215 |
+
|
216 |
+
def forward(self, x, context=None, mask=None):
|
217 |
+
q = self.to_q(x)
|
218 |
+
context = default(context, x)
|
219 |
+
k = self.to_k(context)
|
220 |
+
v = self.to_v(context)
|
221 |
+
|
222 |
+
b, _, _ = q.shape
|
223 |
+
q, k, v = map(
|
224 |
+
lambda t: t.unsqueeze(3)
|
225 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
226 |
+
.permute(0, 2, 1, 3)
|
227 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
228 |
+
.contiguous(),
|
229 |
+
(q, k, v),
|
230 |
+
)
|
231 |
+
|
232 |
+
# actually compute the attention, what we cannot get enough of
|
233 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
234 |
+
|
235 |
+
if exists(mask):
|
236 |
+
raise NotImplementedError
|
237 |
+
out = (
|
238 |
+
out.unsqueeze(0)
|
239 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
240 |
+
.permute(0, 2, 1, 3)
|
241 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
242 |
+
)
|
243 |
+
return self.to_out(out)
|
244 |
+
|
245 |
+
|
246 |
+
class BasicTransformerBlock(nn.Module):
|
247 |
+
ATTENTION_MODES = {
|
248 |
+
"softmax": CrossAttention, # vanilla attention
|
249 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
250 |
+
}
|
251 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
252 |
+
disable_self_attn=False):
|
253 |
+
super().__init__()
|
254 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
255 |
+
assert attn_mode in self.ATTENTION_MODES
|
256 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
257 |
+
self.disable_self_attn = disable_self_attn
|
258 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
259 |
+
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
260 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
261 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
|
262 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
263 |
+
self.norm1 = nn.LayerNorm(dim)
|
264 |
+
self.norm2 = nn.LayerNorm(dim)
|
265 |
+
self.norm3 = nn.LayerNorm(dim)
|
266 |
+
self.checkpoint = checkpoint
|
267 |
+
|
268 |
+
def forward(self, x, context=None):
|
269 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
270 |
+
|
271 |
+
def _forward(self, x, context=None):
|
272 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
273 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
274 |
+
x = self.ff(self.norm3(x)) + x
|
275 |
+
return x
|
276 |
+
|
277 |
+
|
278 |
+
class SpatialTransformer(nn.Module):
|
279 |
+
"""
|
280 |
+
Transformer block for image-like data.
|
281 |
+
First, project the input (aka embedding)
|
282 |
+
and reshape to b, t, d.
|
283 |
+
Then apply standard transformer action.
|
284 |
+
Finally, reshape to image
|
285 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
286 |
+
"""
|
287 |
+
def __init__(self, in_channels, n_heads, d_head,
|
288 |
+
depth=1, dropout=0., context_dim=None,
|
289 |
+
disable_self_attn=False, use_linear=False,
|
290 |
+
use_checkpoint=True):
|
291 |
+
super().__init__()
|
292 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
293 |
+
context_dim = [context_dim]
|
294 |
+
self.in_channels = in_channels
|
295 |
+
inner_dim = n_heads * d_head
|
296 |
+
self.norm = Normalize(in_channels)
|
297 |
+
if not use_linear:
|
298 |
+
self.proj_in = nn.Conv2d(in_channels,
|
299 |
+
inner_dim,
|
300 |
+
kernel_size=1,
|
301 |
+
stride=1,
|
302 |
+
padding=0)
|
303 |
+
else:
|
304 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
305 |
+
|
306 |
+
self.transformer_blocks = nn.ModuleList(
|
307 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
308 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
309 |
+
for d in range(depth)]
|
310 |
+
)
|
311 |
+
if not use_linear:
|
312 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
313 |
+
in_channels,
|
314 |
+
kernel_size=1,
|
315 |
+
stride=1,
|
316 |
+
padding=0))
|
317 |
+
else:
|
318 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
319 |
+
self.use_linear = use_linear
|
320 |
+
|
321 |
+
def forward(self, x, context=None):
|
322 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
323 |
+
if not isinstance(context, list):
|
324 |
+
context = [context]
|
325 |
+
b, c, h, w = x.shape
|
326 |
+
x_in = x
|
327 |
+
x = self.norm(x)
|
328 |
+
if not self.use_linear:
|
329 |
+
x = self.proj_in(x)
|
330 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
331 |
+
if self.use_linear:
|
332 |
+
x = self.proj_in(x)
|
333 |
+
for i, block in enumerate(self.transformer_blocks):
|
334 |
+
x = block(x, context=context[i])
|
335 |
+
if self.use_linear:
|
336 |
+
x = self.proj_out(x)
|
337 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
338 |
+
if not self.use_linear:
|
339 |
+
x = self.proj_out(x)
|
340 |
+
return x + x_in
|
341 |
+
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (200 Bytes). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc
ADDED
Binary file (20.9 kB). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc
ADDED
Binary file (21.2 kB). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc
ADDED
Binary file (3.82 kB). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc
ADDED
Binary file (9.96 kB). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
from typing import Optional, Any
|
8 |
+
|
9 |
+
from ldm.modules.attention import MemoryEfficientCrossAttention
|
10 |
+
|
11 |
+
try:
|
12 |
+
import xformers
|
13 |
+
import xformers.ops
|
14 |
+
XFORMERS_IS_AVAILBLE = True
|
15 |
+
except:
|
16 |
+
XFORMERS_IS_AVAILBLE = False
|
17 |
+
print("No module 'xformers'. Proceeding without it.")
|
18 |
+
|
19 |
+
|
20 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
21 |
+
"""
|
22 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
23 |
+
From Fairseq.
|
24 |
+
Build sinusoidal embeddings.
|
25 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
26 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
27 |
+
"""
|
28 |
+
assert len(timesteps.shape) == 1
|
29 |
+
|
30 |
+
half_dim = embedding_dim // 2
|
31 |
+
emb = math.log(10000) / (half_dim - 1)
|
32 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
33 |
+
emb = emb.to(device=timesteps.device)
|
34 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
35 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
36 |
+
if embedding_dim % 2 == 1: # zero pad
|
37 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
38 |
+
return emb
|
39 |
+
|
40 |
+
|
41 |
+
def nonlinearity(x):
|
42 |
+
# swish
|
43 |
+
return x*torch.sigmoid(x)
|
44 |
+
|
45 |
+
|
46 |
+
def Normalize(in_channels, num_groups=32):
|
47 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
48 |
+
|
49 |
+
|
50 |
+
class Upsample(nn.Module):
|
51 |
+
def __init__(self, in_channels, with_conv):
|
52 |
+
super().__init__()
|
53 |
+
self.with_conv = with_conv
|
54 |
+
if self.with_conv:
|
55 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
56 |
+
in_channels,
|
57 |
+
kernel_size=3,
|
58 |
+
stride=1,
|
59 |
+
padding=1)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
63 |
+
if self.with_conv:
|
64 |
+
x = self.conv(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
class Downsample(nn.Module):
|
69 |
+
def __init__(self, in_channels, with_conv):
|
70 |
+
super().__init__()
|
71 |
+
self.with_conv = with_conv
|
72 |
+
if self.with_conv:
|
73 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
74 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
75 |
+
in_channels,
|
76 |
+
kernel_size=3,
|
77 |
+
stride=2,
|
78 |
+
padding=0)
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
if self.with_conv:
|
82 |
+
pad = (0,1,0,1)
|
83 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
84 |
+
x = self.conv(x)
|
85 |
+
else:
|
86 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
class ResnetBlock(nn.Module):
|
91 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
92 |
+
dropout, temb_channels=512):
|
93 |
+
super().__init__()
|
94 |
+
self.in_channels = in_channels
|
95 |
+
out_channels = in_channels if out_channels is None else out_channels
|
96 |
+
self.out_channels = out_channels
|
97 |
+
self.use_conv_shortcut = conv_shortcut
|
98 |
+
|
99 |
+
self.norm1 = Normalize(in_channels)
|
100 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
101 |
+
out_channels,
|
102 |
+
kernel_size=3,
|
103 |
+
stride=1,
|
104 |
+
padding=1)
|
105 |
+
if temb_channels > 0:
|
106 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
107 |
+
out_channels)
|
108 |
+
self.norm2 = Normalize(out_channels)
|
109 |
+
self.dropout = torch.nn.Dropout(dropout)
|
110 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
111 |
+
out_channels,
|
112 |
+
kernel_size=3,
|
113 |
+
stride=1,
|
114 |
+
padding=1)
|
115 |
+
if self.in_channels != self.out_channels:
|
116 |
+
if self.use_conv_shortcut:
|
117 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
118 |
+
out_channels,
|
119 |
+
kernel_size=3,
|
120 |
+
stride=1,
|
121 |
+
padding=1)
|
122 |
+
else:
|
123 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
124 |
+
out_channels,
|
125 |
+
kernel_size=1,
|
126 |
+
stride=1,
|
127 |
+
padding=0)
|
128 |
+
|
129 |
+
def forward(self, x, temb):
|
130 |
+
h = x
|
131 |
+
h = self.norm1(h)
|
132 |
+
h = nonlinearity(h)
|
133 |
+
h = self.conv1(h)
|
134 |
+
|
135 |
+
if temb is not None:
|
136 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
137 |
+
|
138 |
+
h = self.norm2(h)
|
139 |
+
h = nonlinearity(h)
|
140 |
+
h = self.dropout(h)
|
141 |
+
h = self.conv2(h)
|
142 |
+
|
143 |
+
if self.in_channels != self.out_channels:
|
144 |
+
if self.use_conv_shortcut:
|
145 |
+
x = self.conv_shortcut(x)
|
146 |
+
else:
|
147 |
+
x = self.nin_shortcut(x)
|
148 |
+
|
149 |
+
return x+h
|
150 |
+
|
151 |
+
|
152 |
+
class AttnBlock(nn.Module):
|
153 |
+
def __init__(self, in_channels):
|
154 |
+
super().__init__()
|
155 |
+
self.in_channels = in_channels
|
156 |
+
|
157 |
+
self.norm = Normalize(in_channels)
|
158 |
+
self.q = torch.nn.Conv2d(in_channels,
|
159 |
+
in_channels,
|
160 |
+
kernel_size=1,
|
161 |
+
stride=1,
|
162 |
+
padding=0)
|
163 |
+
self.k = torch.nn.Conv2d(in_channels,
|
164 |
+
in_channels,
|
165 |
+
kernel_size=1,
|
166 |
+
stride=1,
|
167 |
+
padding=0)
|
168 |
+
self.v = torch.nn.Conv2d(in_channels,
|
169 |
+
in_channels,
|
170 |
+
kernel_size=1,
|
171 |
+
stride=1,
|
172 |
+
padding=0)
|
173 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
174 |
+
in_channels,
|
175 |
+
kernel_size=1,
|
176 |
+
stride=1,
|
177 |
+
padding=0)
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
h_ = x
|
181 |
+
h_ = self.norm(h_)
|
182 |
+
q = self.q(h_)
|
183 |
+
k = self.k(h_)
|
184 |
+
v = self.v(h_)
|
185 |
+
|
186 |
+
# compute attention
|
187 |
+
b,c,h,w = q.shape
|
188 |
+
q = q.reshape(b,c,h*w)
|
189 |
+
q = q.permute(0,2,1) # b,hw,c
|
190 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
191 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
192 |
+
w_ = w_ * (int(c)**(-0.5))
|
193 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
194 |
+
|
195 |
+
# attend to values
|
196 |
+
v = v.reshape(b,c,h*w)
|
197 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
198 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
199 |
+
h_ = h_.reshape(b,c,h,w)
|
200 |
+
|
201 |
+
h_ = self.proj_out(h_)
|
202 |
+
|
203 |
+
return x+h_
|
204 |
+
|
205 |
+
class MemoryEfficientAttnBlock(nn.Module):
|
206 |
+
"""
|
207 |
+
Uses xformers efficient implementation,
|
208 |
+
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
209 |
+
Note: this is a single-head self-attention operation
|
210 |
+
"""
|
211 |
+
#
|
212 |
+
def __init__(self, in_channels):
|
213 |
+
super().__init__()
|
214 |
+
self.in_channels = in_channels
|
215 |
+
|
216 |
+
self.norm = Normalize(in_channels)
|
217 |
+
self.q = torch.nn.Conv2d(in_channels,
|
218 |
+
in_channels,
|
219 |
+
kernel_size=1,
|
220 |
+
stride=1,
|
221 |
+
padding=0)
|
222 |
+
self.k = torch.nn.Conv2d(in_channels,
|
223 |
+
in_channels,
|
224 |
+
kernel_size=1,
|
225 |
+
stride=1,
|
226 |
+
padding=0)
|
227 |
+
self.v = torch.nn.Conv2d(in_channels,
|
228 |
+
in_channels,
|
229 |
+
kernel_size=1,
|
230 |
+
stride=1,
|
231 |
+
padding=0)
|
232 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
233 |
+
in_channels,
|
234 |
+
kernel_size=1,
|
235 |
+
stride=1,
|
236 |
+
padding=0)
|
237 |
+
self.attention_op: Optional[Any] = None
|
238 |
+
|
239 |
+
def forward(self, x):
|
240 |
+
h_ = x
|
241 |
+
h_ = self.norm(h_)
|
242 |
+
q = self.q(h_)
|
243 |
+
k = self.k(h_)
|
244 |
+
v = self.v(h_)
|
245 |
+
|
246 |
+
# compute attention
|
247 |
+
B, C, H, W = q.shape
|
248 |
+
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
|
249 |
+
|
250 |
+
q, k, v = map(
|
251 |
+
lambda t: t.unsqueeze(3)
|
252 |
+
.reshape(B, t.shape[1], 1, C)
|
253 |
+
.permute(0, 2, 1, 3)
|
254 |
+
.reshape(B * 1, t.shape[1], C)
|
255 |
+
.contiguous(),
|
256 |
+
(q, k, v),
|
257 |
+
)
|
258 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
259 |
+
|
260 |
+
out = (
|
261 |
+
out.unsqueeze(0)
|
262 |
+
.reshape(B, 1, out.shape[1], C)
|
263 |
+
.permute(0, 2, 1, 3)
|
264 |
+
.reshape(B, out.shape[1], C)
|
265 |
+
)
|
266 |
+
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
|
267 |
+
out = self.proj_out(out)
|
268 |
+
return x+out
|
269 |
+
|
270 |
+
|
271 |
+
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
272 |
+
def forward(self, x, context=None, mask=None):
|
273 |
+
b, c, h, w = x.shape
|
274 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
275 |
+
out = super().forward(x, context=context, mask=mask)
|
276 |
+
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
|
277 |
+
return x + out
|
278 |
+
|
279 |
+
|
280 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
281 |
+
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
|
282 |
+
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
283 |
+
attn_type = "vanilla-xformers"
|
284 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
285 |
+
if attn_type == "vanilla":
|
286 |
+
assert attn_kwargs is None
|
287 |
+
return AttnBlock(in_channels)
|
288 |
+
elif attn_type == "vanilla-xformers":
|
289 |
+
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
290 |
+
return MemoryEfficientAttnBlock(in_channels)
|
291 |
+
elif type == "memory-efficient-cross-attn":
|
292 |
+
attn_kwargs["query_dim"] = in_channels
|
293 |
+
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
294 |
+
elif attn_type == "none":
|
295 |
+
return nn.Identity(in_channels)
|
296 |
+
else:
|
297 |
+
raise NotImplementedError()
|
298 |
+
|
299 |
+
|
300 |
+
class Model(nn.Module):
|
301 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
302 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
303 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
304 |
+
super().__init__()
|
305 |
+
if use_linear_attn: attn_type = "linear"
|
306 |
+
self.ch = ch
|
307 |
+
self.temb_ch = self.ch*4
|
308 |
+
self.num_resolutions = len(ch_mult)
|
309 |
+
self.num_res_blocks = num_res_blocks
|
310 |
+
self.resolution = resolution
|
311 |
+
self.in_channels = in_channels
|
312 |
+
|
313 |
+
self.use_timestep = use_timestep
|
314 |
+
if self.use_timestep:
|
315 |
+
# timestep embedding
|
316 |
+
self.temb = nn.Module()
|
317 |
+
self.temb.dense = nn.ModuleList([
|
318 |
+
torch.nn.Linear(self.ch,
|
319 |
+
self.temb_ch),
|
320 |
+
torch.nn.Linear(self.temb_ch,
|
321 |
+
self.temb_ch),
|
322 |
+
])
|
323 |
+
|
324 |
+
# downsampling
|
325 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
326 |
+
self.ch,
|
327 |
+
kernel_size=3,
|
328 |
+
stride=1,
|
329 |
+
padding=1)
|
330 |
+
|
331 |
+
curr_res = resolution
|
332 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
333 |
+
self.down = nn.ModuleList()
|
334 |
+
for i_level in range(self.num_resolutions):
|
335 |
+
block = nn.ModuleList()
|
336 |
+
attn = nn.ModuleList()
|
337 |
+
block_in = ch*in_ch_mult[i_level]
|
338 |
+
block_out = ch*ch_mult[i_level]
|
339 |
+
for i_block in range(self.num_res_blocks):
|
340 |
+
block.append(ResnetBlock(in_channels=block_in,
|
341 |
+
out_channels=block_out,
|
342 |
+
temb_channels=self.temb_ch,
|
343 |
+
dropout=dropout))
|
344 |
+
block_in = block_out
|
345 |
+
if curr_res in attn_resolutions:
|
346 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
347 |
+
down = nn.Module()
|
348 |
+
down.block = block
|
349 |
+
down.attn = attn
|
350 |
+
if i_level != self.num_resolutions-1:
|
351 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
352 |
+
curr_res = curr_res // 2
|
353 |
+
self.down.append(down)
|
354 |
+
|
355 |
+
# middle
|
356 |
+
self.mid = nn.Module()
|
357 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
358 |
+
out_channels=block_in,
|
359 |
+
temb_channels=self.temb_ch,
|
360 |
+
dropout=dropout)
|
361 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
362 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
363 |
+
out_channels=block_in,
|
364 |
+
temb_channels=self.temb_ch,
|
365 |
+
dropout=dropout)
|
366 |
+
|
367 |
+
# upsampling
|
368 |
+
self.up = nn.ModuleList()
|
369 |
+
for i_level in reversed(range(self.num_resolutions)):
|
370 |
+
block = nn.ModuleList()
|
371 |
+
attn = nn.ModuleList()
|
372 |
+
block_out = ch*ch_mult[i_level]
|
373 |
+
skip_in = ch*ch_mult[i_level]
|
374 |
+
for i_block in range(self.num_res_blocks+1):
|
375 |
+
if i_block == self.num_res_blocks:
|
376 |
+
skip_in = ch*in_ch_mult[i_level]
|
377 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
378 |
+
out_channels=block_out,
|
379 |
+
temb_channels=self.temb_ch,
|
380 |
+
dropout=dropout))
|
381 |
+
block_in = block_out
|
382 |
+
if curr_res in attn_resolutions:
|
383 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
384 |
+
up = nn.Module()
|
385 |
+
up.block = block
|
386 |
+
up.attn = attn
|
387 |
+
if i_level != 0:
|
388 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
389 |
+
curr_res = curr_res * 2
|
390 |
+
self.up.insert(0, up) # prepend to get consistent order
|
391 |
+
|
392 |
+
# end
|
393 |
+
self.norm_out = Normalize(block_in)
|
394 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
395 |
+
out_ch,
|
396 |
+
kernel_size=3,
|
397 |
+
stride=1,
|
398 |
+
padding=1)
|
399 |
+
|
400 |
+
def forward(self, x, t=None, context=None):
|
401 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
402 |
+
if context is not None:
|
403 |
+
# assume aligned context, cat along channel axis
|
404 |
+
x = torch.cat((x, context), dim=1)
|
405 |
+
if self.use_timestep:
|
406 |
+
# timestep embedding
|
407 |
+
assert t is not None
|
408 |
+
temb = get_timestep_embedding(t, self.ch)
|
409 |
+
temb = self.temb.dense[0](temb)
|
410 |
+
temb = nonlinearity(temb)
|
411 |
+
temb = self.temb.dense[1](temb)
|
412 |
+
else:
|
413 |
+
temb = None
|
414 |
+
|
415 |
+
# downsampling
|
416 |
+
hs = [self.conv_in(x)]
|
417 |
+
for i_level in range(self.num_resolutions):
|
418 |
+
for i_block in range(self.num_res_blocks):
|
419 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
420 |
+
if len(self.down[i_level].attn) > 0:
|
421 |
+
h = self.down[i_level].attn[i_block](h)
|
422 |
+
hs.append(h)
|
423 |
+
if i_level != self.num_resolutions-1:
|
424 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
425 |
+
|
426 |
+
# middle
|
427 |
+
h = hs[-1]
|
428 |
+
h = self.mid.block_1(h, temb)
|
429 |
+
h = self.mid.attn_1(h)
|
430 |
+
h = self.mid.block_2(h, temb)
|
431 |
+
|
432 |
+
# upsampling
|
433 |
+
for i_level in reversed(range(self.num_resolutions)):
|
434 |
+
for i_block in range(self.num_res_blocks+1):
|
435 |
+
h = self.up[i_level].block[i_block](
|
436 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
437 |
+
if len(self.up[i_level].attn) > 0:
|
438 |
+
h = self.up[i_level].attn[i_block](h)
|
439 |
+
if i_level != 0:
|
440 |
+
h = self.up[i_level].upsample(h)
|
441 |
+
|
442 |
+
# end
|
443 |
+
h = self.norm_out(h)
|
444 |
+
h = nonlinearity(h)
|
445 |
+
h = self.conv_out(h)
|
446 |
+
return h
|
447 |
+
|
448 |
+
def get_last_layer(self):
|
449 |
+
return self.conv_out.weight
|
450 |
+
|
451 |
+
|
452 |
+
class Encoder(nn.Module):
|
453 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
454 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
455 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
456 |
+
**ignore_kwargs):
|
457 |
+
super().__init__()
|
458 |
+
if use_linear_attn: attn_type = "linear"
|
459 |
+
self.ch = ch
|
460 |
+
self.temb_ch = 0
|
461 |
+
self.num_resolutions = len(ch_mult)
|
462 |
+
self.num_res_blocks = num_res_blocks
|
463 |
+
self.resolution = resolution
|
464 |
+
self.in_channels = in_channels
|
465 |
+
|
466 |
+
# downsampling
|
467 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
468 |
+
self.ch,
|
469 |
+
kernel_size=3,
|
470 |
+
stride=1,
|
471 |
+
padding=1)
|
472 |
+
|
473 |
+
curr_res = resolution
|
474 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
475 |
+
self.in_ch_mult = in_ch_mult
|
476 |
+
self.down = nn.ModuleList()
|
477 |
+
for i_level in range(self.num_resolutions):
|
478 |
+
block = nn.ModuleList()
|
479 |
+
attn = nn.ModuleList()
|
480 |
+
block_in = ch*in_ch_mult[i_level]
|
481 |
+
block_out = ch*ch_mult[i_level]
|
482 |
+
for i_block in range(self.num_res_blocks):
|
483 |
+
block.append(ResnetBlock(in_channels=block_in,
|
484 |
+
out_channels=block_out,
|
485 |
+
temb_channels=self.temb_ch,
|
486 |
+
dropout=dropout))
|
487 |
+
block_in = block_out
|
488 |
+
if curr_res in attn_resolutions:
|
489 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
490 |
+
down = nn.Module()
|
491 |
+
down.block = block
|
492 |
+
down.attn = attn
|
493 |
+
if i_level != self.num_resolutions-1:
|
494 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
495 |
+
curr_res = curr_res // 2
|
496 |
+
self.down.append(down)
|
497 |
+
|
498 |
+
# middle
|
499 |
+
self.mid = nn.Module()
|
500 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
501 |
+
out_channels=block_in,
|
502 |
+
temb_channels=self.temb_ch,
|
503 |
+
dropout=dropout)
|
504 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
505 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
506 |
+
out_channels=block_in,
|
507 |
+
temb_channels=self.temb_ch,
|
508 |
+
dropout=dropout)
|
509 |
+
|
510 |
+
# end
|
511 |
+
self.norm_out = Normalize(block_in)
|
512 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
513 |
+
2*z_channels if double_z else z_channels,
|
514 |
+
kernel_size=3,
|
515 |
+
stride=1,
|
516 |
+
padding=1)
|
517 |
+
|
518 |
+
def forward(self, x):
|
519 |
+
# timestep embedding
|
520 |
+
temb = None
|
521 |
+
|
522 |
+
# downsampling
|
523 |
+
hs = [self.conv_in(x)]
|
524 |
+
for i_level in range(self.num_resolutions):
|
525 |
+
for i_block in range(self.num_res_blocks):
|
526 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
527 |
+
if len(self.down[i_level].attn) > 0:
|
528 |
+
h = self.down[i_level].attn[i_block](h)
|
529 |
+
hs.append(h)
|
530 |
+
if i_level != self.num_resolutions-1:
|
531 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
532 |
+
|
533 |
+
# middle
|
534 |
+
h = hs[-1]
|
535 |
+
h = self.mid.block_1(h, temb)
|
536 |
+
h = self.mid.attn_1(h)
|
537 |
+
h = self.mid.block_2(h, temb)
|
538 |
+
|
539 |
+
# end
|
540 |
+
h = self.norm_out(h)
|
541 |
+
h = nonlinearity(h)
|
542 |
+
h = self.conv_out(h)
|
543 |
+
return h
|
544 |
+
|
545 |
+
|
546 |
+
class Decoder(nn.Module):
|
547 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
548 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
549 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
550 |
+
attn_type="vanilla", **ignorekwargs):
|
551 |
+
super().__init__()
|
552 |
+
if use_linear_attn: attn_type = "linear"
|
553 |
+
self.ch = ch
|
554 |
+
self.temb_ch = 0
|
555 |
+
self.num_resolutions = len(ch_mult)
|
556 |
+
self.num_res_blocks = num_res_blocks
|
557 |
+
self.resolution = resolution
|
558 |
+
self.in_channels = in_channels
|
559 |
+
self.give_pre_end = give_pre_end
|
560 |
+
self.tanh_out = tanh_out
|
561 |
+
|
562 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
563 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
564 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
565 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
566 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
567 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
568 |
+
self.z_shape, np.prod(self.z_shape)))
|
569 |
+
|
570 |
+
# z to block_in
|
571 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
572 |
+
block_in,
|
573 |
+
kernel_size=3,
|
574 |
+
stride=1,
|
575 |
+
padding=1)
|
576 |
+
|
577 |
+
# middle
|
578 |
+
self.mid = nn.Module()
|
579 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
580 |
+
out_channels=block_in,
|
581 |
+
temb_channels=self.temb_ch,
|
582 |
+
dropout=dropout)
|
583 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
584 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
585 |
+
out_channels=block_in,
|
586 |
+
temb_channels=self.temb_ch,
|
587 |
+
dropout=dropout)
|
588 |
+
|
589 |
+
# upsampling
|
590 |
+
self.up = nn.ModuleList()
|
591 |
+
for i_level in reversed(range(self.num_resolutions)):
|
592 |
+
block = nn.ModuleList()
|
593 |
+
attn = nn.ModuleList()
|
594 |
+
block_out = ch*ch_mult[i_level]
|
595 |
+
for i_block in range(self.num_res_blocks+1):
|
596 |
+
block.append(ResnetBlock(in_channels=block_in,
|
597 |
+
out_channels=block_out,
|
598 |
+
temb_channels=self.temb_ch,
|
599 |
+
dropout=dropout))
|
600 |
+
block_in = block_out
|
601 |
+
if curr_res in attn_resolutions:
|
602 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
603 |
+
up = nn.Module()
|
604 |
+
up.block = block
|
605 |
+
up.attn = attn
|
606 |
+
if i_level != 0:
|
607 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
608 |
+
curr_res = curr_res * 2
|
609 |
+
self.up.insert(0, up) # prepend to get consistent order
|
610 |
+
|
611 |
+
# end
|
612 |
+
self.norm_out = Normalize(block_in)
|
613 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
614 |
+
out_ch,
|
615 |
+
kernel_size=3,
|
616 |
+
stride=1,
|
617 |
+
padding=1)
|
618 |
+
|
619 |
+
def forward(self, z):
|
620 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
621 |
+
self.last_z_shape = z.shape
|
622 |
+
|
623 |
+
# timestep embedding
|
624 |
+
temb = None
|
625 |
+
|
626 |
+
# z to block_in
|
627 |
+
h = self.conv_in(z)
|
628 |
+
|
629 |
+
# middle
|
630 |
+
h = self.mid.block_1(h, temb)
|
631 |
+
h = self.mid.attn_1(h)
|
632 |
+
h = self.mid.block_2(h, temb)
|
633 |
+
|
634 |
+
# upsampling
|
635 |
+
for i_level in reversed(range(self.num_resolutions)):
|
636 |
+
for i_block in range(self.num_res_blocks+1):
|
637 |
+
h = self.up[i_level].block[i_block](h, temb)
|
638 |
+
if len(self.up[i_level].attn) > 0:
|
639 |
+
h = self.up[i_level].attn[i_block](h)
|
640 |
+
if i_level != 0:
|
641 |
+
h = self.up[i_level].upsample(h)
|
642 |
+
|
643 |
+
# end
|
644 |
+
if self.give_pre_end:
|
645 |
+
return h
|
646 |
+
|
647 |
+
h = self.norm_out(h)
|
648 |
+
h = nonlinearity(h)
|
649 |
+
h = self.conv_out(h)
|
650 |
+
if self.tanh_out:
|
651 |
+
h = torch.tanh(h)
|
652 |
+
return h
|
653 |
+
|
654 |
+
|
655 |
+
class SimpleDecoder(nn.Module):
|
656 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
657 |
+
super().__init__()
|
658 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
659 |
+
ResnetBlock(in_channels=in_channels,
|
660 |
+
out_channels=2 * in_channels,
|
661 |
+
temb_channels=0, dropout=0.0),
|
662 |
+
ResnetBlock(in_channels=2 * in_channels,
|
663 |
+
out_channels=4 * in_channels,
|
664 |
+
temb_channels=0, dropout=0.0),
|
665 |
+
ResnetBlock(in_channels=4 * in_channels,
|
666 |
+
out_channels=2 * in_channels,
|
667 |
+
temb_channels=0, dropout=0.0),
|
668 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
669 |
+
Upsample(in_channels, with_conv=True)])
|
670 |
+
# end
|
671 |
+
self.norm_out = Normalize(in_channels)
|
672 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
673 |
+
out_channels,
|
674 |
+
kernel_size=3,
|
675 |
+
stride=1,
|
676 |
+
padding=1)
|
677 |
+
|
678 |
+
def forward(self, x):
|
679 |
+
for i, layer in enumerate(self.model):
|
680 |
+
if i in [1,2,3]:
|
681 |
+
x = layer(x, None)
|
682 |
+
else:
|
683 |
+
x = layer(x)
|
684 |
+
|
685 |
+
h = self.norm_out(x)
|
686 |
+
h = nonlinearity(h)
|
687 |
+
x = self.conv_out(h)
|
688 |
+
return x
|
689 |
+
|
690 |
+
|
691 |
+
class UpsampleDecoder(nn.Module):
|
692 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
693 |
+
ch_mult=(2,2), dropout=0.0):
|
694 |
+
super().__init__()
|
695 |
+
# upsampling
|
696 |
+
self.temb_ch = 0
|
697 |
+
self.num_resolutions = len(ch_mult)
|
698 |
+
self.num_res_blocks = num_res_blocks
|
699 |
+
block_in = in_channels
|
700 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
701 |
+
self.res_blocks = nn.ModuleList()
|
702 |
+
self.upsample_blocks = nn.ModuleList()
|
703 |
+
for i_level in range(self.num_resolutions):
|
704 |
+
res_block = []
|
705 |
+
block_out = ch * ch_mult[i_level]
|
706 |
+
for i_block in range(self.num_res_blocks + 1):
|
707 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
708 |
+
out_channels=block_out,
|
709 |
+
temb_channels=self.temb_ch,
|
710 |
+
dropout=dropout))
|
711 |
+
block_in = block_out
|
712 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
713 |
+
if i_level != self.num_resolutions - 1:
|
714 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
715 |
+
curr_res = curr_res * 2
|
716 |
+
|
717 |
+
# end
|
718 |
+
self.norm_out = Normalize(block_in)
|
719 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
720 |
+
out_channels,
|
721 |
+
kernel_size=3,
|
722 |
+
stride=1,
|
723 |
+
padding=1)
|
724 |
+
|
725 |
+
def forward(self, x):
|
726 |
+
# upsampling
|
727 |
+
h = x
|
728 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
729 |
+
for i_block in range(self.num_res_blocks + 1):
|
730 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
731 |
+
if i_level != self.num_resolutions - 1:
|
732 |
+
h = self.upsample_blocks[k](h)
|
733 |
+
h = self.norm_out(h)
|
734 |
+
h = nonlinearity(h)
|
735 |
+
h = self.conv_out(h)
|
736 |
+
return h
|
737 |
+
|
738 |
+
|
739 |
+
class LatentRescaler(nn.Module):
|
740 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
741 |
+
super().__init__()
|
742 |
+
# residual block, interpolate, residual block
|
743 |
+
self.factor = factor
|
744 |
+
self.conv_in = nn.Conv2d(in_channels,
|
745 |
+
mid_channels,
|
746 |
+
kernel_size=3,
|
747 |
+
stride=1,
|
748 |
+
padding=1)
|
749 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
750 |
+
out_channels=mid_channels,
|
751 |
+
temb_channels=0,
|
752 |
+
dropout=0.0) for _ in range(depth)])
|
753 |
+
self.attn = AttnBlock(mid_channels)
|
754 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
755 |
+
out_channels=mid_channels,
|
756 |
+
temb_channels=0,
|
757 |
+
dropout=0.0) for _ in range(depth)])
|
758 |
+
|
759 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
760 |
+
out_channels,
|
761 |
+
kernel_size=1,
|
762 |
+
)
|
763 |
+
|
764 |
+
def forward(self, x):
|
765 |
+
x = self.conv_in(x)
|
766 |
+
for block in self.res_block1:
|
767 |
+
x = block(x, None)
|
768 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
769 |
+
x = self.attn(x)
|
770 |
+
for block in self.res_block2:
|
771 |
+
x = block(x, None)
|
772 |
+
x = self.conv_out(x)
|
773 |
+
return x
|
774 |
+
|
775 |
+
|
776 |
+
class MergedRescaleEncoder(nn.Module):
|
777 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
778 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
779 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
780 |
+
super().__init__()
|
781 |
+
intermediate_chn = ch * ch_mult[-1]
|
782 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
783 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
784 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
785 |
+
out_ch=None)
|
786 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
787 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
788 |
+
|
789 |
+
def forward(self, x):
|
790 |
+
x = self.encoder(x)
|
791 |
+
x = self.rescaler(x)
|
792 |
+
return x
|
793 |
+
|
794 |
+
|
795 |
+
class MergedRescaleDecoder(nn.Module):
|
796 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
797 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
798 |
+
super().__init__()
|
799 |
+
tmp_chn = z_channels*ch_mult[-1]
|
800 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
801 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
802 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
803 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
804 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
805 |
+
|
806 |
+
def forward(self, x):
|
807 |
+
x = self.rescaler(x)
|
808 |
+
x = self.decoder(x)
|
809 |
+
return x
|
810 |
+
|
811 |
+
|
812 |
+
class Upsampler(nn.Module):
|
813 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
814 |
+
super().__init__()
|
815 |
+
assert out_size >= in_size
|
816 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
817 |
+
factor_up = 1.+ (out_size % in_size)
|
818 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
819 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
820 |
+
out_channels=in_channels)
|
821 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
822 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
823 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
824 |
+
|
825 |
+
def forward(self, x):
|
826 |
+
x = self.rescaler(x)
|
827 |
+
x = self.decoder(x)
|
828 |
+
return x
|
829 |
+
|
830 |
+
|
831 |
+
class Resize(nn.Module):
|
832 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
833 |
+
super().__init__()
|
834 |
+
self.with_conv = learned
|
835 |
+
self.mode = mode
|
836 |
+
if self.with_conv:
|
837 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
838 |
+
raise NotImplementedError()
|
839 |
+
assert in_channels is not None
|
840 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
841 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
842 |
+
in_channels,
|
843 |
+
kernel_size=4,
|
844 |
+
stride=2,
|
845 |
+
padding=1)
|
846 |
+
|
847 |
+
def forward(self, x, scale_factor=1.0):
|
848 |
+
if scale_factor==1.0:
|
849 |
+
return x
|
850 |
+
else:
|
851 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
852 |
+
return x
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,807 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from ldm.modules.diffusionmodules.util import (
|
10 |
+
checkpoint,
|
11 |
+
conv_nd,
|
12 |
+
linear,
|
13 |
+
avg_pool_nd,
|
14 |
+
zero_module,
|
15 |
+
normalization,
|
16 |
+
timestep_embedding,
|
17 |
+
)
|
18 |
+
from ldm.modules.attention import SpatialTransformer
|
19 |
+
from ldm.util import exists
|
20 |
+
|
21 |
+
|
22 |
+
# dummy replace
|
23 |
+
def convert_module_to_f16(x):
|
24 |
+
pass
|
25 |
+
|
26 |
+
def convert_module_to_f32(x):
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
## go
|
31 |
+
class AttentionPool2d(nn.Module):
|
32 |
+
"""
|
33 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
spacial_dim: int,
|
39 |
+
embed_dim: int,
|
40 |
+
num_heads_channels: int,
|
41 |
+
output_dim: int = None,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
45 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
46 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
47 |
+
self.num_heads = embed_dim // num_heads_channels
|
48 |
+
self.attention = QKVAttention(self.num_heads)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
b, c, *_spatial = x.shape
|
52 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
53 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
54 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
55 |
+
x = self.qkv_proj(x)
|
56 |
+
x = self.attention(x)
|
57 |
+
x = self.c_proj(x)
|
58 |
+
return x[:, :, 0]
|
59 |
+
|
60 |
+
|
61 |
+
class TimestepBlock(nn.Module):
|
62 |
+
"""
|
63 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
64 |
+
"""
|
65 |
+
|
66 |
+
@abstractmethod
|
67 |
+
def forward(self, x, emb):
|
68 |
+
"""
|
69 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
70 |
+
"""
|
71 |
+
|
72 |
+
|
73 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
74 |
+
"""
|
75 |
+
A sequential module that passes timestep embeddings to the children that
|
76 |
+
support it as an extra input.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def forward(self, x, emb, context=None):
|
80 |
+
for layer in self:
|
81 |
+
if isinstance(layer, TimestepBlock):
|
82 |
+
x = layer(x, emb)
|
83 |
+
elif isinstance(layer, SpatialTransformer):
|
84 |
+
x = layer(x, context)
|
85 |
+
else:
|
86 |
+
x = layer(x)
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
class Upsample(nn.Module):
|
91 |
+
"""
|
92 |
+
An upsampling layer with an optional convolution.
|
93 |
+
:param channels: channels in the inputs and outputs.
|
94 |
+
:param use_conv: a bool determining if a convolution is applied.
|
95 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
96 |
+
upsampling occurs in the inner-two dimensions.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
100 |
+
super().__init__()
|
101 |
+
self.channels = channels
|
102 |
+
self.out_channels = out_channels or channels
|
103 |
+
self.use_conv = use_conv
|
104 |
+
self.dims = dims
|
105 |
+
if use_conv:
|
106 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
assert x.shape[1] == self.channels
|
110 |
+
if self.dims == 3:
|
111 |
+
x = F.interpolate(
|
112 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
116 |
+
if self.use_conv:
|
117 |
+
x = self.conv(x)
|
118 |
+
return x
|
119 |
+
|
120 |
+
class TransposedUpsample(nn.Module):
|
121 |
+
'Learned 2x upsampling without padding'
|
122 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
123 |
+
super().__init__()
|
124 |
+
self.channels = channels
|
125 |
+
self.out_channels = out_channels or channels
|
126 |
+
|
127 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
128 |
+
|
129 |
+
def forward(self,x):
|
130 |
+
return self.up(x)
|
131 |
+
|
132 |
+
|
133 |
+
class Downsample(nn.Module):
|
134 |
+
"""
|
135 |
+
A downsampling layer with an optional convolution.
|
136 |
+
:param channels: channels in the inputs and outputs.
|
137 |
+
:param use_conv: a bool determining if a convolution is applied.
|
138 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
139 |
+
downsampling occurs in the inner-two dimensions.
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
143 |
+
super().__init__()
|
144 |
+
self.channels = channels
|
145 |
+
self.out_channels = out_channels or channels
|
146 |
+
self.use_conv = use_conv
|
147 |
+
self.dims = dims
|
148 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
149 |
+
if use_conv:
|
150 |
+
self.op = conv_nd(
|
151 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
152 |
+
)
|
153 |
+
else:
|
154 |
+
assert self.channels == self.out_channels
|
155 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
assert x.shape[1] == self.channels
|
159 |
+
return self.op(x)
|
160 |
+
|
161 |
+
|
162 |
+
class ResBlock(TimestepBlock):
|
163 |
+
"""
|
164 |
+
A residual block that can optionally change the number of channels.
|
165 |
+
:param channels: the number of input channels.
|
166 |
+
:param emb_channels: the number of timestep embedding channels.
|
167 |
+
:param dropout: the rate of dropout.
|
168 |
+
:param out_channels: if specified, the number of out channels.
|
169 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
170 |
+
convolution instead of a smaller 1x1 convolution to change the
|
171 |
+
channels in the skip connection.
|
172 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
173 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
174 |
+
:param up: if True, use this block for upsampling.
|
175 |
+
:param down: if True, use this block for downsampling.
|
176 |
+
"""
|
177 |
+
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
channels,
|
181 |
+
emb_channels,
|
182 |
+
dropout,
|
183 |
+
out_channels=None,
|
184 |
+
use_conv=False,
|
185 |
+
use_scale_shift_norm=False,
|
186 |
+
dims=2,
|
187 |
+
use_checkpoint=False,
|
188 |
+
up=False,
|
189 |
+
down=False,
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
self.channels = channels
|
193 |
+
self.emb_channels = emb_channels
|
194 |
+
self.dropout = dropout
|
195 |
+
self.out_channels = out_channels or channels
|
196 |
+
self.use_conv = use_conv
|
197 |
+
self.use_checkpoint = use_checkpoint
|
198 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
199 |
+
|
200 |
+
self.in_layers = nn.Sequential(
|
201 |
+
normalization(channels),
|
202 |
+
nn.SiLU(),
|
203 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
204 |
+
)
|
205 |
+
|
206 |
+
self.updown = up or down
|
207 |
+
|
208 |
+
if up:
|
209 |
+
self.h_upd = Upsample(channels, False, dims)
|
210 |
+
self.x_upd = Upsample(channels, False, dims)
|
211 |
+
elif down:
|
212 |
+
self.h_upd = Downsample(channels, False, dims)
|
213 |
+
self.x_upd = Downsample(channels, False, dims)
|
214 |
+
else:
|
215 |
+
self.h_upd = self.x_upd = nn.Identity()
|
216 |
+
|
217 |
+
self.emb_layers = nn.Sequential(
|
218 |
+
nn.SiLU(),
|
219 |
+
linear(
|
220 |
+
emb_channels,
|
221 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
222 |
+
),
|
223 |
+
)
|
224 |
+
self.out_layers = nn.Sequential(
|
225 |
+
normalization(self.out_channels),
|
226 |
+
nn.SiLU(),
|
227 |
+
nn.Dropout(p=dropout),
|
228 |
+
zero_module(
|
229 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
230 |
+
),
|
231 |
+
)
|
232 |
+
|
233 |
+
if self.out_channels == channels:
|
234 |
+
self.skip_connection = nn.Identity()
|
235 |
+
elif use_conv:
|
236 |
+
self.skip_connection = conv_nd(
|
237 |
+
dims, channels, self.out_channels, 3, padding=1
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
241 |
+
|
242 |
+
def forward(self, x, emb):
|
243 |
+
"""
|
244 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
245 |
+
:param x: an [N x C x ...] Tensor of features.
|
246 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
247 |
+
:return: an [N x C x ...] Tensor of outputs.
|
248 |
+
"""
|
249 |
+
return checkpoint(
|
250 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
def _forward(self, x, emb):
|
255 |
+
if self.updown:
|
256 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
257 |
+
h = in_rest(x)
|
258 |
+
h = self.h_upd(h)
|
259 |
+
x = self.x_upd(x)
|
260 |
+
h = in_conv(h)
|
261 |
+
else:
|
262 |
+
h = self.in_layers(x)
|
263 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
264 |
+
while len(emb_out.shape) < len(h.shape):
|
265 |
+
emb_out = emb_out[..., None]
|
266 |
+
if self.use_scale_shift_norm:
|
267 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
268 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
269 |
+
h = out_norm(h) * (1 + scale) + shift
|
270 |
+
h = out_rest(h)
|
271 |
+
else:
|
272 |
+
h = h + emb_out
|
273 |
+
h = self.out_layers(h)
|
274 |
+
return self.skip_connection(x) + h
|
275 |
+
|
276 |
+
|
277 |
+
class AttentionBlock(nn.Module):
|
278 |
+
"""
|
279 |
+
An attention block that allows spatial positions to attend to each other.
|
280 |
+
Originally ported from here, but adapted to the N-d case.
|
281 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
282 |
+
"""
|
283 |
+
|
284 |
+
def __init__(
|
285 |
+
self,
|
286 |
+
channels,
|
287 |
+
num_heads=1,
|
288 |
+
num_head_channels=-1,
|
289 |
+
use_checkpoint=False,
|
290 |
+
use_new_attention_order=False,
|
291 |
+
):
|
292 |
+
super().__init__()
|
293 |
+
self.channels = channels
|
294 |
+
if num_head_channels == -1:
|
295 |
+
self.num_heads = num_heads
|
296 |
+
else:
|
297 |
+
assert (
|
298 |
+
channels % num_head_channels == 0
|
299 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
300 |
+
self.num_heads = channels // num_head_channels
|
301 |
+
self.use_checkpoint = use_checkpoint
|
302 |
+
self.norm = normalization(channels)
|
303 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
304 |
+
if use_new_attention_order:
|
305 |
+
# split qkv before split heads
|
306 |
+
self.attention = QKVAttention(self.num_heads)
|
307 |
+
else:
|
308 |
+
# split heads before split qkv
|
309 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
310 |
+
|
311 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
312 |
+
|
313 |
+
def forward(self, x):
|
314 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
315 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
316 |
+
|
317 |
+
def _forward(self, x):
|
318 |
+
b, c, *spatial = x.shape
|
319 |
+
x = x.reshape(b, c, -1)
|
320 |
+
qkv = self.qkv(self.norm(x))
|
321 |
+
h = self.attention(qkv)
|
322 |
+
h = self.proj_out(h)
|
323 |
+
return (x + h).reshape(b, c, *spatial)
|
324 |
+
|
325 |
+
|
326 |
+
def count_flops_attn(model, _x, y):
|
327 |
+
"""
|
328 |
+
A counter for the `thop` package to count the operations in an
|
329 |
+
attention operation.
|
330 |
+
Meant to be used like:
|
331 |
+
macs, params = thop.profile(
|
332 |
+
model,
|
333 |
+
inputs=(inputs, timestamps),
|
334 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
335 |
+
)
|
336 |
+
"""
|
337 |
+
b, c, *spatial = y[0].shape
|
338 |
+
num_spatial = int(np.prod(spatial))
|
339 |
+
# We perform two matmuls with the same number of ops.
|
340 |
+
# The first computes the weight matrix, the second computes
|
341 |
+
# the combination of the value vectors.
|
342 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
343 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
344 |
+
|
345 |
+
|
346 |
+
class QKVAttentionLegacy(nn.Module):
|
347 |
+
"""
|
348 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
349 |
+
"""
|
350 |
+
|
351 |
+
def __init__(self, n_heads):
|
352 |
+
super().__init__()
|
353 |
+
self.n_heads = n_heads
|
354 |
+
|
355 |
+
def forward(self, qkv):
|
356 |
+
"""
|
357 |
+
Apply QKV attention.
|
358 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
359 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
360 |
+
"""
|
361 |
+
bs, width, length = qkv.shape
|
362 |
+
assert width % (3 * self.n_heads) == 0
|
363 |
+
ch = width // (3 * self.n_heads)
|
364 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
365 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
366 |
+
weight = th.einsum(
|
367 |
+
"bct,bcs->bts", q * scale, k * scale
|
368 |
+
) # More stable with f16 than dividing afterwards
|
369 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
370 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
371 |
+
return a.reshape(bs, -1, length)
|
372 |
+
|
373 |
+
@staticmethod
|
374 |
+
def count_flops(model, _x, y):
|
375 |
+
return count_flops_attn(model, _x, y)
|
376 |
+
|
377 |
+
|
378 |
+
class QKVAttention(nn.Module):
|
379 |
+
"""
|
380 |
+
A module which performs QKV attention and splits in a different order.
|
381 |
+
"""
|
382 |
+
|
383 |
+
def __init__(self, n_heads):
|
384 |
+
super().__init__()
|
385 |
+
self.n_heads = n_heads
|
386 |
+
|
387 |
+
def forward(self, qkv):
|
388 |
+
"""
|
389 |
+
Apply QKV attention.
|
390 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
391 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
392 |
+
"""
|
393 |
+
bs, width, length = qkv.shape
|
394 |
+
assert width % (3 * self.n_heads) == 0
|
395 |
+
ch = width // (3 * self.n_heads)
|
396 |
+
q, k, v = qkv.chunk(3, dim=1)
|
397 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
398 |
+
weight = th.einsum(
|
399 |
+
"bct,bcs->bts",
|
400 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
401 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
402 |
+
) # More stable with f16 than dividing afterwards
|
403 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
404 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
405 |
+
return a.reshape(bs, -1, length)
|
406 |
+
|
407 |
+
@staticmethod
|
408 |
+
def count_flops(model, _x, y):
|
409 |
+
return count_flops_attn(model, _x, y)
|
410 |
+
|
411 |
+
|
412 |
+
class Timestep(nn.Module):
|
413 |
+
def __init__(self, dim):
|
414 |
+
super().__init__()
|
415 |
+
self.dim = dim
|
416 |
+
|
417 |
+
def forward(self, t):
|
418 |
+
return timestep_embedding(t, self.dim)
|
419 |
+
|
420 |
+
|
421 |
+
class UNetModel(nn.Module):
|
422 |
+
"""
|
423 |
+
The full UNet model with attention and timestep embedding.
|
424 |
+
:param in_channels: channels in the input Tensor.
|
425 |
+
:param model_channels: base channel count for the model.
|
426 |
+
:param out_channels: channels in the output Tensor.
|
427 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
428 |
+
:param attention_resolutions: a collection of downsample rates at which
|
429 |
+
attention will take place. May be a set, list, or tuple.
|
430 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
431 |
+
will be used.
|
432 |
+
:param dropout: the dropout probability.
|
433 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
434 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
435 |
+
downsampling.
|
436 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
437 |
+
:param num_classes: if specified (as an int), then this model will be
|
438 |
+
class-conditional with `num_classes` classes.
|
439 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
440 |
+
:param num_heads: the number of attention heads in each attention layer.
|
441 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
442 |
+
a fixed channel width per attention head.
|
443 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
444 |
+
of heads for upsampling. Deprecated.
|
445 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
446 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
447 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
448 |
+
increased efficiency.
|
449 |
+
"""
|
450 |
+
|
451 |
+
def __init__(
|
452 |
+
self,
|
453 |
+
image_size,
|
454 |
+
in_channels,
|
455 |
+
model_channels,
|
456 |
+
out_channels,
|
457 |
+
num_res_blocks,
|
458 |
+
attention_resolutions,
|
459 |
+
dropout=0,
|
460 |
+
channel_mult=(1, 2, 4, 8),
|
461 |
+
conv_resample=True,
|
462 |
+
dims=2,
|
463 |
+
num_classes=None,
|
464 |
+
use_checkpoint=False,
|
465 |
+
use_fp16=False,
|
466 |
+
use_bf16=False,
|
467 |
+
num_heads=-1,
|
468 |
+
num_head_channels=-1,
|
469 |
+
num_heads_upsample=-1,
|
470 |
+
use_scale_shift_norm=False,
|
471 |
+
resblock_updown=False,
|
472 |
+
use_new_attention_order=False,
|
473 |
+
use_spatial_transformer=False, # custom transformer support
|
474 |
+
transformer_depth=1, # custom transformer support
|
475 |
+
context_dim=None, # custom transformer support
|
476 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
477 |
+
legacy=True,
|
478 |
+
disable_self_attentions=None,
|
479 |
+
num_attention_blocks=None,
|
480 |
+
disable_middle_self_attn=False,
|
481 |
+
use_linear_in_transformer=False,
|
482 |
+
adm_in_channels=None,
|
483 |
+
):
|
484 |
+
super().__init__()
|
485 |
+
if use_spatial_transformer:
|
486 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
487 |
+
|
488 |
+
if context_dim is not None:
|
489 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
490 |
+
from omegaconf.listconfig import ListConfig
|
491 |
+
if type(context_dim) == ListConfig:
|
492 |
+
context_dim = list(context_dim)
|
493 |
+
|
494 |
+
if num_heads_upsample == -1:
|
495 |
+
num_heads_upsample = num_heads
|
496 |
+
|
497 |
+
if num_heads == -1:
|
498 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
499 |
+
|
500 |
+
if num_head_channels == -1:
|
501 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
502 |
+
|
503 |
+
self.image_size = image_size
|
504 |
+
self.in_channels = in_channels
|
505 |
+
self.model_channels = model_channels
|
506 |
+
self.out_channels = out_channels
|
507 |
+
if isinstance(num_res_blocks, int):
|
508 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
509 |
+
else:
|
510 |
+
if len(num_res_blocks) != len(channel_mult):
|
511 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
512 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
513 |
+
self.num_res_blocks = num_res_blocks
|
514 |
+
if disable_self_attentions is not None:
|
515 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
516 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
517 |
+
if num_attention_blocks is not None:
|
518 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
519 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
520 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
521 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
522 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
523 |
+
f"attention will still not be set.")
|
524 |
+
|
525 |
+
self.attention_resolutions = attention_resolutions
|
526 |
+
self.dropout = dropout
|
527 |
+
self.channel_mult = channel_mult
|
528 |
+
self.conv_resample = conv_resample
|
529 |
+
self.num_classes = num_classes
|
530 |
+
self.use_checkpoint = use_checkpoint
|
531 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
532 |
+
self.dtype = th.bfloat16 if use_bf16 else self.dtype
|
533 |
+
self.num_heads = num_heads
|
534 |
+
self.num_head_channels = num_head_channels
|
535 |
+
self.num_heads_upsample = num_heads_upsample
|
536 |
+
self.predict_codebook_ids = n_embed is not None
|
537 |
+
|
538 |
+
time_embed_dim = model_channels * 4
|
539 |
+
self.time_embed = nn.Sequential(
|
540 |
+
linear(model_channels, time_embed_dim),
|
541 |
+
nn.SiLU(),
|
542 |
+
linear(time_embed_dim, time_embed_dim),
|
543 |
+
)
|
544 |
+
|
545 |
+
if self.num_classes is not None:
|
546 |
+
if isinstance(self.num_classes, int):
|
547 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
548 |
+
elif self.num_classes == "continuous":
|
549 |
+
print("setting up linear c_adm embedding layer")
|
550 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
551 |
+
elif self.num_classes == "sequential":
|
552 |
+
assert adm_in_channels is not None
|
553 |
+
self.label_emb = nn.Sequential(
|
554 |
+
nn.Sequential(
|
555 |
+
linear(adm_in_channels, time_embed_dim),
|
556 |
+
nn.SiLU(),
|
557 |
+
linear(time_embed_dim, time_embed_dim),
|
558 |
+
)
|
559 |
+
)
|
560 |
+
else:
|
561 |
+
raise ValueError()
|
562 |
+
|
563 |
+
self.input_blocks = nn.ModuleList(
|
564 |
+
[
|
565 |
+
TimestepEmbedSequential(
|
566 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
567 |
+
)
|
568 |
+
]
|
569 |
+
)
|
570 |
+
self._feature_size = model_channels
|
571 |
+
input_block_chans = [model_channels]
|
572 |
+
ch = model_channels
|
573 |
+
ds = 1
|
574 |
+
for level, mult in enumerate(channel_mult):
|
575 |
+
for nr in range(self.num_res_blocks[level]):
|
576 |
+
layers = [
|
577 |
+
ResBlock(
|
578 |
+
ch,
|
579 |
+
time_embed_dim,
|
580 |
+
dropout,
|
581 |
+
out_channels=mult * model_channels,
|
582 |
+
dims=dims,
|
583 |
+
use_checkpoint=use_checkpoint,
|
584 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
585 |
+
)
|
586 |
+
]
|
587 |
+
ch = mult * model_channels
|
588 |
+
if ds in attention_resolutions:
|
589 |
+
if num_head_channels == -1:
|
590 |
+
dim_head = ch // num_heads
|
591 |
+
else:
|
592 |
+
num_heads = ch // num_head_channels
|
593 |
+
dim_head = num_head_channels
|
594 |
+
if legacy:
|
595 |
+
#num_heads = 1
|
596 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
597 |
+
if exists(disable_self_attentions):
|
598 |
+
disabled_sa = disable_self_attentions[level]
|
599 |
+
else:
|
600 |
+
disabled_sa = False
|
601 |
+
|
602 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
603 |
+
layers.append(
|
604 |
+
AttentionBlock(
|
605 |
+
ch,
|
606 |
+
use_checkpoint=use_checkpoint,
|
607 |
+
num_heads=num_heads,
|
608 |
+
num_head_channels=dim_head,
|
609 |
+
use_new_attention_order=use_new_attention_order,
|
610 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
611 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
612 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
613 |
+
use_checkpoint=use_checkpoint
|
614 |
+
)
|
615 |
+
)
|
616 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
617 |
+
self._feature_size += ch
|
618 |
+
input_block_chans.append(ch)
|
619 |
+
if level != len(channel_mult) - 1:
|
620 |
+
out_ch = ch
|
621 |
+
self.input_blocks.append(
|
622 |
+
TimestepEmbedSequential(
|
623 |
+
ResBlock(
|
624 |
+
ch,
|
625 |
+
time_embed_dim,
|
626 |
+
dropout,
|
627 |
+
out_channels=out_ch,
|
628 |
+
dims=dims,
|
629 |
+
use_checkpoint=use_checkpoint,
|
630 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
631 |
+
down=True,
|
632 |
+
)
|
633 |
+
if resblock_updown
|
634 |
+
else Downsample(
|
635 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
636 |
+
)
|
637 |
+
)
|
638 |
+
)
|
639 |
+
ch = out_ch
|
640 |
+
input_block_chans.append(ch)
|
641 |
+
ds *= 2
|
642 |
+
self._feature_size += ch
|
643 |
+
|
644 |
+
if num_head_channels == -1:
|
645 |
+
dim_head = ch // num_heads
|
646 |
+
else:
|
647 |
+
num_heads = ch // num_head_channels
|
648 |
+
dim_head = num_head_channels
|
649 |
+
if legacy:
|
650 |
+
#num_heads = 1
|
651 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
652 |
+
self.middle_block = TimestepEmbedSequential(
|
653 |
+
ResBlock(
|
654 |
+
ch,
|
655 |
+
time_embed_dim,
|
656 |
+
dropout,
|
657 |
+
dims=dims,
|
658 |
+
use_checkpoint=use_checkpoint,
|
659 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
660 |
+
),
|
661 |
+
AttentionBlock(
|
662 |
+
ch,
|
663 |
+
use_checkpoint=use_checkpoint,
|
664 |
+
num_heads=num_heads,
|
665 |
+
num_head_channels=dim_head,
|
666 |
+
use_new_attention_order=use_new_attention_order,
|
667 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
668 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
669 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
670 |
+
use_checkpoint=use_checkpoint
|
671 |
+
),
|
672 |
+
ResBlock(
|
673 |
+
ch,
|
674 |
+
time_embed_dim,
|
675 |
+
dropout,
|
676 |
+
dims=dims,
|
677 |
+
use_checkpoint=use_checkpoint,
|
678 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
679 |
+
),
|
680 |
+
)
|
681 |
+
self._feature_size += ch
|
682 |
+
|
683 |
+
self.output_blocks = nn.ModuleList([])
|
684 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
685 |
+
for i in range(self.num_res_blocks[level] + 1):
|
686 |
+
ich = input_block_chans.pop()
|
687 |
+
layers = [
|
688 |
+
ResBlock(
|
689 |
+
ch + ich,
|
690 |
+
time_embed_dim,
|
691 |
+
dropout,
|
692 |
+
out_channels=model_channels * mult,
|
693 |
+
dims=dims,
|
694 |
+
use_checkpoint=use_checkpoint,
|
695 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
696 |
+
)
|
697 |
+
]
|
698 |
+
ch = model_channels * mult
|
699 |
+
if ds in attention_resolutions:
|
700 |
+
if num_head_channels == -1:
|
701 |
+
dim_head = ch // num_heads
|
702 |
+
else:
|
703 |
+
num_heads = ch // num_head_channels
|
704 |
+
dim_head = num_head_channels
|
705 |
+
if legacy:
|
706 |
+
#num_heads = 1
|
707 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
708 |
+
if exists(disable_self_attentions):
|
709 |
+
disabled_sa = disable_self_attentions[level]
|
710 |
+
else:
|
711 |
+
disabled_sa = False
|
712 |
+
|
713 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
714 |
+
layers.append(
|
715 |
+
AttentionBlock(
|
716 |
+
ch,
|
717 |
+
use_checkpoint=use_checkpoint,
|
718 |
+
num_heads=num_heads_upsample,
|
719 |
+
num_head_channels=dim_head,
|
720 |
+
use_new_attention_order=use_new_attention_order,
|
721 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
722 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
723 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
724 |
+
use_checkpoint=use_checkpoint
|
725 |
+
)
|
726 |
+
)
|
727 |
+
if level and i == self.num_res_blocks[level]:
|
728 |
+
out_ch = ch
|
729 |
+
layers.append(
|
730 |
+
ResBlock(
|
731 |
+
ch,
|
732 |
+
time_embed_dim,
|
733 |
+
dropout,
|
734 |
+
out_channels=out_ch,
|
735 |
+
dims=dims,
|
736 |
+
use_checkpoint=use_checkpoint,
|
737 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
738 |
+
up=True,
|
739 |
+
)
|
740 |
+
if resblock_updown
|
741 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
742 |
+
)
|
743 |
+
ds //= 2
|
744 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
745 |
+
self._feature_size += ch
|
746 |
+
|
747 |
+
self.out = nn.Sequential(
|
748 |
+
normalization(ch),
|
749 |
+
nn.SiLU(),
|
750 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
751 |
+
)
|
752 |
+
if self.predict_codebook_ids:
|
753 |
+
self.id_predictor = nn.Sequential(
|
754 |
+
normalization(ch),
|
755 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
756 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
757 |
+
)
|
758 |
+
|
759 |
+
def convert_to_fp16(self):
|
760 |
+
"""
|
761 |
+
Convert the torso of the model to float16.
|
762 |
+
"""
|
763 |
+
self.input_blocks.apply(convert_module_to_f16)
|
764 |
+
self.middle_block.apply(convert_module_to_f16)
|
765 |
+
self.output_blocks.apply(convert_module_to_f16)
|
766 |
+
|
767 |
+
def convert_to_fp32(self):
|
768 |
+
"""
|
769 |
+
Convert the torso of the model to float32.
|
770 |
+
"""
|
771 |
+
self.input_blocks.apply(convert_module_to_f32)
|
772 |
+
self.middle_block.apply(convert_module_to_f32)
|
773 |
+
self.output_blocks.apply(convert_module_to_f32)
|
774 |
+
|
775 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
776 |
+
"""
|
777 |
+
Apply the model to an input batch.
|
778 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
779 |
+
:param timesteps: a 1-D batch of timesteps.
|
780 |
+
:param context: conditioning plugged in via crossattn
|
781 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
782 |
+
:return: an [N x C x ...] Tensor of outputs.
|
783 |
+
"""
|
784 |
+
assert (y is not None) == (
|
785 |
+
self.num_classes is not None
|
786 |
+
), "must specify y if and only if the model is class-conditional"
|
787 |
+
hs = []
|
788 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
789 |
+
emb = self.time_embed(t_emb)
|
790 |
+
|
791 |
+
if self.num_classes is not None:
|
792 |
+
assert y.shape[0] == x.shape[0]
|
793 |
+
emb = emb + self.label_emb(y)
|
794 |
+
|
795 |
+
h = x.type(self.dtype)
|
796 |
+
for module in self.input_blocks:
|
797 |
+
h = module(h, emb, context)
|
798 |
+
hs.append(h)
|
799 |
+
h = self.middle_block(h, emb, context)
|
800 |
+
for module in self.output_blocks:
|
801 |
+
h = th.cat([h, hs.pop()], dim=1)
|
802 |
+
h = module(h, emb, context)
|
803 |
+
h = h.type(x.dtype)
|
804 |
+
if self.predict_codebook_ids:
|
805 |
+
return self.id_predictor(h)
|
806 |
+
else:
|
807 |
+
return self.out(h)
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/upscaling.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
|
7 |
+
from ldm.util import default
|
8 |
+
|
9 |
+
|
10 |
+
class AbstractLowScaleModel(nn.Module):
|
11 |
+
# for concatenating a downsampled image to the latent representation
|
12 |
+
def __init__(self, noise_schedule_config=None):
|
13 |
+
super(AbstractLowScaleModel, self).__init__()
|
14 |
+
if noise_schedule_config is not None:
|
15 |
+
self.register_schedule(**noise_schedule_config)
|
16 |
+
|
17 |
+
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
18 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
19 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
20 |
+
cosine_s=cosine_s)
|
21 |
+
alphas = 1. - betas
|
22 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
23 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
24 |
+
|
25 |
+
timesteps, = betas.shape
|
26 |
+
self.num_timesteps = int(timesteps)
|
27 |
+
self.linear_start = linear_start
|
28 |
+
self.linear_end = linear_end
|
29 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
30 |
+
|
31 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
32 |
+
|
33 |
+
self.register_buffer('betas', to_torch(betas))
|
34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
36 |
+
|
37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
43 |
+
|
44 |
+
def q_sample(self, x_start, t, noise=None):
|
45 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
46 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
47 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return x, None
|
51 |
+
|
52 |
+
def decode(self, x):
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class SimpleImageConcat(AbstractLowScaleModel):
|
57 |
+
# no noise level conditioning
|
58 |
+
def __init__(self):
|
59 |
+
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
60 |
+
self.max_noise_level = 0
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
# fix to constant noise level
|
64 |
+
return x, torch.zeros(x.shape[0], device=x.device).long()
|
65 |
+
|
66 |
+
|
67 |
+
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
68 |
+
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
69 |
+
super().__init__(noise_schedule_config=noise_schedule_config)
|
70 |
+
self.max_noise_level = max_noise_level
|
71 |
+
|
72 |
+
def forward(self, x, noise_level=None):
|
73 |
+
if noise_level is None:
|
74 |
+
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
75 |
+
else:
|
76 |
+
assert isinstance(noise_level, torch.Tensor)
|
77 |
+
z = self.q_sample(x, noise_level)
|
78 |
+
return z, noise_level
|
79 |
+
|
80 |
+
|
81 |
+
|
repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
from ldm.util import instantiate_from_config
|
19 |
+
|
20 |
+
|
21 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
22 |
+
if schedule == "linear":
|
23 |
+
betas = (
|
24 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
25 |
+
)
|
26 |
+
|
27 |
+
elif schedule == "cosine":
|
28 |
+
timesteps = (
|
29 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
30 |
+
)
|
31 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
32 |
+
alphas = torch.cos(alphas).pow(2)
|
33 |
+
alphas = alphas / alphas[0]
|
34 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
35 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
36 |
+
|
37 |
+
elif schedule == "squaredcos_cap_v2": # used for karlo prior
|
38 |
+
# return early
|
39 |
+
return betas_for_alpha_bar(
|
40 |
+
n_timestep,
|
41 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
42 |
+
)
|
43 |
+
|
44 |
+
elif schedule == "sqrt_linear":
|
45 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
46 |
+
elif schedule == "sqrt":
|
47 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
48 |
+
else:
|
49 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
50 |
+
return betas.numpy()
|
51 |
+
|
52 |
+
|
53 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
54 |
+
if ddim_discr_method == 'uniform':
|
55 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
56 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
57 |
+
elif ddim_discr_method == 'quad':
|
58 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
59 |
+
else:
|
60 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
61 |
+
|
62 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
63 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
64 |
+
steps_out = ddim_timesteps + 1
|
65 |
+
if verbose:
|
66 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
67 |
+
return steps_out
|
68 |
+
|
69 |
+
|
70 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
71 |
+
# select alphas for computing the variance schedule
|
72 |
+
alphas = alphacums[ddim_timesteps]
|
73 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
74 |
+
|
75 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
76 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
77 |
+
if verbose:
|
78 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
79 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
80 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
81 |
+
return sigmas, alphas, alphas_prev
|
82 |
+
|
83 |
+
|
84 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
85 |
+
"""
|
86 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
87 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
88 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
89 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
90 |
+
produces the cumulative product of (1-beta) up to that
|
91 |
+
part of the diffusion process.
|
92 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
93 |
+
prevent singularities.
|
94 |
+
"""
|
95 |
+
betas = []
|
96 |
+
for i in range(num_diffusion_timesteps):
|
97 |
+
t1 = i / num_diffusion_timesteps
|
98 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
99 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
100 |
+
return np.array(betas)
|
101 |
+
|
102 |
+
|
103 |
+
def extract_into_tensor(a, t, x_shape):
|
104 |
+
b, *_ = t.shape
|
105 |
+
out = a.gather(-1, t)
|
106 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
107 |
+
|
108 |
+
|
109 |
+
def checkpoint(func, inputs, params, flag):
|
110 |
+
"""
|
111 |
+
Evaluate a function without caching intermediate activations, allowing for
|
112 |
+
reduced memory at the expense of extra compute in the backward pass.
|
113 |
+
:param func: the function to evaluate.
|
114 |
+
:param inputs: the argument sequence to pass to `func`.
|
115 |
+
:param params: a sequence of parameters `func` depends on but does not
|
116 |
+
explicitly take as arguments.
|
117 |
+
:param flag: if False, disable gradient checkpointing.
|
118 |
+
"""
|
119 |
+
if flag:
|
120 |
+
args = tuple(inputs) + tuple(params)
|
121 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
122 |
+
else:
|
123 |
+
return func(*inputs)
|
124 |
+
|
125 |
+
|
126 |
+
class CheckpointFunction(torch.autograd.Function):
|
127 |
+
@staticmethod
|
128 |
+
def forward(ctx, run_function, length, *args):
|
129 |
+
ctx.run_function = run_function
|
130 |
+
ctx.input_tensors = list(args[:length])
|
131 |
+
ctx.input_params = list(args[length:])
|
132 |
+
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
133 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
134 |
+
"cache_enabled": torch.is_autocast_cache_enabled()}
|
135 |
+
with torch.no_grad():
|
136 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
137 |
+
return output_tensors
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
def backward(ctx, *output_grads):
|
141 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
142 |
+
with torch.enable_grad(), \
|
143 |
+
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
144 |
+
# Fixes a bug where the first op in run_function modifies the
|
145 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
146 |
+
# Tensors.
|
147 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
148 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
149 |
+
input_grads = torch.autograd.grad(
|
150 |
+
output_tensors,
|
151 |
+
ctx.input_tensors + ctx.input_params,
|
152 |
+
output_grads,
|
153 |
+
allow_unused=True,
|
154 |
+
)
|
155 |
+
del ctx.input_tensors
|
156 |
+
del ctx.input_params
|
157 |
+
del output_tensors
|
158 |
+
return (None, None) + input_grads
|
159 |
+
|
160 |
+
|
161 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
162 |
+
"""
|
163 |
+
Create sinusoidal timestep embeddings.
|
164 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
165 |
+
These may be fractional.
|
166 |
+
:param dim: the dimension of the output.
|
167 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
168 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
169 |
+
"""
|
170 |
+
if not repeat_only:
|
171 |
+
half = dim // 2
|
172 |
+
freqs = torch.exp(
|
173 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
174 |
+
).to(device=timesteps.device)
|
175 |
+
args = timesteps[:, None].float() * freqs[None]
|
176 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
177 |
+
if dim % 2:
|
178 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
179 |
+
else:
|
180 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
181 |
+
return embedding
|
182 |
+
|
183 |
+
|
184 |
+
def zero_module(module):
|
185 |
+
"""
|
186 |
+
Zero out the parameters of a module and return it.
|
187 |
+
"""
|
188 |
+
for p in module.parameters():
|
189 |
+
p.detach().zero_()
|
190 |
+
return module
|
191 |
+
|
192 |
+
|
193 |
+
def scale_module(module, scale):
|
194 |
+
"""
|
195 |
+
Scale the parameters of a module and return it.
|
196 |
+
"""
|
197 |
+
for p in module.parameters():
|
198 |
+
p.detach().mul_(scale)
|
199 |
+
return module
|
200 |
+
|
201 |
+
|
202 |
+
def mean_flat(tensor):
|
203 |
+
"""
|
204 |
+
Take the mean over all non-batch dimensions.
|
205 |
+
"""
|
206 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
207 |
+
|
208 |
+
|
209 |
+
def normalization(channels):
|
210 |
+
"""
|
211 |
+
Make a standard normalization layer.
|
212 |
+
:param channels: number of input channels.
|
213 |
+
:return: an nn.Module for normalization.
|
214 |
+
"""
|
215 |
+
return GroupNorm32(32, channels)
|
216 |
+
|
217 |
+
|
218 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
219 |
+
class SiLU(nn.Module):
|
220 |
+
def forward(self, x):
|
221 |
+
return x * torch.sigmoid(x)
|
222 |
+
|
223 |
+
|
224 |
+
class GroupNorm32(nn.GroupNorm):
|
225 |
+
def forward(self, x):
|
226 |
+
return super().forward(x.float()).type(x.dtype)
|
227 |
+
|
228 |
+
|
229 |
+
def conv_nd(dims, *args, **kwargs):
|
230 |
+
"""
|
231 |
+
Create a 1D, 2D, or 3D convolution module.
|
232 |
+
"""
|
233 |
+
if dims == 1:
|
234 |
+
return nn.Conv1d(*args, **kwargs)
|
235 |
+
elif dims == 2:
|
236 |
+
return nn.Conv2d(*args, **kwargs)
|
237 |
+
elif dims == 3:
|
238 |
+
return nn.Conv3d(*args, **kwargs)
|
239 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
240 |
+
|
241 |
+
|
242 |
+
def linear(*args, **kwargs):
|
243 |
+
"""
|
244 |
+
Create a linear module.
|
245 |
+
"""
|
246 |
+
return nn.Linear(*args, **kwargs)
|
247 |
+
|
248 |
+
|
249 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
250 |
+
"""
|
251 |
+
Create a 1D, 2D, or 3D average pooling module.
|
252 |
+
"""
|
253 |
+
if dims == 1:
|
254 |
+
return nn.AvgPool1d(*args, **kwargs)
|
255 |
+
elif dims == 2:
|
256 |
+
return nn.AvgPool2d(*args, **kwargs)
|
257 |
+
elif dims == 3:
|
258 |
+
return nn.AvgPool3d(*args, **kwargs)
|
259 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
260 |
+
|
261 |
+
|
262 |
+
class HybridConditioner(nn.Module):
|
263 |
+
|
264 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
265 |
+
super().__init__()
|
266 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
267 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
268 |
+
|
269 |
+
def forward(self, c_concat, c_crossattn):
|
270 |
+
c_concat = self.concat_conditioner(c_concat)
|
271 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
272 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
273 |
+
|
274 |
+
|
275 |
+
def noise_like(shape, device, repeat=False):
|
276 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
277 |
+
noise = lambda: torch.randn(shape, device=device)
|
278 |
+
return repeat_noise() if repeat else noise()
|
repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__init__.py
ADDED
File without changes
|
repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (197 Bytes). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc
ADDED
Binary file (3.8 kB). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
repositories/stable-diffusion-stability-ai/ldm/modules/ema.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1, dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
# remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.', '')
|
20 |
+
self.m_name2s_name.update({name: s_name})
|
21 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def reset_num_updates(self):
|
26 |
+
del self.num_updates
|
27 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
|
28 |
+
|
29 |
+
def forward(self, model):
|
30 |
+
decay = self.decay
|
31 |
+
|
32 |
+
if self.num_updates >= 0:
|
33 |
+
self.num_updates += 1
|
34 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
35 |
+
|
36 |
+
one_minus_decay = 1.0 - decay
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
m_param = dict(model.named_parameters())
|
40 |
+
shadow_params = dict(self.named_buffers())
|
41 |
+
|
42 |
+
for key in m_param:
|
43 |
+
if m_param[key].requires_grad:
|
44 |
+
sname = self.m_name2s_name[key]
|
45 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
46 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
47 |
+
else:
|
48 |
+
assert not key in self.m_name2s_name
|
49 |
+
|
50 |
+
def copy_to(self, model):
|
51 |
+
m_param = dict(model.named_parameters())
|
52 |
+
shadow_params = dict(self.named_buffers())
|
53 |
+
for key in m_param:
|
54 |
+
if m_param[key].requires_grad:
|
55 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
56 |
+
else:
|
57 |
+
assert not key in self.m_name2s_name
|
58 |
+
|
59 |
+
def store(self, parameters):
|
60 |
+
"""
|
61 |
+
Save the current parameters for restoring later.
|
62 |
+
Args:
|
63 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
64 |
+
temporarily stored.
|
65 |
+
"""
|
66 |
+
self.collected_params = [param.clone() for param in parameters]
|
67 |
+
|
68 |
+
def restore(self, parameters):
|
69 |
+
"""
|
70 |
+
Restore the parameters stored with the `store` method.
|
71 |
+
Useful to validate the model with EMA parameters without affecting the
|
72 |
+
original optimization process. Store the parameters before the
|
73 |
+
`copy_to` method. After validation (or model saving), use this to
|
74 |
+
restore the former parameters.
|
75 |
+
Args:
|
76 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
77 |
+
updated with the stored parameters.
|
78 |
+
"""
|
79 |
+
for c_param, param in zip(self.collected_params, parameters):
|
80 |
+
param.data.copy_(c_param.data)
|
repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__init__.py
ADDED
File without changes
|
repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/encoders/__pycache__/modules.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
repositories/stable-diffusion-stability-ai/ldm/modules/encoders/modules.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import kornia
|
4 |
+
from torch.utils.checkpoint import checkpoint
|
5 |
+
|
6 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
7 |
+
|
8 |
+
import open_clip
|
9 |
+
from ldm.util import default, count_params, autocast
|
10 |
+
|
11 |
+
|
12 |
+
class AbstractEncoder(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
def encode(self, *args, **kwargs):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
|
20 |
+
class IdentityEncoder(AbstractEncoder):
|
21 |
+
|
22 |
+
def encode(self, x):
|
23 |
+
return x
|
24 |
+
|
25 |
+
|
26 |
+
class ClassEmbedder(nn.Module):
|
27 |
+
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
|
28 |
+
super().__init__()
|
29 |
+
self.key = key
|
30 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
31 |
+
self.n_classes = n_classes
|
32 |
+
self.ucg_rate = ucg_rate
|
33 |
+
|
34 |
+
def forward(self, batch, key=None, disable_dropout=False):
|
35 |
+
if key is None:
|
36 |
+
key = self.key
|
37 |
+
# this is for use in crossattn
|
38 |
+
c = batch[key][:, None]
|
39 |
+
if self.ucg_rate > 0. and not disable_dropout:
|
40 |
+
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
41 |
+
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
42 |
+
c = c.long()
|
43 |
+
c = self.embedding(c)
|
44 |
+
return c
|
45 |
+
|
46 |
+
def get_unconditional_conditioning(self, bs, device="cuda"):
|
47 |
+
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
48 |
+
uc = torch.ones((bs,), device=device) * uc_class
|
49 |
+
uc = {self.key: uc}
|
50 |
+
return uc
|
51 |
+
|
52 |
+
|
53 |
+
def disabled_train(self, mode=True):
|
54 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
55 |
+
does not change anymore."""
|
56 |
+
return self
|
57 |
+
|
58 |
+
|
59 |
+
class FrozenT5Embedder(AbstractEncoder):
|
60 |
+
"""Uses the T5 transformer encoder for text"""
|
61 |
+
|
62 |
+
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
|
63 |
+
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
64 |
+
super().__init__()
|
65 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
66 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
67 |
+
self.device = device
|
68 |
+
self.max_length = max_length # TODO: typical value?
|
69 |
+
if freeze:
|
70 |
+
self.freeze()
|
71 |
+
|
72 |
+
def freeze(self):
|
73 |
+
self.transformer = self.transformer.eval()
|
74 |
+
# self.train = disabled_train
|
75 |
+
for param in self.parameters():
|
76 |
+
param.requires_grad = False
|
77 |
+
|
78 |
+
def forward(self, text):
|
79 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
80 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
81 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
82 |
+
outputs = self.transformer(input_ids=tokens)
|
83 |
+
|
84 |
+
z = outputs.last_hidden_state
|
85 |
+
return z
|
86 |
+
|
87 |
+
def encode(self, text):
|
88 |
+
return self(text)
|
89 |
+
|
90 |
+
|
91 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
92 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
93 |
+
LAYERS = [
|
94 |
+
"last",
|
95 |
+
"pooled",
|
96 |
+
"hidden"
|
97 |
+
]
|
98 |
+
|
99 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
|
100 |
+
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
101 |
+
super().__init__()
|
102 |
+
assert layer in self.LAYERS
|
103 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
104 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
105 |
+
self.device = device
|
106 |
+
self.max_length = max_length
|
107 |
+
if freeze:
|
108 |
+
self.freeze()
|
109 |
+
self.layer = layer
|
110 |
+
self.layer_idx = layer_idx
|
111 |
+
if layer == "hidden":
|
112 |
+
assert layer_idx is not None
|
113 |
+
assert 0 <= abs(layer_idx) <= 12
|
114 |
+
|
115 |
+
def freeze(self):
|
116 |
+
self.transformer = self.transformer.eval()
|
117 |
+
# self.train = disabled_train
|
118 |
+
for param in self.parameters():
|
119 |
+
param.requires_grad = False
|
120 |
+
|
121 |
+
def forward(self, text):
|
122 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
123 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
124 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
125 |
+
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
|
126 |
+
if self.layer == "last":
|
127 |
+
z = outputs.last_hidden_state
|
128 |
+
elif self.layer == "pooled":
|
129 |
+
z = outputs.pooler_output[:, None, :]
|
130 |
+
else:
|
131 |
+
z = outputs.hidden_states[self.layer_idx]
|
132 |
+
return z
|
133 |
+
|
134 |
+
def encode(self, text):
|
135 |
+
return self(text)
|
136 |
+
|
137 |
+
|
138 |
+
class ClipImageEmbedder(nn.Module):
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
model,
|
142 |
+
jit=False,
|
143 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
144 |
+
antialias=True,
|
145 |
+
ucg_rate=0.
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
from clip import load as load_clip
|
149 |
+
self.model, _ = load_clip(name=model, device=device, jit=jit)
|
150 |
+
|
151 |
+
self.antialias = antialias
|
152 |
+
|
153 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
154 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
155 |
+
self.ucg_rate = ucg_rate
|
156 |
+
|
157 |
+
def preprocess(self, x):
|
158 |
+
# normalize to [0,1]
|
159 |
+
x = kornia.geometry.resize(x, (224, 224),
|
160 |
+
interpolation='bicubic', align_corners=True,
|
161 |
+
antialias=self.antialias)
|
162 |
+
x = (x + 1.) / 2.
|
163 |
+
# re-normalize according to clip
|
164 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
165 |
+
return x
|
166 |
+
|
167 |
+
def forward(self, x, no_dropout=False):
|
168 |
+
# x is assumed to be in range [-1,1]
|
169 |
+
out = self.model.encode_image(self.preprocess(x))
|
170 |
+
out = out.to(x.dtype)
|
171 |
+
if self.ucg_rate > 0. and not no_dropout:
|
172 |
+
out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
|
173 |
+
return out
|
174 |
+
|
175 |
+
|
176 |
+
class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
177 |
+
"""
|
178 |
+
Uses the OpenCLIP transformer encoder for text
|
179 |
+
"""
|
180 |
+
LAYERS = [
|
181 |
+
# "pooled",
|
182 |
+
"last",
|
183 |
+
"penultimate"
|
184 |
+
]
|
185 |
+
|
186 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
187 |
+
freeze=True, layer="last"):
|
188 |
+
super().__init__()
|
189 |
+
assert layer in self.LAYERS
|
190 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
|
191 |
+
del model.visual
|
192 |
+
self.model = model
|
193 |
+
|
194 |
+
self.device = device
|
195 |
+
self.max_length = max_length
|
196 |
+
if freeze:
|
197 |
+
self.freeze()
|
198 |
+
self.layer = layer
|
199 |
+
if self.layer == "last":
|
200 |
+
self.layer_idx = 0
|
201 |
+
elif self.layer == "penultimate":
|
202 |
+
self.layer_idx = 1
|
203 |
+
else:
|
204 |
+
raise NotImplementedError()
|
205 |
+
|
206 |
+
def freeze(self):
|
207 |
+
self.model = self.model.eval()
|
208 |
+
for param in self.parameters():
|
209 |
+
param.requires_grad = False
|
210 |
+
|
211 |
+
def forward(self, text):
|
212 |
+
tokens = open_clip.tokenize(text)
|
213 |
+
z = self.encode_with_transformer(tokens.to(self.device))
|
214 |
+
return z
|
215 |
+
|
216 |
+
def encode_with_transformer(self, text):
|
217 |
+
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
218 |
+
x = x + self.model.positional_embedding
|
219 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
220 |
+
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
221 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
222 |
+
x = self.model.ln_final(x)
|
223 |
+
return x
|
224 |
+
|
225 |
+
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
226 |
+
for i, r in enumerate(self.model.transformer.resblocks):
|
227 |
+
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
228 |
+
break
|
229 |
+
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
|
230 |
+
x = checkpoint(r, x, attn_mask)
|
231 |
+
else:
|
232 |
+
x = r(x, attn_mask=attn_mask)
|
233 |
+
return x
|
234 |
+
|
235 |
+
def encode(self, text):
|
236 |
+
return self(text)
|
237 |
+
|
238 |
+
|
239 |
+
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
240 |
+
"""
|
241 |
+
Uses the OpenCLIP vision transformer encoder for images
|
242 |
+
"""
|
243 |
+
|
244 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
245 |
+
freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
|
246 |
+
super().__init__()
|
247 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
|
248 |
+
pretrained=version, )
|
249 |
+
del model.transformer
|
250 |
+
self.model = model
|
251 |
+
|
252 |
+
self.device = device
|
253 |
+
self.max_length = max_length
|
254 |
+
if freeze:
|
255 |
+
self.freeze()
|
256 |
+
self.layer = layer
|
257 |
+
if self.layer == "penultimate":
|
258 |
+
raise NotImplementedError()
|
259 |
+
self.layer_idx = 1
|
260 |
+
|
261 |
+
self.antialias = antialias
|
262 |
+
|
263 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
264 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
265 |
+
self.ucg_rate = ucg_rate
|
266 |
+
|
267 |
+
def preprocess(self, x):
|
268 |
+
# normalize to [0,1]
|
269 |
+
x = kornia.geometry.resize(x, (224, 224),
|
270 |
+
interpolation='bicubic', align_corners=True,
|
271 |
+
antialias=self.antialias)
|
272 |
+
x = (x + 1.) / 2.
|
273 |
+
# renormalize according to clip
|
274 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
275 |
+
return x
|
276 |
+
|
277 |
+
def freeze(self):
|
278 |
+
self.model = self.model.eval()
|
279 |
+
for param in self.parameters():
|
280 |
+
param.requires_grad = False
|
281 |
+
|
282 |
+
@autocast
|
283 |
+
def forward(self, image, no_dropout=False):
|
284 |
+
z = self.encode_with_vision_transformer(image)
|
285 |
+
if self.ucg_rate > 0. and not no_dropout:
|
286 |
+
z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
|
287 |
+
return z
|
288 |
+
|
289 |
+
def encode_with_vision_transformer(self, img):
|
290 |
+
img = self.preprocess(img)
|
291 |
+
x = self.model.visual(img)
|
292 |
+
return x
|
293 |
+
|
294 |
+
def encode(self, text):
|
295 |
+
return self(text)
|
296 |
+
|
297 |
+
|
298 |
+
class FrozenCLIPT5Encoder(AbstractEncoder):
|
299 |
+
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
|
300 |
+
clip_max_length=77, t5_max_length=77):
|
301 |
+
super().__init__()
|
302 |
+
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|
303 |
+
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
304 |
+
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
|
305 |
+
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
|
306 |
+
|
307 |
+
def encode(self, text):
|
308 |
+
return self(text)
|
309 |
+
|
310 |
+
def forward(self, text):
|
311 |
+
clip_z = self.clip_encoder.encode(text)
|
312 |
+
t5_z = self.t5_encoder.encode(text)
|
313 |
+
return [clip_z, t5_z]
|
314 |
+
|
315 |
+
|
316 |
+
from ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
317 |
+
from ldm.modules.diffusionmodules.openaimodel import Timestep
|
318 |
+
|
319 |
+
|
320 |
+
class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
|
321 |
+
def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs):
|
322 |
+
super().__init__(*args, **kwargs)
|
323 |
+
if clip_stats_path is None:
|
324 |
+
clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
|
325 |
+
else:
|
326 |
+
clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
|
327 |
+
self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
|
328 |
+
self.register_buffer("data_std", clip_std[None, :], persistent=False)
|
329 |
+
self.time_embed = Timestep(timestep_dim)
|
330 |
+
|
331 |
+
def scale(self, x):
|
332 |
+
# re-normalize to centered mean and unit variance
|
333 |
+
x = (x - self.data_mean) * 1. / self.data_std
|
334 |
+
return x
|
335 |
+
|
336 |
+
def unscale(self, x):
|
337 |
+
# back to original data stats
|
338 |
+
x = (x * self.data_std) + self.data_mean
|
339 |
+
return x
|
340 |
+
|
341 |
+
def forward(self, x, noise_level=None):
|
342 |
+
if noise_level is None:
|
343 |
+
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
344 |
+
else:
|
345 |
+
assert isinstance(noise_level, torch.Tensor)
|
346 |
+
x = self.scale(x)
|
347 |
+
z = self.q_sample(x, noise_level)
|
348 |
+
z = self.unscale(z)
|
349 |
+
noise_level = self.time_embed(noise_level)
|
350 |
+
return z, noise_level
|
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
2 |
+
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/bsrgan.py
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
# --------------------------------------------
|
4 |
+
# Super-Resolution
|
5 |
+
# --------------------------------------------
|
6 |
+
#
|
7 |
+
# Kai Zhang (cskaizhang@gmail.com)
|
8 |
+
# https://github.com/cszn
|
9 |
+
# From 2019/03--2021/08
|
10 |
+
# --------------------------------------------
|
11 |
+
"""
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import cv2
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from functools import partial
|
18 |
+
import random
|
19 |
+
from scipy import ndimage
|
20 |
+
import scipy
|
21 |
+
import scipy.stats as ss
|
22 |
+
from scipy.interpolate import interp2d
|
23 |
+
from scipy.linalg import orth
|
24 |
+
import albumentations
|
25 |
+
|
26 |
+
import ldm.modules.image_degradation.utils_image as util
|
27 |
+
|
28 |
+
|
29 |
+
def modcrop_np(img, sf):
|
30 |
+
'''
|
31 |
+
Args:
|
32 |
+
img: numpy image, WxH or WxHxC
|
33 |
+
sf: scale factor
|
34 |
+
Return:
|
35 |
+
cropped image
|
36 |
+
'''
|
37 |
+
w, h = img.shape[:2]
|
38 |
+
im = np.copy(img)
|
39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
# --------------------------------------------
|
44 |
+
# anisotropic Gaussian kernels
|
45 |
+
# --------------------------------------------
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def analytic_kernel(k):
|
50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
+
k_size = k.shape[0]
|
52 |
+
# Calculate the big kernels size
|
53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
+
# Loop over the small kernel to fill the big one
|
55 |
+
for r in range(k_size):
|
56 |
+
for c in range(k_size):
|
57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
+
crop = k_size // 2
|
60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
+
# Normalize to 1
|
62 |
+
return cropped_big_k / cropped_big_k.sum()
|
63 |
+
|
64 |
+
|
65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
+
""" generate an anisotropic Gaussian kernel
|
67 |
+
Args:
|
68 |
+
ksize : e.g., 15, kernel size
|
69 |
+
theta : [0, pi], rotation angle range
|
70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
+
Returns:
|
74 |
+
k : kernel
|
75 |
+
"""
|
76 |
+
|
77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
+
D = np.array([[l1, 0], [0, l2]])
|
80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
+
|
83 |
+
return k
|
84 |
+
|
85 |
+
|
86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
87 |
+
center = size / 2.0 + 0.5
|
88 |
+
k = np.zeros([size, size])
|
89 |
+
for y in range(size):
|
90 |
+
for x in range(size):
|
91 |
+
cy = y - center + 1
|
92 |
+
cx = x - center + 1
|
93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
+
|
95 |
+
k = k / np.sum(k)
|
96 |
+
return k
|
97 |
+
|
98 |
+
|
99 |
+
def shift_pixel(x, sf, upper_left=True):
|
100 |
+
"""shift pixel for super-resolution with different scale factors
|
101 |
+
Args:
|
102 |
+
x: WxHxC or WxH
|
103 |
+
sf: scale factor
|
104 |
+
upper_left: shift direction
|
105 |
+
"""
|
106 |
+
h, w = x.shape[:2]
|
107 |
+
shift = (sf - 1) * 0.5
|
108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
+
if upper_left:
|
110 |
+
x1 = xv + shift
|
111 |
+
y1 = yv + shift
|
112 |
+
else:
|
113 |
+
x1 = xv - shift
|
114 |
+
y1 = yv - shift
|
115 |
+
|
116 |
+
x1 = np.clip(x1, 0, w - 1)
|
117 |
+
y1 = np.clip(y1, 0, h - 1)
|
118 |
+
|
119 |
+
if x.ndim == 2:
|
120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
+
if x.ndim == 3:
|
122 |
+
for i in range(x.shape[-1]):
|
123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
def blur(x, k):
|
129 |
+
'''
|
130 |
+
x: image, NxcxHxW
|
131 |
+
k: kernel, Nx1xhxw
|
132 |
+
'''
|
133 |
+
n, c = x.shape[:2]
|
134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
+
k = k.repeat(1, c, 1, 1)
|
137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
+
""""
|
147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
+
# Kai Zhang
|
149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
+
# max_var = 2.5 * sf
|
151 |
+
"""
|
152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
+
theta = np.random.rand() * np.pi # random theta
|
156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
+
|
158 |
+
# Set COV matrix using Lambdas and Theta
|
159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
+
[np.sin(theta), np.cos(theta)]])
|
162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
+
|
165 |
+
# Set expectation position (shifting kernel for aligned image)
|
166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
+
MU = MU[None, None, :, None]
|
168 |
+
|
169 |
+
# Create meshgrid for Gaussian
|
170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
+
|
173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
174 |
+
ZZ = Z - MU
|
175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
+
|
178 |
+
# shift the kernel so it will be centered
|
179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
+
|
181 |
+
# Normalize the kernel and return
|
182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
+
return kernel
|
185 |
+
|
186 |
+
|
187 |
+
def fspecial_gaussian(hsize, sigma):
|
188 |
+
hsize = [hsize, hsize]
|
189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
+
std = sigma
|
191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
+
h = np.exp(arg)
|
194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
+
sumh = h.sum()
|
196 |
+
if sumh != 0:
|
197 |
+
h = h / sumh
|
198 |
+
return h
|
199 |
+
|
200 |
+
|
201 |
+
def fspecial_laplacian(alpha):
|
202 |
+
alpha = max([0, min([alpha, 1])])
|
203 |
+
h1 = alpha / (alpha + 1)
|
204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
+
h = np.array(h)
|
207 |
+
return h
|
208 |
+
|
209 |
+
|
210 |
+
def fspecial(filter_type, *args, **kwargs):
|
211 |
+
'''
|
212 |
+
python code from:
|
213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
+
'''
|
215 |
+
if filter_type == 'gaussian':
|
216 |
+
return fspecial_gaussian(*args, **kwargs)
|
217 |
+
if filter_type == 'laplacian':
|
218 |
+
return fspecial_laplacian(*args, **kwargs)
|
219 |
+
|
220 |
+
|
221 |
+
"""
|
222 |
+
# --------------------------------------------
|
223 |
+
# degradation models
|
224 |
+
# --------------------------------------------
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
def bicubic_degradation(x, sf=3):
|
229 |
+
'''
|
230 |
+
Args:
|
231 |
+
x: HxWxC image, [0, 1]
|
232 |
+
sf: down-scale factor
|
233 |
+
Return:
|
234 |
+
bicubicly downsampled LR image
|
235 |
+
'''
|
236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
237 |
+
return x
|
238 |
+
|
239 |
+
|
240 |
+
def srmd_degradation(x, k, sf=3):
|
241 |
+
''' blur + bicubic downsampling
|
242 |
+
Args:
|
243 |
+
x: HxWxC image, [0, 1]
|
244 |
+
k: hxw, double
|
245 |
+
sf: down-scale factor
|
246 |
+
Return:
|
247 |
+
downsampled LR image
|
248 |
+
Reference:
|
249 |
+
@inproceedings{zhang2018learning,
|
250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
+
pages={3262--3271},
|
254 |
+
year={2018}
|
255 |
+
}
|
256 |
+
'''
|
257 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
+
x = bicubic_degradation(x, sf=sf)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
def dpsr_degradation(x, k, sf=3):
|
263 |
+
''' bicubic downsampling + blur
|
264 |
+
Args:
|
265 |
+
x: HxWxC image, [0, 1]
|
266 |
+
k: hxw, double
|
267 |
+
sf: down-scale factor
|
268 |
+
Return:
|
269 |
+
downsampled LR image
|
270 |
+
Reference:
|
271 |
+
@inproceedings{zhang2019deep,
|
272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
+
pages={1671--1681},
|
276 |
+
year={2019}
|
277 |
+
}
|
278 |
+
'''
|
279 |
+
x = bicubic_degradation(x, sf=sf)
|
280 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
def classical_degradation(x, k, sf=3):
|
285 |
+
''' blur + downsampling
|
286 |
+
Args:
|
287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
+
k: hxw, double
|
289 |
+
sf: down-scale factor
|
290 |
+
Return:
|
291 |
+
downsampled LR image
|
292 |
+
'''
|
293 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
+
st = 0
|
296 |
+
return x[st::sf, st::sf, ...]
|
297 |
+
|
298 |
+
|
299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
+
Input image: I; Blurry image: B.
|
302 |
+
1. K = I + weight * (I - B)
|
303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
+
3. Blur mask:
|
305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
306 |
+
Args:
|
307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
+
weight (float): Sharp weight. Default: 1.
|
309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
+
threshold (int):
|
311 |
+
"""
|
312 |
+
if radius % 2 == 0:
|
313 |
+
radius += 1
|
314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
+
residual = img - blur
|
316 |
+
mask = np.abs(residual) * 255 > threshold
|
317 |
+
mask = mask.astype('float32')
|
318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
+
|
320 |
+
K = img + weight * residual
|
321 |
+
K = np.clip(K, 0, 1)
|
322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
323 |
+
|
324 |
+
|
325 |
+
def add_blur(img, sf=4):
|
326 |
+
wd2 = 4.0 + sf
|
327 |
+
wd = 2.0 + 0.2 * sf
|
328 |
+
if random.random() < 0.5:
|
329 |
+
l1 = wd2 * random.random()
|
330 |
+
l2 = wd2 * random.random()
|
331 |
+
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
332 |
+
else:
|
333 |
+
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
334 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
335 |
+
|
336 |
+
return img
|
337 |
+
|
338 |
+
|
339 |
+
def add_resize(img, sf=4):
|
340 |
+
rnum = np.random.rand()
|
341 |
+
if rnum > 0.8: # up
|
342 |
+
sf1 = random.uniform(1, 2)
|
343 |
+
elif rnum < 0.7: # down
|
344 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
345 |
+
else:
|
346 |
+
sf1 = 1.0
|
347 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
348 |
+
img = np.clip(img, 0.0, 1.0)
|
349 |
+
|
350 |
+
return img
|
351 |
+
|
352 |
+
|
353 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
354 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
355 |
+
# rnum = np.random.rand()
|
356 |
+
# if rnum > 0.6: # add color Gaussian noise
|
357 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
358 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
359 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
360 |
+
# else: # add noise
|
361 |
+
# L = noise_level2 / 255.
|
362 |
+
# D = np.diag(np.random.rand(3))
|
363 |
+
# U = orth(np.random.rand(3, 3))
|
364 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
365 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
366 |
+
# img = np.clip(img, 0.0, 1.0)
|
367 |
+
# return img
|
368 |
+
|
369 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
370 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
371 |
+
rnum = np.random.rand()
|
372 |
+
if rnum > 0.6: # add color Gaussian noise
|
373 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
374 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
375 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
376 |
+
else: # add noise
|
377 |
+
L = noise_level2 / 255.
|
378 |
+
D = np.diag(np.random.rand(3))
|
379 |
+
U = orth(np.random.rand(3, 3))
|
380 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
381 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
382 |
+
img = np.clip(img, 0.0, 1.0)
|
383 |
+
return img
|
384 |
+
|
385 |
+
|
386 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
387 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
388 |
+
img = np.clip(img, 0.0, 1.0)
|
389 |
+
rnum = random.random()
|
390 |
+
if rnum > 0.6:
|
391 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
392 |
+
elif rnum < 0.4:
|
393 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
394 |
+
else:
|
395 |
+
L = noise_level2 / 255.
|
396 |
+
D = np.diag(np.random.rand(3))
|
397 |
+
U = orth(np.random.rand(3, 3))
|
398 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
399 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
400 |
+
img = np.clip(img, 0.0, 1.0)
|
401 |
+
return img
|
402 |
+
|
403 |
+
|
404 |
+
def add_Poisson_noise(img):
|
405 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
406 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
407 |
+
if random.random() < 0.5:
|
408 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
409 |
+
else:
|
410 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
411 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
412 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
413 |
+
img += noise_gray[:, :, np.newaxis]
|
414 |
+
img = np.clip(img, 0.0, 1.0)
|
415 |
+
return img
|
416 |
+
|
417 |
+
|
418 |
+
def add_JPEG_noise(img):
|
419 |
+
quality_factor = random.randint(30, 95)
|
420 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
421 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
422 |
+
img = cv2.imdecode(encimg, 1)
|
423 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
424 |
+
return img
|
425 |
+
|
426 |
+
|
427 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
428 |
+
h, w = lq.shape[:2]
|
429 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
430 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
431 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
432 |
+
|
433 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
434 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
435 |
+
return lq, hq
|
436 |
+
|
437 |
+
|
438 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
439 |
+
"""
|
440 |
+
This is the degradation model of BSRGAN from the paper
|
441 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
442 |
+
----------
|
443 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
444 |
+
sf: scale factor
|
445 |
+
isp_model: camera ISP model
|
446 |
+
Returns
|
447 |
+
-------
|
448 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
449 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
450 |
+
"""
|
451 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
452 |
+
sf_ori = sf
|
453 |
+
|
454 |
+
h1, w1 = img.shape[:2]
|
455 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
456 |
+
h, w = img.shape[:2]
|
457 |
+
|
458 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
459 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
460 |
+
|
461 |
+
hq = img.copy()
|
462 |
+
|
463 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
464 |
+
if np.random.rand() < 0.5:
|
465 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
466 |
+
interpolation=random.choice([1, 2, 3]))
|
467 |
+
else:
|
468 |
+
img = util.imresize_np(img, 1 / 2, True)
|
469 |
+
img = np.clip(img, 0.0, 1.0)
|
470 |
+
sf = 2
|
471 |
+
|
472 |
+
shuffle_order = random.sample(range(7), 7)
|
473 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
474 |
+
if idx1 > idx2: # keep downsample3 last
|
475 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
476 |
+
|
477 |
+
for i in shuffle_order:
|
478 |
+
|
479 |
+
if i == 0:
|
480 |
+
img = add_blur(img, sf=sf)
|
481 |
+
|
482 |
+
elif i == 1:
|
483 |
+
img = add_blur(img, sf=sf)
|
484 |
+
|
485 |
+
elif i == 2:
|
486 |
+
a, b = img.shape[1], img.shape[0]
|
487 |
+
# downsample2
|
488 |
+
if random.random() < 0.75:
|
489 |
+
sf1 = random.uniform(1, 2 * sf)
|
490 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
491 |
+
interpolation=random.choice([1, 2, 3]))
|
492 |
+
else:
|
493 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
494 |
+
k_shifted = shift_pixel(k, sf)
|
495 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
496 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
497 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
498 |
+
img = np.clip(img, 0.0, 1.0)
|
499 |
+
|
500 |
+
elif i == 3:
|
501 |
+
# downsample3
|
502 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
503 |
+
img = np.clip(img, 0.0, 1.0)
|
504 |
+
|
505 |
+
elif i == 4:
|
506 |
+
# add Gaussian noise
|
507 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
508 |
+
|
509 |
+
elif i == 5:
|
510 |
+
# add JPEG noise
|
511 |
+
if random.random() < jpeg_prob:
|
512 |
+
img = add_JPEG_noise(img)
|
513 |
+
|
514 |
+
elif i == 6:
|
515 |
+
# add processed camera sensor noise
|
516 |
+
if random.random() < isp_prob and isp_model is not None:
|
517 |
+
with torch.no_grad():
|
518 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
519 |
+
|
520 |
+
# add final JPEG compression noise
|
521 |
+
img = add_JPEG_noise(img)
|
522 |
+
|
523 |
+
# random crop
|
524 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
525 |
+
|
526 |
+
return img, hq
|
527 |
+
|
528 |
+
|
529 |
+
# todo no isp_model?
|
530 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
531 |
+
"""
|
532 |
+
This is the degradation model of BSRGAN from the paper
|
533 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
534 |
+
----------
|
535 |
+
sf: scale factor
|
536 |
+
isp_model: camera ISP model
|
537 |
+
Returns
|
538 |
+
-------
|
539 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
540 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
541 |
+
"""
|
542 |
+
image = util.uint2single(image)
|
543 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
544 |
+
sf_ori = sf
|
545 |
+
|
546 |
+
h1, w1 = image.shape[:2]
|
547 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
548 |
+
h, w = image.shape[:2]
|
549 |
+
|
550 |
+
hq = image.copy()
|
551 |
+
|
552 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
553 |
+
if np.random.rand() < 0.5:
|
554 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
555 |
+
interpolation=random.choice([1, 2, 3]))
|
556 |
+
else:
|
557 |
+
image = util.imresize_np(image, 1 / 2, True)
|
558 |
+
image = np.clip(image, 0.0, 1.0)
|
559 |
+
sf = 2
|
560 |
+
|
561 |
+
shuffle_order = random.sample(range(7), 7)
|
562 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
563 |
+
if idx1 > idx2: # keep downsample3 last
|
564 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
565 |
+
|
566 |
+
for i in shuffle_order:
|
567 |
+
|
568 |
+
if i == 0:
|
569 |
+
image = add_blur(image, sf=sf)
|
570 |
+
|
571 |
+
elif i == 1:
|
572 |
+
image = add_blur(image, sf=sf)
|
573 |
+
|
574 |
+
elif i == 2:
|
575 |
+
a, b = image.shape[1], image.shape[0]
|
576 |
+
# downsample2
|
577 |
+
if random.random() < 0.75:
|
578 |
+
sf1 = random.uniform(1, 2 * sf)
|
579 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
580 |
+
interpolation=random.choice([1, 2, 3]))
|
581 |
+
else:
|
582 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
583 |
+
k_shifted = shift_pixel(k, sf)
|
584 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
585 |
+
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
586 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
587 |
+
image = np.clip(image, 0.0, 1.0)
|
588 |
+
|
589 |
+
elif i == 3:
|
590 |
+
# downsample3
|
591 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
592 |
+
image = np.clip(image, 0.0, 1.0)
|
593 |
+
|
594 |
+
elif i == 4:
|
595 |
+
# add Gaussian noise
|
596 |
+
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
|
597 |
+
|
598 |
+
elif i == 5:
|
599 |
+
# add JPEG noise
|
600 |
+
if random.random() < jpeg_prob:
|
601 |
+
image = add_JPEG_noise(image)
|
602 |
+
|
603 |
+
# elif i == 6:
|
604 |
+
# # add processed camera sensor noise
|
605 |
+
# if random.random() < isp_prob and isp_model is not None:
|
606 |
+
# with torch.no_grad():
|
607 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
608 |
+
|
609 |
+
# add final JPEG compression noise
|
610 |
+
image = add_JPEG_noise(image)
|
611 |
+
image = util.single2uint(image)
|
612 |
+
example = {"image":image}
|
613 |
+
return example
|
614 |
+
|
615 |
+
|
616 |
+
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
617 |
+
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
618 |
+
"""
|
619 |
+
This is an extended degradation model by combining
|
620 |
+
the degradation models of BSRGAN and Real-ESRGAN
|
621 |
+
----------
|
622 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
623 |
+
sf: scale factor
|
624 |
+
use_shuffle: the degradation shuffle
|
625 |
+
use_sharp: sharpening the img
|
626 |
+
Returns
|
627 |
+
-------
|
628 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
629 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
630 |
+
"""
|
631 |
+
|
632 |
+
h1, w1 = img.shape[:2]
|
633 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
634 |
+
h, w = img.shape[:2]
|
635 |
+
|
636 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
637 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
638 |
+
|
639 |
+
if use_sharp:
|
640 |
+
img = add_sharpening(img)
|
641 |
+
hq = img.copy()
|
642 |
+
|
643 |
+
if random.random() < shuffle_prob:
|
644 |
+
shuffle_order = random.sample(range(13), 13)
|
645 |
+
else:
|
646 |
+
shuffle_order = list(range(13))
|
647 |
+
# local shuffle for noise, JPEG is always the last one
|
648 |
+
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
649 |
+
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
650 |
+
|
651 |
+
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
652 |
+
|
653 |
+
for i in shuffle_order:
|
654 |
+
if i == 0:
|
655 |
+
img = add_blur(img, sf=sf)
|
656 |
+
elif i == 1:
|
657 |
+
img = add_resize(img, sf=sf)
|
658 |
+
elif i == 2:
|
659 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
660 |
+
elif i == 3:
|
661 |
+
if random.random() < poisson_prob:
|
662 |
+
img = add_Poisson_noise(img)
|
663 |
+
elif i == 4:
|
664 |
+
if random.random() < speckle_prob:
|
665 |
+
img = add_speckle_noise(img)
|
666 |
+
elif i == 5:
|
667 |
+
if random.random() < isp_prob and isp_model is not None:
|
668 |
+
with torch.no_grad():
|
669 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
670 |
+
elif i == 6:
|
671 |
+
img = add_JPEG_noise(img)
|
672 |
+
elif i == 7:
|
673 |
+
img = add_blur(img, sf=sf)
|
674 |
+
elif i == 8:
|
675 |
+
img = add_resize(img, sf=sf)
|
676 |
+
elif i == 9:
|
677 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
678 |
+
elif i == 10:
|
679 |
+
if random.random() < poisson_prob:
|
680 |
+
img = add_Poisson_noise(img)
|
681 |
+
elif i == 11:
|
682 |
+
if random.random() < speckle_prob:
|
683 |
+
img = add_speckle_noise(img)
|
684 |
+
elif i == 12:
|
685 |
+
if random.random() < isp_prob and isp_model is not None:
|
686 |
+
with torch.no_grad():
|
687 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
688 |
+
else:
|
689 |
+
print('check the shuffle!')
|
690 |
+
|
691 |
+
# resize to desired size
|
692 |
+
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
693 |
+
interpolation=random.choice([1, 2, 3]))
|
694 |
+
|
695 |
+
# add final JPEG compression noise
|
696 |
+
img = add_JPEG_noise(img)
|
697 |
+
|
698 |
+
# random crop
|
699 |
+
img, hq = random_crop(img, hq, sf, lq_patchsize)
|
700 |
+
|
701 |
+
return img, hq
|
702 |
+
|
703 |
+
|
704 |
+
if __name__ == '__main__':
|
705 |
+
print("hey")
|
706 |
+
img = util.imread_uint('utils/test.png', 3)
|
707 |
+
print(img)
|
708 |
+
img = util.uint2single(img)
|
709 |
+
print(img)
|
710 |
+
img = img[:448, :448]
|
711 |
+
h = img.shape[0] // 4
|
712 |
+
print("resizing to", h)
|
713 |
+
sf = 4
|
714 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
715 |
+
for i in range(20):
|
716 |
+
print(i)
|
717 |
+
img_lq = deg_fn(img)
|
718 |
+
print(img_lq)
|
719 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
720 |
+
print(img_lq.shape)
|
721 |
+
print("bicubic", img_lq_bicubic.shape)
|
722 |
+
print(img_hq.shape)
|
723 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
724 |
+
interpolation=0)
|
725 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
726 |
+
interpolation=0)
|
727 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
728 |
+
util.imsave(img_concat, str(i) + '.png')
|
729 |
+
|
730 |
+
|
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/bsrgan_light.py
ADDED
@@ -0,0 +1,651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
import random
|
8 |
+
from scipy import ndimage
|
9 |
+
import scipy
|
10 |
+
import scipy.stats as ss
|
11 |
+
from scipy.interpolate import interp2d
|
12 |
+
from scipy.linalg import orth
|
13 |
+
import albumentations
|
14 |
+
|
15 |
+
import ldm.modules.image_degradation.utils_image as util
|
16 |
+
|
17 |
+
"""
|
18 |
+
# --------------------------------------------
|
19 |
+
# Super-Resolution
|
20 |
+
# --------------------------------------------
|
21 |
+
#
|
22 |
+
# Kai Zhang (cskaizhang@gmail.com)
|
23 |
+
# https://github.com/cszn
|
24 |
+
# From 2019/03--2021/08
|
25 |
+
# --------------------------------------------
|
26 |
+
"""
|
27 |
+
|
28 |
+
def modcrop_np(img, sf):
|
29 |
+
'''
|
30 |
+
Args:
|
31 |
+
img: numpy image, WxH or WxHxC
|
32 |
+
sf: scale factor
|
33 |
+
Return:
|
34 |
+
cropped image
|
35 |
+
'''
|
36 |
+
w, h = img.shape[:2]
|
37 |
+
im = np.copy(img)
|
38 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
39 |
+
|
40 |
+
|
41 |
+
"""
|
42 |
+
# --------------------------------------------
|
43 |
+
# anisotropic Gaussian kernels
|
44 |
+
# --------------------------------------------
|
45 |
+
"""
|
46 |
+
|
47 |
+
|
48 |
+
def analytic_kernel(k):
|
49 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
50 |
+
k_size = k.shape[0]
|
51 |
+
# Calculate the big kernels size
|
52 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
53 |
+
# Loop over the small kernel to fill the big one
|
54 |
+
for r in range(k_size):
|
55 |
+
for c in range(k_size):
|
56 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
57 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
58 |
+
crop = k_size // 2
|
59 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
60 |
+
# Normalize to 1
|
61 |
+
return cropped_big_k / cropped_big_k.sum()
|
62 |
+
|
63 |
+
|
64 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
65 |
+
""" generate an anisotropic Gaussian kernel
|
66 |
+
Args:
|
67 |
+
ksize : e.g., 15, kernel size
|
68 |
+
theta : [0, pi], rotation angle range
|
69 |
+
l1 : [0.1,50], scaling of eigenvalues
|
70 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
71 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
72 |
+
Returns:
|
73 |
+
k : kernel
|
74 |
+
"""
|
75 |
+
|
76 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
77 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
78 |
+
D = np.array([[l1, 0], [0, l2]])
|
79 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
80 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
81 |
+
|
82 |
+
return k
|
83 |
+
|
84 |
+
|
85 |
+
def gm_blur_kernel(mean, cov, size=15):
|
86 |
+
center = size / 2.0 + 0.5
|
87 |
+
k = np.zeros([size, size])
|
88 |
+
for y in range(size):
|
89 |
+
for x in range(size):
|
90 |
+
cy = y - center + 1
|
91 |
+
cx = x - center + 1
|
92 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
93 |
+
|
94 |
+
k = k / np.sum(k)
|
95 |
+
return k
|
96 |
+
|
97 |
+
|
98 |
+
def shift_pixel(x, sf, upper_left=True):
|
99 |
+
"""shift pixel for super-resolution with different scale factors
|
100 |
+
Args:
|
101 |
+
x: WxHxC or WxH
|
102 |
+
sf: scale factor
|
103 |
+
upper_left: shift direction
|
104 |
+
"""
|
105 |
+
h, w = x.shape[:2]
|
106 |
+
shift = (sf - 1) * 0.5
|
107 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
108 |
+
if upper_left:
|
109 |
+
x1 = xv + shift
|
110 |
+
y1 = yv + shift
|
111 |
+
else:
|
112 |
+
x1 = xv - shift
|
113 |
+
y1 = yv - shift
|
114 |
+
|
115 |
+
x1 = np.clip(x1, 0, w - 1)
|
116 |
+
y1 = np.clip(y1, 0, h - 1)
|
117 |
+
|
118 |
+
if x.ndim == 2:
|
119 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
120 |
+
if x.ndim == 3:
|
121 |
+
for i in range(x.shape[-1]):
|
122 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
123 |
+
|
124 |
+
return x
|
125 |
+
|
126 |
+
|
127 |
+
def blur(x, k):
|
128 |
+
'''
|
129 |
+
x: image, NxcxHxW
|
130 |
+
k: kernel, Nx1xhxw
|
131 |
+
'''
|
132 |
+
n, c = x.shape[:2]
|
133 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
134 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
135 |
+
k = k.repeat(1, c, 1, 1)
|
136 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
137 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
138 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
139 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
140 |
+
|
141 |
+
return x
|
142 |
+
|
143 |
+
|
144 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
145 |
+
""""
|
146 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
147 |
+
# Kai Zhang
|
148 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
149 |
+
# max_var = 2.5 * sf
|
150 |
+
"""
|
151 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
152 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
153 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
+
theta = np.random.rand() * np.pi # random theta
|
155 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
156 |
+
|
157 |
+
# Set COV matrix using Lambdas and Theta
|
158 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
159 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
160 |
+
[np.sin(theta), np.cos(theta)]])
|
161 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
162 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
163 |
+
|
164 |
+
# Set expectation position (shifting kernel for aligned image)
|
165 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
166 |
+
MU = MU[None, None, :, None]
|
167 |
+
|
168 |
+
# Create meshgrid for Gaussian
|
169 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
170 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
171 |
+
|
172 |
+
# Calcualte Gaussian for every pixel of the kernel
|
173 |
+
ZZ = Z - MU
|
174 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
175 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
176 |
+
|
177 |
+
# shift the kernel so it will be centered
|
178 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
179 |
+
|
180 |
+
# Normalize the kernel and return
|
181 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
182 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
183 |
+
return kernel
|
184 |
+
|
185 |
+
|
186 |
+
def fspecial_gaussian(hsize, sigma):
|
187 |
+
hsize = [hsize, hsize]
|
188 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
189 |
+
std = sigma
|
190 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
191 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
192 |
+
h = np.exp(arg)
|
193 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
194 |
+
sumh = h.sum()
|
195 |
+
if sumh != 0:
|
196 |
+
h = h / sumh
|
197 |
+
return h
|
198 |
+
|
199 |
+
|
200 |
+
def fspecial_laplacian(alpha):
|
201 |
+
alpha = max([0, min([alpha, 1])])
|
202 |
+
h1 = alpha / (alpha + 1)
|
203 |
+
h2 = (1 - alpha) / (alpha + 1)
|
204 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
205 |
+
h = np.array(h)
|
206 |
+
return h
|
207 |
+
|
208 |
+
|
209 |
+
def fspecial(filter_type, *args, **kwargs):
|
210 |
+
'''
|
211 |
+
python code from:
|
212 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
213 |
+
'''
|
214 |
+
if filter_type == 'gaussian':
|
215 |
+
return fspecial_gaussian(*args, **kwargs)
|
216 |
+
if filter_type == 'laplacian':
|
217 |
+
return fspecial_laplacian(*args, **kwargs)
|
218 |
+
|
219 |
+
|
220 |
+
"""
|
221 |
+
# --------------------------------------------
|
222 |
+
# degradation models
|
223 |
+
# --------------------------------------------
|
224 |
+
"""
|
225 |
+
|
226 |
+
|
227 |
+
def bicubic_degradation(x, sf=3):
|
228 |
+
'''
|
229 |
+
Args:
|
230 |
+
x: HxWxC image, [0, 1]
|
231 |
+
sf: down-scale factor
|
232 |
+
Return:
|
233 |
+
bicubicly downsampled LR image
|
234 |
+
'''
|
235 |
+
x = util.imresize_np(x, scale=1 / sf)
|
236 |
+
return x
|
237 |
+
|
238 |
+
|
239 |
+
def srmd_degradation(x, k, sf=3):
|
240 |
+
''' blur + bicubic downsampling
|
241 |
+
Args:
|
242 |
+
x: HxWxC image, [0, 1]
|
243 |
+
k: hxw, double
|
244 |
+
sf: down-scale factor
|
245 |
+
Return:
|
246 |
+
downsampled LR image
|
247 |
+
Reference:
|
248 |
+
@inproceedings{zhang2018learning,
|
249 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
250 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
251 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
252 |
+
pages={3262--3271},
|
253 |
+
year={2018}
|
254 |
+
}
|
255 |
+
'''
|
256 |
+
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
257 |
+
x = bicubic_degradation(x, sf=sf)
|
258 |
+
return x
|
259 |
+
|
260 |
+
|
261 |
+
def dpsr_degradation(x, k, sf=3):
|
262 |
+
''' bicubic downsampling + blur
|
263 |
+
Args:
|
264 |
+
x: HxWxC image, [0, 1]
|
265 |
+
k: hxw, double
|
266 |
+
sf: down-scale factor
|
267 |
+
Return:
|
268 |
+
downsampled LR image
|
269 |
+
Reference:
|
270 |
+
@inproceedings{zhang2019deep,
|
271 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
272 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
273 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
274 |
+
pages={1671--1681},
|
275 |
+
year={2019}
|
276 |
+
}
|
277 |
+
'''
|
278 |
+
x = bicubic_degradation(x, sf=sf)
|
279 |
+
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
280 |
+
return x
|
281 |
+
|
282 |
+
|
283 |
+
def classical_degradation(x, k, sf=3):
|
284 |
+
''' blur + downsampling
|
285 |
+
Args:
|
286 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
287 |
+
k: hxw, double
|
288 |
+
sf: down-scale factor
|
289 |
+
Return:
|
290 |
+
downsampled LR image
|
291 |
+
'''
|
292 |
+
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
293 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
294 |
+
st = 0
|
295 |
+
return x[st::sf, st::sf, ...]
|
296 |
+
|
297 |
+
|
298 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
299 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
300 |
+
Input image: I; Blurry image: B.
|
301 |
+
1. K = I + weight * (I - B)
|
302 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
303 |
+
3. Blur mask:
|
304 |
+
4. Out = Mask * K + (1 - Mask) * I
|
305 |
+
Args:
|
306 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
307 |
+
weight (float): Sharp weight. Default: 1.
|
308 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
309 |
+
threshold (int):
|
310 |
+
"""
|
311 |
+
if radius % 2 == 0:
|
312 |
+
radius += 1
|
313 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
314 |
+
residual = img - blur
|
315 |
+
mask = np.abs(residual) * 255 > threshold
|
316 |
+
mask = mask.astype('float32')
|
317 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
318 |
+
|
319 |
+
K = img + weight * residual
|
320 |
+
K = np.clip(K, 0, 1)
|
321 |
+
return soft_mask * K + (1 - soft_mask) * img
|
322 |
+
|
323 |
+
|
324 |
+
def add_blur(img, sf=4):
|
325 |
+
wd2 = 4.0 + sf
|
326 |
+
wd = 2.0 + 0.2 * sf
|
327 |
+
|
328 |
+
wd2 = wd2/4
|
329 |
+
wd = wd/4
|
330 |
+
|
331 |
+
if random.random() < 0.5:
|
332 |
+
l1 = wd2 * random.random()
|
333 |
+
l2 = wd2 * random.random()
|
334 |
+
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
335 |
+
else:
|
336 |
+
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
337 |
+
img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
338 |
+
|
339 |
+
return img
|
340 |
+
|
341 |
+
|
342 |
+
def add_resize(img, sf=4):
|
343 |
+
rnum = np.random.rand()
|
344 |
+
if rnum > 0.8: # up
|
345 |
+
sf1 = random.uniform(1, 2)
|
346 |
+
elif rnum < 0.7: # down
|
347 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
348 |
+
else:
|
349 |
+
sf1 = 1.0
|
350 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
351 |
+
img = np.clip(img, 0.0, 1.0)
|
352 |
+
|
353 |
+
return img
|
354 |
+
|
355 |
+
|
356 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
357 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
358 |
+
# rnum = np.random.rand()
|
359 |
+
# if rnum > 0.6: # add color Gaussian noise
|
360 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
361 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
362 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
363 |
+
# else: # add noise
|
364 |
+
# L = noise_level2 / 255.
|
365 |
+
# D = np.diag(np.random.rand(3))
|
366 |
+
# U = orth(np.random.rand(3, 3))
|
367 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
368 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
369 |
+
# img = np.clip(img, 0.0, 1.0)
|
370 |
+
# return img
|
371 |
+
|
372 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
373 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
374 |
+
rnum = np.random.rand()
|
375 |
+
if rnum > 0.6: # add color Gaussian noise
|
376 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
377 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
378 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
379 |
+
else: # add noise
|
380 |
+
L = noise_level2 / 255.
|
381 |
+
D = np.diag(np.random.rand(3))
|
382 |
+
U = orth(np.random.rand(3, 3))
|
383 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
384 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
385 |
+
img = np.clip(img, 0.0, 1.0)
|
386 |
+
return img
|
387 |
+
|
388 |
+
|
389 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
390 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
391 |
+
img = np.clip(img, 0.0, 1.0)
|
392 |
+
rnum = random.random()
|
393 |
+
if rnum > 0.6:
|
394 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
395 |
+
elif rnum < 0.4:
|
396 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
397 |
+
else:
|
398 |
+
L = noise_level2 / 255.
|
399 |
+
D = np.diag(np.random.rand(3))
|
400 |
+
U = orth(np.random.rand(3, 3))
|
401 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
402 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
403 |
+
img = np.clip(img, 0.0, 1.0)
|
404 |
+
return img
|
405 |
+
|
406 |
+
|
407 |
+
def add_Poisson_noise(img):
|
408 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
409 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
410 |
+
if random.random() < 0.5:
|
411 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
412 |
+
else:
|
413 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
414 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
415 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
416 |
+
img += noise_gray[:, :, np.newaxis]
|
417 |
+
img = np.clip(img, 0.0, 1.0)
|
418 |
+
return img
|
419 |
+
|
420 |
+
|
421 |
+
def add_JPEG_noise(img):
|
422 |
+
quality_factor = random.randint(80, 95)
|
423 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
424 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
425 |
+
img = cv2.imdecode(encimg, 1)
|
426 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
427 |
+
return img
|
428 |
+
|
429 |
+
|
430 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
431 |
+
h, w = lq.shape[:2]
|
432 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
433 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
434 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
435 |
+
|
436 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
437 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
438 |
+
return lq, hq
|
439 |
+
|
440 |
+
|
441 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
442 |
+
"""
|
443 |
+
This is the degradation model of BSRGAN from the paper
|
444 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
445 |
+
----------
|
446 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
447 |
+
sf: scale factor
|
448 |
+
isp_model: camera ISP model
|
449 |
+
Returns
|
450 |
+
-------
|
451 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
452 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
453 |
+
"""
|
454 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
455 |
+
sf_ori = sf
|
456 |
+
|
457 |
+
h1, w1 = img.shape[:2]
|
458 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
459 |
+
h, w = img.shape[:2]
|
460 |
+
|
461 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
462 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
463 |
+
|
464 |
+
hq = img.copy()
|
465 |
+
|
466 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
467 |
+
if np.random.rand() < 0.5:
|
468 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
469 |
+
interpolation=random.choice([1, 2, 3]))
|
470 |
+
else:
|
471 |
+
img = util.imresize_np(img, 1 / 2, True)
|
472 |
+
img = np.clip(img, 0.0, 1.0)
|
473 |
+
sf = 2
|
474 |
+
|
475 |
+
shuffle_order = random.sample(range(7), 7)
|
476 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
477 |
+
if idx1 > idx2: # keep downsample3 last
|
478 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
479 |
+
|
480 |
+
for i in shuffle_order:
|
481 |
+
|
482 |
+
if i == 0:
|
483 |
+
img = add_blur(img, sf=sf)
|
484 |
+
|
485 |
+
elif i == 1:
|
486 |
+
img = add_blur(img, sf=sf)
|
487 |
+
|
488 |
+
elif i == 2:
|
489 |
+
a, b = img.shape[1], img.shape[0]
|
490 |
+
# downsample2
|
491 |
+
if random.random() < 0.75:
|
492 |
+
sf1 = random.uniform(1, 2 * sf)
|
493 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
494 |
+
interpolation=random.choice([1, 2, 3]))
|
495 |
+
else:
|
496 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
497 |
+
k_shifted = shift_pixel(k, sf)
|
498 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
499 |
+
img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
500 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
501 |
+
img = np.clip(img, 0.0, 1.0)
|
502 |
+
|
503 |
+
elif i == 3:
|
504 |
+
# downsample3
|
505 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
506 |
+
img = np.clip(img, 0.0, 1.0)
|
507 |
+
|
508 |
+
elif i == 4:
|
509 |
+
# add Gaussian noise
|
510 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
|
511 |
+
|
512 |
+
elif i == 5:
|
513 |
+
# add JPEG noise
|
514 |
+
if random.random() < jpeg_prob:
|
515 |
+
img = add_JPEG_noise(img)
|
516 |
+
|
517 |
+
elif i == 6:
|
518 |
+
# add processed camera sensor noise
|
519 |
+
if random.random() < isp_prob and isp_model is not None:
|
520 |
+
with torch.no_grad():
|
521 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
522 |
+
|
523 |
+
# add final JPEG compression noise
|
524 |
+
img = add_JPEG_noise(img)
|
525 |
+
|
526 |
+
# random crop
|
527 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
528 |
+
|
529 |
+
return img, hq
|
530 |
+
|
531 |
+
|
532 |
+
# todo no isp_model?
|
533 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
|
534 |
+
"""
|
535 |
+
This is the degradation model of BSRGAN from the paper
|
536 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
537 |
+
----------
|
538 |
+
sf: scale factor
|
539 |
+
isp_model: camera ISP model
|
540 |
+
Returns
|
541 |
+
-------
|
542 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
543 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
544 |
+
"""
|
545 |
+
image = util.uint2single(image)
|
546 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
547 |
+
sf_ori = sf
|
548 |
+
|
549 |
+
h1, w1 = image.shape[:2]
|
550 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
551 |
+
h, w = image.shape[:2]
|
552 |
+
|
553 |
+
hq = image.copy()
|
554 |
+
|
555 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
556 |
+
if np.random.rand() < 0.5:
|
557 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
558 |
+
interpolation=random.choice([1, 2, 3]))
|
559 |
+
else:
|
560 |
+
image = util.imresize_np(image, 1 / 2, True)
|
561 |
+
image = np.clip(image, 0.0, 1.0)
|
562 |
+
sf = 2
|
563 |
+
|
564 |
+
shuffle_order = random.sample(range(7), 7)
|
565 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
566 |
+
if idx1 > idx2: # keep downsample3 last
|
567 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
568 |
+
|
569 |
+
for i in shuffle_order:
|
570 |
+
|
571 |
+
if i == 0:
|
572 |
+
image = add_blur(image, sf=sf)
|
573 |
+
|
574 |
+
# elif i == 1:
|
575 |
+
# image = add_blur(image, sf=sf)
|
576 |
+
|
577 |
+
if i == 0:
|
578 |
+
pass
|
579 |
+
|
580 |
+
elif i == 2:
|
581 |
+
a, b = image.shape[1], image.shape[0]
|
582 |
+
# downsample2
|
583 |
+
if random.random() < 0.8:
|
584 |
+
sf1 = random.uniform(1, 2 * sf)
|
585 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
586 |
+
interpolation=random.choice([1, 2, 3]))
|
587 |
+
else:
|
588 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
589 |
+
k_shifted = shift_pixel(k, sf)
|
590 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
591 |
+
image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
592 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
593 |
+
|
594 |
+
image = np.clip(image, 0.0, 1.0)
|
595 |
+
|
596 |
+
elif i == 3:
|
597 |
+
# downsample3
|
598 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
599 |
+
image = np.clip(image, 0.0, 1.0)
|
600 |
+
|
601 |
+
elif i == 4:
|
602 |
+
# add Gaussian noise
|
603 |
+
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
|
604 |
+
|
605 |
+
elif i == 5:
|
606 |
+
# add JPEG noise
|
607 |
+
if random.random() < jpeg_prob:
|
608 |
+
image = add_JPEG_noise(image)
|
609 |
+
#
|
610 |
+
# elif i == 6:
|
611 |
+
# # add processed camera sensor noise
|
612 |
+
# if random.random() < isp_prob and isp_model is not None:
|
613 |
+
# with torch.no_grad():
|
614 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
615 |
+
|
616 |
+
# add final JPEG compression noise
|
617 |
+
image = add_JPEG_noise(image)
|
618 |
+
image = util.single2uint(image)
|
619 |
+
if up:
|
620 |
+
image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then
|
621 |
+
example = {"image": image}
|
622 |
+
return example
|
623 |
+
|
624 |
+
|
625 |
+
|
626 |
+
|
627 |
+
if __name__ == '__main__':
|
628 |
+
print("hey")
|
629 |
+
img = util.imread_uint('utils/test.png', 3)
|
630 |
+
img = img[:448, :448]
|
631 |
+
h = img.shape[0] // 4
|
632 |
+
print("resizing to", h)
|
633 |
+
sf = 4
|
634 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
635 |
+
for i in range(20):
|
636 |
+
print(i)
|
637 |
+
img_hq = img
|
638 |
+
img_lq = deg_fn(img)["image"]
|
639 |
+
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
640 |
+
print(img_lq)
|
641 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
642 |
+
print(img_lq.shape)
|
643 |
+
print("bicubic", img_lq_bicubic.shape)
|
644 |
+
print(img_hq.shape)
|
645 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
646 |
+
interpolation=0)
|
647 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
648 |
+
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
649 |
+
interpolation=0)
|
650 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
651 |
+
util.imsave(img_concat, str(i) + '.png')
|
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/utils/test.png
ADDED
repositories/stable-diffusion-stability-ai/ldm/modules/image_degradation/utils_image.py
ADDED
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import cv2
|
7 |
+
from torchvision.utils import make_grid
|
8 |
+
from datetime import datetime
|
9 |
+
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
10 |
+
|
11 |
+
|
12 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
13 |
+
|
14 |
+
|
15 |
+
'''
|
16 |
+
# --------------------------------------------
|
17 |
+
# Kai Zhang (github: https://github.com/cszn)
|
18 |
+
# 03/Mar/2019
|
19 |
+
# --------------------------------------------
|
20 |
+
# https://github.com/twhui/SRGAN-pyTorch
|
21 |
+
# https://github.com/xinntao/BasicSR
|
22 |
+
# --------------------------------------------
|
23 |
+
'''
|
24 |
+
|
25 |
+
|
26 |
+
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
27 |
+
|
28 |
+
|
29 |
+
def is_image_file(filename):
|
30 |
+
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
31 |
+
|
32 |
+
|
33 |
+
def get_timestamp():
|
34 |
+
return datetime.now().strftime('%y%m%d-%H%M%S')
|
35 |
+
|
36 |
+
|
37 |
+
def imshow(x, title=None, cbar=False, figsize=None):
|
38 |
+
plt.figure(figsize=figsize)
|
39 |
+
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
40 |
+
if title:
|
41 |
+
plt.title(title)
|
42 |
+
if cbar:
|
43 |
+
plt.colorbar()
|
44 |
+
plt.show()
|
45 |
+
|
46 |
+
|
47 |
+
def surf(Z, cmap='rainbow', figsize=None):
|
48 |
+
plt.figure(figsize=figsize)
|
49 |
+
ax3 = plt.axes(projection='3d')
|
50 |
+
|
51 |
+
w, h = Z.shape[:2]
|
52 |
+
xx = np.arange(0,w,1)
|
53 |
+
yy = np.arange(0,h,1)
|
54 |
+
X, Y = np.meshgrid(xx, yy)
|
55 |
+
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
56 |
+
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
57 |
+
plt.show()
|
58 |
+
|
59 |
+
|
60 |
+
'''
|
61 |
+
# --------------------------------------------
|
62 |
+
# get image pathes
|
63 |
+
# --------------------------------------------
|
64 |
+
'''
|
65 |
+
|
66 |
+
|
67 |
+
def get_image_paths(dataroot):
|
68 |
+
paths = None # return None if dataroot is None
|
69 |
+
if dataroot is not None:
|
70 |
+
paths = sorted(_get_paths_from_images(dataroot))
|
71 |
+
return paths
|
72 |
+
|
73 |
+
|
74 |
+
def _get_paths_from_images(path):
|
75 |
+
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
76 |
+
images = []
|
77 |
+
for dirpath, _, fnames in sorted(os.walk(path)):
|
78 |
+
for fname in sorted(fnames):
|
79 |
+
if is_image_file(fname):
|
80 |
+
img_path = os.path.join(dirpath, fname)
|
81 |
+
images.append(img_path)
|
82 |
+
assert images, '{:s} has no valid image file'.format(path)
|
83 |
+
return images
|
84 |
+
|
85 |
+
|
86 |
+
'''
|
87 |
+
# --------------------------------------------
|
88 |
+
# split large images into small images
|
89 |
+
# --------------------------------------------
|
90 |
+
'''
|
91 |
+
|
92 |
+
|
93 |
+
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
94 |
+
w, h = img.shape[:2]
|
95 |
+
patches = []
|
96 |
+
if w > p_max and h > p_max:
|
97 |
+
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
98 |
+
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
99 |
+
w1.append(w-p_size)
|
100 |
+
h1.append(h-p_size)
|
101 |
+
# print(w1)
|
102 |
+
# print(h1)
|
103 |
+
for i in w1:
|
104 |
+
for j in h1:
|
105 |
+
patches.append(img[i:i+p_size, j:j+p_size,:])
|
106 |
+
else:
|
107 |
+
patches.append(img)
|
108 |
+
|
109 |
+
return patches
|
110 |
+
|
111 |
+
|
112 |
+
def imssave(imgs, img_path):
|
113 |
+
"""
|
114 |
+
imgs: list, N images of size WxHxC
|
115 |
+
"""
|
116 |
+
img_name, ext = os.path.splitext(os.path.basename(img_path))
|
117 |
+
|
118 |
+
for i, img in enumerate(imgs):
|
119 |
+
if img.ndim == 3:
|
120 |
+
img = img[:, :, [2, 1, 0]]
|
121 |
+
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
122 |
+
cv2.imwrite(new_path, img)
|
123 |
+
|
124 |
+
|
125 |
+
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
126 |
+
"""
|
127 |
+
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
128 |
+
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
129 |
+
will be splitted.
|
130 |
+
Args:
|
131 |
+
original_dataroot:
|
132 |
+
taget_dataroot:
|
133 |
+
p_size: size of small images
|
134 |
+
p_overlap: patch size in training is a good choice
|
135 |
+
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
|
136 |
+
"""
|
137 |
+
paths = get_image_paths(original_dataroot)
|
138 |
+
for img_path in paths:
|
139 |
+
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
140 |
+
img = imread_uint(img_path, n_channels=n_channels)
|
141 |
+
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
142 |
+
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
143 |
+
#if original_dataroot == taget_dataroot:
|
144 |
+
#del img_path
|
145 |
+
|
146 |
+
'''
|
147 |
+
# --------------------------------------------
|
148 |
+
# makedir
|
149 |
+
# --------------------------------------------
|
150 |
+
'''
|
151 |
+
|
152 |
+
|
153 |
+
def mkdir(path):
|
154 |
+
if not os.path.exists(path):
|
155 |
+
os.makedirs(path)
|
156 |
+
|
157 |
+
|
158 |
+
def mkdirs(paths):
|
159 |
+
if isinstance(paths, str):
|
160 |
+
mkdir(paths)
|
161 |
+
else:
|
162 |
+
for path in paths:
|
163 |
+
mkdir(path)
|
164 |
+
|
165 |
+
|
166 |
+
def mkdir_and_rename(path):
|
167 |
+
if os.path.exists(path):
|
168 |
+
new_name = path + '_archived_' + get_timestamp()
|
169 |
+
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
170 |
+
os.rename(path, new_name)
|
171 |
+
os.makedirs(path)
|
172 |
+
|
173 |
+
|
174 |
+
'''
|
175 |
+
# --------------------------------------------
|
176 |
+
# read image from path
|
177 |
+
# opencv is fast, but read BGR numpy image
|
178 |
+
# --------------------------------------------
|
179 |
+
'''
|
180 |
+
|
181 |
+
|
182 |
+
# --------------------------------------------
|
183 |
+
# get uint8 image of size HxWxn_channles (RGB)
|
184 |
+
# --------------------------------------------
|
185 |
+
def imread_uint(path, n_channels=3):
|
186 |
+
# input: path
|
187 |
+
# output: HxWx3(RGB or GGG), or HxWx1 (G)
|
188 |
+
if n_channels == 1:
|
189 |
+
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
|
190 |
+
img = np.expand_dims(img, axis=2) # HxWx1
|
191 |
+
elif n_channels == 3:
|
192 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
|
193 |
+
if img.ndim == 2:
|
194 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
|
195 |
+
else:
|
196 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
|
197 |
+
return img
|
198 |
+
|
199 |
+
|
200 |
+
# --------------------------------------------
|
201 |
+
# matlab's imwrite
|
202 |
+
# --------------------------------------------
|
203 |
+
def imsave(img, img_path):
|
204 |
+
img = np.squeeze(img)
|
205 |
+
if img.ndim == 3:
|
206 |
+
img = img[:, :, [2, 1, 0]]
|
207 |
+
cv2.imwrite(img_path, img)
|
208 |
+
|
209 |
+
def imwrite(img, img_path):
|
210 |
+
img = np.squeeze(img)
|
211 |
+
if img.ndim == 3:
|
212 |
+
img = img[:, :, [2, 1, 0]]
|
213 |
+
cv2.imwrite(img_path, img)
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
# --------------------------------------------
|
218 |
+
# get single image of size HxWxn_channles (BGR)
|
219 |
+
# --------------------------------------------
|
220 |
+
def read_img(path):
|
221 |
+
# read image by cv2
|
222 |
+
# return: Numpy float32, HWC, BGR, [0,1]
|
223 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
224 |
+
img = img.astype(np.float32) / 255.
|
225 |
+
if img.ndim == 2:
|
226 |
+
img = np.expand_dims(img, axis=2)
|
227 |
+
# some images have 4 channels
|
228 |
+
if img.shape[2] > 3:
|
229 |
+
img = img[:, :, :3]
|
230 |
+
return img
|
231 |
+
|
232 |
+
|
233 |
+
'''
|
234 |
+
# --------------------------------------------
|
235 |
+
# image format conversion
|
236 |
+
# --------------------------------------------
|
237 |
+
# numpy(single) <---> numpy(unit)
|
238 |
+
# numpy(single) <---> tensor
|
239 |
+
# numpy(unit) <---> tensor
|
240 |
+
# --------------------------------------------
|
241 |
+
'''
|
242 |
+
|
243 |
+
|
244 |
+
# --------------------------------------------
|
245 |
+
# numpy(single) [0, 1] <---> numpy(unit)
|
246 |
+
# --------------------------------------------
|
247 |
+
|
248 |
+
|
249 |
+
def uint2single(img):
|
250 |
+
|
251 |
+
return np.float32(img/255.)
|
252 |
+
|
253 |
+
|
254 |
+
def single2uint(img):
|
255 |
+
|
256 |
+
return np.uint8((img.clip(0, 1)*255.).round())
|
257 |
+
|
258 |
+
|
259 |
+
def uint162single(img):
|
260 |
+
|
261 |
+
return np.float32(img/65535.)
|
262 |
+
|
263 |
+
|
264 |
+
def single2uint16(img):
|
265 |
+
|
266 |
+
return np.uint16((img.clip(0, 1)*65535.).round())
|
267 |
+
|
268 |
+
|
269 |
+
# --------------------------------------------
|
270 |
+
# numpy(unit) (HxWxC or HxW) <---> tensor
|
271 |
+
# --------------------------------------------
|
272 |
+
|
273 |
+
|
274 |
+
# convert uint to 4-dimensional torch tensor
|
275 |
+
def uint2tensor4(img):
|
276 |
+
if img.ndim == 2:
|
277 |
+
img = np.expand_dims(img, axis=2)
|
278 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
279 |
+
|
280 |
+
|
281 |
+
# convert uint to 3-dimensional torch tensor
|
282 |
+
def uint2tensor3(img):
|
283 |
+
if img.ndim == 2:
|
284 |
+
img = np.expand_dims(img, axis=2)
|
285 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
286 |
+
|
287 |
+
|
288 |
+
# convert 2/3/4-dimensional torch tensor to uint
|
289 |
+
def tensor2uint(img):
|
290 |
+
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
291 |
+
if img.ndim == 3:
|
292 |
+
img = np.transpose(img, (1, 2, 0))
|
293 |
+
return np.uint8((img*255.0).round())
|
294 |
+
|
295 |
+
|
296 |
+
# --------------------------------------------
|
297 |
+
# numpy(single) (HxWxC) <---> tensor
|
298 |
+
# --------------------------------------------
|
299 |
+
|
300 |
+
|
301 |
+
# convert single (HxWxC) to 3-dimensional torch tensor
|
302 |
+
def single2tensor3(img):
|
303 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
|
304 |
+
|
305 |
+
|
306 |
+
# convert single (HxWxC) to 4-dimensional torch tensor
|
307 |
+
def single2tensor4(img):
|
308 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
309 |
+
|
310 |
+
|
311 |
+
# convert torch tensor to single
|
312 |
+
def tensor2single(img):
|
313 |
+
img = img.data.squeeze().float().cpu().numpy()
|
314 |
+
if img.ndim == 3:
|
315 |
+
img = np.transpose(img, (1, 2, 0))
|
316 |
+
|
317 |
+
return img
|
318 |
+
|
319 |
+
# convert torch tensor to single
|
320 |
+
def tensor2single3(img):
|
321 |
+
img = img.data.squeeze().float().cpu().numpy()
|
322 |
+
if img.ndim == 3:
|
323 |
+
img = np.transpose(img, (1, 2, 0))
|
324 |
+
elif img.ndim == 2:
|
325 |
+
img = np.expand_dims(img, axis=2)
|
326 |
+
return img
|
327 |
+
|
328 |
+
|
329 |
+
def single2tensor5(img):
|
330 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
331 |
+
|
332 |
+
|
333 |
+
def single32tensor5(img):
|
334 |
+
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
335 |
+
|
336 |
+
|
337 |
+
def single42tensor4(img):
|
338 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
339 |
+
|
340 |
+
|
341 |
+
# from skimage.io import imread, imsave
|
342 |
+
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
343 |
+
'''
|
344 |
+
Converts a torch Tensor into an image Numpy array of BGR channel order
|
345 |
+
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
346 |
+
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
347 |
+
'''
|
348 |
+
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
349 |
+
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
350 |
+
n_dim = tensor.dim()
|
351 |
+
if n_dim == 4:
|
352 |
+
n_img = len(tensor)
|
353 |
+
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
354 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
355 |
+
elif n_dim == 3:
|
356 |
+
img_np = tensor.numpy()
|
357 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
358 |
+
elif n_dim == 2:
|
359 |
+
img_np = tensor.numpy()
|
360 |
+
else:
|
361 |
+
raise TypeError(
|
362 |
+
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
363 |
+
if out_type == np.uint8:
|
364 |
+
img_np = (img_np * 255.0).round()
|
365 |
+
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
366 |
+
return img_np.astype(out_type)
|
367 |
+
|
368 |
+
|
369 |
+
'''
|
370 |
+
# --------------------------------------------
|
371 |
+
# Augmentation, flipe and/or rotate
|
372 |
+
# --------------------------------------------
|
373 |
+
# The following two are enough.
|
374 |
+
# (1) augmet_img: numpy image of WxHxC or WxH
|
375 |
+
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
376 |
+
# --------------------------------------------
|
377 |
+
'''
|
378 |
+
|
379 |
+
|
380 |
+
def augment_img(img, mode=0):
|
381 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
382 |
+
'''
|
383 |
+
if mode == 0:
|
384 |
+
return img
|
385 |
+
elif mode == 1:
|
386 |
+
return np.flipud(np.rot90(img))
|
387 |
+
elif mode == 2:
|
388 |
+
return np.flipud(img)
|
389 |
+
elif mode == 3:
|
390 |
+
return np.rot90(img, k=3)
|
391 |
+
elif mode == 4:
|
392 |
+
return np.flipud(np.rot90(img, k=2))
|
393 |
+
elif mode == 5:
|
394 |
+
return np.rot90(img)
|
395 |
+
elif mode == 6:
|
396 |
+
return np.rot90(img, k=2)
|
397 |
+
elif mode == 7:
|
398 |
+
return np.flipud(np.rot90(img, k=3))
|
399 |
+
|
400 |
+
|
401 |
+
def augment_img_tensor4(img, mode=0):
|
402 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
403 |
+
'''
|
404 |
+
if mode == 0:
|
405 |
+
return img
|
406 |
+
elif mode == 1:
|
407 |
+
return img.rot90(1, [2, 3]).flip([2])
|
408 |
+
elif mode == 2:
|
409 |
+
return img.flip([2])
|
410 |
+
elif mode == 3:
|
411 |
+
return img.rot90(3, [2, 3])
|
412 |
+
elif mode == 4:
|
413 |
+
return img.rot90(2, [2, 3]).flip([2])
|
414 |
+
elif mode == 5:
|
415 |
+
return img.rot90(1, [2, 3])
|
416 |
+
elif mode == 6:
|
417 |
+
return img.rot90(2, [2, 3])
|
418 |
+
elif mode == 7:
|
419 |
+
return img.rot90(3, [2, 3]).flip([2])
|
420 |
+
|
421 |
+
|
422 |
+
def augment_img_tensor(img, mode=0):
|
423 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
424 |
+
'''
|
425 |
+
img_size = img.size()
|
426 |
+
img_np = img.data.cpu().numpy()
|
427 |
+
if len(img_size) == 3:
|
428 |
+
img_np = np.transpose(img_np, (1, 2, 0))
|
429 |
+
elif len(img_size) == 4:
|
430 |
+
img_np = np.transpose(img_np, (2, 3, 1, 0))
|
431 |
+
img_np = augment_img(img_np, mode=mode)
|
432 |
+
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
|
433 |
+
if len(img_size) == 3:
|
434 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
435 |
+
elif len(img_size) == 4:
|
436 |
+
img_tensor = img_tensor.permute(3, 2, 0, 1)
|
437 |
+
|
438 |
+
return img_tensor.type_as(img)
|
439 |
+
|
440 |
+
|
441 |
+
def augment_img_np3(img, mode=0):
|
442 |
+
if mode == 0:
|
443 |
+
return img
|
444 |
+
elif mode == 1:
|
445 |
+
return img.transpose(1, 0, 2)
|
446 |
+
elif mode == 2:
|
447 |
+
return img[::-1, :, :]
|
448 |
+
elif mode == 3:
|
449 |
+
img = img[::-1, :, :]
|
450 |
+
img = img.transpose(1, 0, 2)
|
451 |
+
return img
|
452 |
+
elif mode == 4:
|
453 |
+
return img[:, ::-1, :]
|
454 |
+
elif mode == 5:
|
455 |
+
img = img[:, ::-1, :]
|
456 |
+
img = img.transpose(1, 0, 2)
|
457 |
+
return img
|
458 |
+
elif mode == 6:
|
459 |
+
img = img[:, ::-1, :]
|
460 |
+
img = img[::-1, :, :]
|
461 |
+
return img
|
462 |
+
elif mode == 7:
|
463 |
+
img = img[:, ::-1, :]
|
464 |
+
img = img[::-1, :, :]
|
465 |
+
img = img.transpose(1, 0, 2)
|
466 |
+
return img
|
467 |
+
|
468 |
+
|
469 |
+
def augment_imgs(img_list, hflip=True, rot=True):
|
470 |
+
# horizontal flip OR rotate
|
471 |
+
hflip = hflip and random.random() < 0.5
|
472 |
+
vflip = rot and random.random() < 0.5
|
473 |
+
rot90 = rot and random.random() < 0.5
|
474 |
+
|
475 |
+
def _augment(img):
|
476 |
+
if hflip:
|
477 |
+
img = img[:, ::-1, :]
|
478 |
+
if vflip:
|
479 |
+
img = img[::-1, :, :]
|
480 |
+
if rot90:
|
481 |
+
img = img.transpose(1, 0, 2)
|
482 |
+
return img
|
483 |
+
|
484 |
+
return [_augment(img) for img in img_list]
|
485 |
+
|
486 |
+
|
487 |
+
'''
|
488 |
+
# --------------------------------------------
|
489 |
+
# modcrop and shave
|
490 |
+
# --------------------------------------------
|
491 |
+
'''
|
492 |
+
|
493 |
+
|
494 |
+
def modcrop(img_in, scale):
|
495 |
+
# img_in: Numpy, HWC or HW
|
496 |
+
img = np.copy(img_in)
|
497 |
+
if img.ndim == 2:
|
498 |
+
H, W = img.shape
|
499 |
+
H_r, W_r = H % scale, W % scale
|
500 |
+
img = img[:H - H_r, :W - W_r]
|
501 |
+
elif img.ndim == 3:
|
502 |
+
H, W, C = img.shape
|
503 |
+
H_r, W_r = H % scale, W % scale
|
504 |
+
img = img[:H - H_r, :W - W_r, :]
|
505 |
+
else:
|
506 |
+
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
507 |
+
return img
|
508 |
+
|
509 |
+
|
510 |
+
def shave(img_in, border=0):
|
511 |
+
# img_in: Numpy, HWC or HW
|
512 |
+
img = np.copy(img_in)
|
513 |
+
h, w = img.shape[:2]
|
514 |
+
img = img[border:h-border, border:w-border]
|
515 |
+
return img
|
516 |
+
|
517 |
+
|
518 |
+
'''
|
519 |
+
# --------------------------------------------
|
520 |
+
# image processing process on numpy image
|
521 |
+
# channel_convert(in_c, tar_type, img_list):
|
522 |
+
# rgb2ycbcr(img, only_y=True):
|
523 |
+
# bgr2ycbcr(img, only_y=True):
|
524 |
+
# ycbcr2rgb(img):
|
525 |
+
# --------------------------------------------
|
526 |
+
'''
|
527 |
+
|
528 |
+
|
529 |
+
def rgb2ycbcr(img, only_y=True):
|
530 |
+
'''same as matlab rgb2ycbcr
|
531 |
+
only_y: only return Y channel
|
532 |
+
Input:
|
533 |
+
uint8, [0, 255]
|
534 |
+
float, [0, 1]
|
535 |
+
'''
|
536 |
+
in_img_type = img.dtype
|
537 |
+
img.astype(np.float32)
|
538 |
+
if in_img_type != np.uint8:
|
539 |
+
img *= 255.
|
540 |
+
# convert
|
541 |
+
if only_y:
|
542 |
+
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
543 |
+
else:
|
544 |
+
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
545 |
+
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
546 |
+
if in_img_type == np.uint8:
|
547 |
+
rlt = rlt.round()
|
548 |
+
else:
|
549 |
+
rlt /= 255.
|
550 |
+
return rlt.astype(in_img_type)
|
551 |
+
|
552 |
+
|
553 |
+
def ycbcr2rgb(img):
|
554 |
+
'''same as matlab ycbcr2rgb
|
555 |
+
Input:
|
556 |
+
uint8, [0, 255]
|
557 |
+
float, [0, 1]
|
558 |
+
'''
|
559 |
+
in_img_type = img.dtype
|
560 |
+
img.astype(np.float32)
|
561 |
+
if in_img_type != np.uint8:
|
562 |
+
img *= 255.
|
563 |
+
# convert
|
564 |
+
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
565 |
+
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
566 |
+
if in_img_type == np.uint8:
|
567 |
+
rlt = rlt.round()
|
568 |
+
else:
|
569 |
+
rlt /= 255.
|
570 |
+
return rlt.astype(in_img_type)
|
571 |
+
|
572 |
+
|
573 |
+
def bgr2ycbcr(img, only_y=True):
|
574 |
+
'''bgr version of rgb2ycbcr
|
575 |
+
only_y: only return Y channel
|
576 |
+
Input:
|
577 |
+
uint8, [0, 255]
|
578 |
+
float, [0, 1]
|
579 |
+
'''
|
580 |
+
in_img_type = img.dtype
|
581 |
+
img.astype(np.float32)
|
582 |
+
if in_img_type != np.uint8:
|
583 |
+
img *= 255.
|
584 |
+
# convert
|
585 |
+
if only_y:
|
586 |
+
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
587 |
+
else:
|
588 |
+
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
589 |
+
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
590 |
+
if in_img_type == np.uint8:
|
591 |
+
rlt = rlt.round()
|
592 |
+
else:
|
593 |
+
rlt /= 255.
|
594 |
+
return rlt.astype(in_img_type)
|
595 |
+
|
596 |
+
|
597 |
+
def channel_convert(in_c, tar_type, img_list):
|
598 |
+
# conversion among BGR, gray and y
|
599 |
+
if in_c == 3 and tar_type == 'gray': # BGR to gray
|
600 |
+
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
|
601 |
+
return [np.expand_dims(img, axis=2) for img in gray_list]
|
602 |
+
elif in_c == 3 and tar_type == 'y': # BGR to y
|
603 |
+
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
|
604 |
+
return [np.expand_dims(img, axis=2) for img in y_list]
|
605 |
+
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
|
606 |
+
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
|
607 |
+
else:
|
608 |
+
return img_list
|
609 |
+
|
610 |
+
|
611 |
+
'''
|
612 |
+
# --------------------------------------------
|
613 |
+
# metric, PSNR and SSIM
|
614 |
+
# --------------------------------------------
|
615 |
+
'''
|
616 |
+
|
617 |
+
|
618 |
+
# --------------------------------------------
|
619 |
+
# PSNR
|
620 |
+
# --------------------------------------------
|
621 |
+
def calculate_psnr(img1, img2, border=0):
|
622 |
+
# img1 and img2 have range [0, 255]
|
623 |
+
#img1 = img1.squeeze()
|
624 |
+
#img2 = img2.squeeze()
|
625 |
+
if not img1.shape == img2.shape:
|
626 |
+
raise ValueError('Input images must have the same dimensions.')
|
627 |
+
h, w = img1.shape[:2]
|
628 |
+
img1 = img1[border:h-border, border:w-border]
|
629 |
+
img2 = img2[border:h-border, border:w-border]
|
630 |
+
|
631 |
+
img1 = img1.astype(np.float64)
|
632 |
+
img2 = img2.astype(np.float64)
|
633 |
+
mse = np.mean((img1 - img2)**2)
|
634 |
+
if mse == 0:
|
635 |
+
return float('inf')
|
636 |
+
return 20 * math.log10(255.0 / math.sqrt(mse))
|
637 |
+
|
638 |
+
|
639 |
+
# --------------------------------------------
|
640 |
+
# SSIM
|
641 |
+
# --------------------------------------------
|
642 |
+
def calculate_ssim(img1, img2, border=0):
|
643 |
+
'''calculate SSIM
|
644 |
+
the same outputs as MATLAB's
|
645 |
+
img1, img2: [0, 255]
|
646 |
+
'''
|
647 |
+
#img1 = img1.squeeze()
|
648 |
+
#img2 = img2.squeeze()
|
649 |
+
if not img1.shape == img2.shape:
|
650 |
+
raise ValueError('Input images must have the same dimensions.')
|
651 |
+
h, w = img1.shape[:2]
|
652 |
+
img1 = img1[border:h-border, border:w-border]
|
653 |
+
img2 = img2[border:h-border, border:w-border]
|
654 |
+
|
655 |
+
if img1.ndim == 2:
|
656 |
+
return ssim(img1, img2)
|
657 |
+
elif img1.ndim == 3:
|
658 |
+
if img1.shape[2] == 3:
|
659 |
+
ssims = []
|
660 |
+
for i in range(3):
|
661 |
+
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
662 |
+
return np.array(ssims).mean()
|
663 |
+
elif img1.shape[2] == 1:
|
664 |
+
return ssim(np.squeeze(img1), np.squeeze(img2))
|
665 |
+
else:
|
666 |
+
raise ValueError('Wrong input image dimensions.')
|
667 |
+
|
668 |
+
|
669 |
+
def ssim(img1, img2):
|
670 |
+
C1 = (0.01 * 255)**2
|
671 |
+
C2 = (0.03 * 255)**2
|
672 |
+
|
673 |
+
img1 = img1.astype(np.float64)
|
674 |
+
img2 = img2.astype(np.float64)
|
675 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
676 |
+
window = np.outer(kernel, kernel.transpose())
|
677 |
+
|
678 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
679 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
680 |
+
mu1_sq = mu1**2
|
681 |
+
mu2_sq = mu2**2
|
682 |
+
mu1_mu2 = mu1 * mu2
|
683 |
+
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
684 |
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
685 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
686 |
+
|
687 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
688 |
+
(sigma1_sq + sigma2_sq + C2))
|
689 |
+
return ssim_map.mean()
|
690 |
+
|
691 |
+
|
692 |
+
'''
|
693 |
+
# --------------------------------------------
|
694 |
+
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
695 |
+
# --------------------------------------------
|
696 |
+
'''
|
697 |
+
|
698 |
+
|
699 |
+
# matlab 'imresize' function, now only support 'bicubic'
|
700 |
+
def cubic(x):
|
701 |
+
absx = torch.abs(x)
|
702 |
+
absx2 = absx**2
|
703 |
+
absx3 = absx**3
|
704 |
+
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
705 |
+
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
706 |
+
|
707 |
+
|
708 |
+
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
709 |
+
if (scale < 1) and (antialiasing):
|
710 |
+
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
711 |
+
kernel_width = kernel_width / scale
|
712 |
+
|
713 |
+
# Output-space coordinates
|
714 |
+
x = torch.linspace(1, out_length, out_length)
|
715 |
+
|
716 |
+
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
717 |
+
# in output space maps to 0.5 in input space, and 0.5+scale in output
|
718 |
+
# space maps to 1.5 in input space.
|
719 |
+
u = x / scale + 0.5 * (1 - 1 / scale)
|
720 |
+
|
721 |
+
# What is the left-most pixel that can be involved in the computation?
|
722 |
+
left = torch.floor(u - kernel_width / 2)
|
723 |
+
|
724 |
+
# What is the maximum number of pixels that can be involved in the
|
725 |
+
# computation? Note: it's OK to use an extra pixel here; if the
|
726 |
+
# corresponding weights are all zero, it will be eliminated at the end
|
727 |
+
# of this function.
|
728 |
+
P = math.ceil(kernel_width) + 2
|
729 |
+
|
730 |
+
# The indices of the input pixels involved in computing the k-th output
|
731 |
+
# pixel are in row k of the indices matrix.
|
732 |
+
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
733 |
+
1, P).expand(out_length, P)
|
734 |
+
|
735 |
+
# The weights used to compute the k-th output pixel are in row k of the
|
736 |
+
# weights matrix.
|
737 |
+
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
738 |
+
# apply cubic kernel
|
739 |
+
if (scale < 1) and (antialiasing):
|
740 |
+
weights = scale * cubic(distance_to_center * scale)
|
741 |
+
else:
|
742 |
+
weights = cubic(distance_to_center)
|
743 |
+
# Normalize the weights matrix so that each row sums to 1.
|
744 |
+
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
745 |
+
weights = weights / weights_sum.expand(out_length, P)
|
746 |
+
|
747 |
+
# If a column in weights is all zero, get rid of it. only consider the first and last column.
|
748 |
+
weights_zero_tmp = torch.sum((weights == 0), 0)
|
749 |
+
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
750 |
+
indices = indices.narrow(1, 1, P - 2)
|
751 |
+
weights = weights.narrow(1, 1, P - 2)
|
752 |
+
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
753 |
+
indices = indices.narrow(1, 0, P - 2)
|
754 |
+
weights = weights.narrow(1, 0, P - 2)
|
755 |
+
weights = weights.contiguous()
|
756 |
+
indices = indices.contiguous()
|
757 |
+
sym_len_s = -indices.min() + 1
|
758 |
+
sym_len_e = indices.max() - in_length
|
759 |
+
indices = indices + sym_len_s - 1
|
760 |
+
return weights, indices, int(sym_len_s), int(sym_len_e)
|
761 |
+
|
762 |
+
|
763 |
+
# --------------------------------------------
|
764 |
+
# imresize for tensor image [0, 1]
|
765 |
+
# --------------------------------------------
|
766 |
+
def imresize(img, scale, antialiasing=True):
|
767 |
+
# Now the scale should be the same for H and W
|
768 |
+
# input: img: pytorch tensor, CHW or HW [0,1]
|
769 |
+
# output: CHW or HW [0,1] w/o round
|
770 |
+
need_squeeze = True if img.dim() == 2 else False
|
771 |
+
if need_squeeze:
|
772 |
+
img.unsqueeze_(0)
|
773 |
+
in_C, in_H, in_W = img.size()
|
774 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
775 |
+
kernel_width = 4
|
776 |
+
kernel = 'cubic'
|
777 |
+
|
778 |
+
# Return the desired dimension order for performing the resize. The
|
779 |
+
# strategy is to perform the resize first along the dimension with the
|
780 |
+
# smallest scale factor.
|
781 |
+
# Now we do not support this.
|
782 |
+
|
783 |
+
# get weights and indices
|
784 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
785 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
786 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
787 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
788 |
+
# process H dimension
|
789 |
+
# symmetric copying
|
790 |
+
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
791 |
+
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
|
792 |
+
|
793 |
+
sym_patch = img[:, :sym_len_Hs, :]
|
794 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
795 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
796 |
+
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
|
797 |
+
|
798 |
+
sym_patch = img[:, -sym_len_He:, :]
|
799 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
800 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
801 |
+
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
802 |
+
|
803 |
+
out_1 = torch.FloatTensor(in_C, out_H, in_W)
|
804 |
+
kernel_width = weights_H.size(1)
|
805 |
+
for i in range(out_H):
|
806 |
+
idx = int(indices_H[i][0])
|
807 |
+
for j in range(out_C):
|
808 |
+
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
809 |
+
|
810 |
+
# process W dimension
|
811 |
+
# symmetric copying
|
812 |
+
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
|
813 |
+
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
|
814 |
+
|
815 |
+
sym_patch = out_1[:, :, :sym_len_Ws]
|
816 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
817 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
818 |
+
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
|
819 |
+
|
820 |
+
sym_patch = out_1[:, :, -sym_len_We:]
|
821 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
822 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
823 |
+
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
824 |
+
|
825 |
+
out_2 = torch.FloatTensor(in_C, out_H, out_W)
|
826 |
+
kernel_width = weights_W.size(1)
|
827 |
+
for i in range(out_W):
|
828 |
+
idx = int(indices_W[i][0])
|
829 |
+
for j in range(out_C):
|
830 |
+
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
831 |
+
if need_squeeze:
|
832 |
+
out_2.squeeze_()
|
833 |
+
return out_2
|
834 |
+
|
835 |
+
|
836 |
+
# --------------------------------------------
|
837 |
+
# imresize for numpy image [0, 1]
|
838 |
+
# --------------------------------------------
|
839 |
+
def imresize_np(img, scale, antialiasing=True):
|
840 |
+
# Now the scale should be the same for H and W
|
841 |
+
# input: img: Numpy, HWC or HW [0,1]
|
842 |
+
# output: HWC or HW [0,1] w/o round
|
843 |
+
img = torch.from_numpy(img)
|
844 |
+
need_squeeze = True if img.dim() == 2 else False
|
845 |
+
if need_squeeze:
|
846 |
+
img.unsqueeze_(2)
|
847 |
+
|
848 |
+
in_H, in_W, in_C = img.size()
|
849 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
850 |
+
kernel_width = 4
|
851 |
+
kernel = 'cubic'
|
852 |
+
|
853 |
+
# Return the desired dimension order for performing the resize. The
|
854 |
+
# strategy is to perform the resize first along the dimension with the
|
855 |
+
# smallest scale factor.
|
856 |
+
# Now we do not support this.
|
857 |
+
|
858 |
+
# get weights and indices
|
859 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
860 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
861 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
862 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
863 |
+
# process H dimension
|
864 |
+
# symmetric copying
|
865 |
+
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
866 |
+
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
867 |
+
|
868 |
+
sym_patch = img[:sym_len_Hs, :, :]
|
869 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
870 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
871 |
+
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
872 |
+
|
873 |
+
sym_patch = img[-sym_len_He:, :, :]
|
874 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
875 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
876 |
+
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
877 |
+
|
878 |
+
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
879 |
+
kernel_width = weights_H.size(1)
|
880 |
+
for i in range(out_H):
|
881 |
+
idx = int(indices_H[i][0])
|
882 |
+
for j in range(out_C):
|
883 |
+
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
884 |
+
|
885 |
+
# process W dimension
|
886 |
+
# symmetric copying
|
887 |
+
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
888 |
+
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
889 |
+
|
890 |
+
sym_patch = out_1[:, :sym_len_Ws, :]
|
891 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
892 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
893 |
+
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
894 |
+
|
895 |
+
sym_patch = out_1[:, -sym_len_We:, :]
|
896 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
897 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
898 |
+
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
899 |
+
|
900 |
+
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
901 |
+
kernel_width = weights_W.size(1)
|
902 |
+
for i in range(out_W):
|
903 |
+
idx = int(indices_W[i][0])
|
904 |
+
for j in range(out_C):
|
905 |
+
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
906 |
+
if need_squeeze:
|
907 |
+
out_2.squeeze_()
|
908 |
+
|
909 |
+
return out_2.numpy()
|
910 |
+
|
911 |
+
|
912 |
+
if __name__ == '__main__':
|
913 |
+
print('---')
|
914 |
+
# img = imread_uint('test.bmp', 3)
|
915 |
+
# img = uint2single(img)
|
916 |
+
# img_bicubic = imresize_np(img, 1/4)
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/__init__.py
ADDED
File without changes
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/diffusers_pipeline.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Kakao Brain and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch.nn import functional as F
|
20 |
+
|
21 |
+
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
|
22 |
+
from transformers.models.clip.modeling_clip import CLIPTextModelOutput
|
23 |
+
|
24 |
+
from ...models import PriorTransformer, UNet2DConditionModel, UNet2DModel
|
25 |
+
from ...pipelines import DiffusionPipeline, ImagePipelineOutput
|
26 |
+
from ...schedulers import UnCLIPScheduler
|
27 |
+
from ...utils import is_accelerate_available, logging, randn_tensor
|
28 |
+
from .text_proj import UnCLIPTextProjModel
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
+
|
33 |
+
|
34 |
+
class UnCLIPPipeline(DiffusionPipeline):
|
35 |
+
"""
|
36 |
+
Pipeline for text-to-image generation using unCLIP
|
37 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
38 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
39 |
+
Args:
|
40 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
41 |
+
Frozen text-encoder.
|
42 |
+
tokenizer (`CLIPTokenizer`):
|
43 |
+
Tokenizer of class
|
44 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
45 |
+
prior ([`PriorTransformer`]):
|
46 |
+
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
|
47 |
+
text_proj ([`UnCLIPTextProjModel`]):
|
48 |
+
Utility class to prepare and combine the embeddings before they are passed to the decoder.
|
49 |
+
decoder ([`UNet2DConditionModel`]):
|
50 |
+
The decoder to invert the image embedding into an image.
|
51 |
+
super_res_first ([`UNet2DModel`]):
|
52 |
+
Super resolution unet. Used in all but the last step of the super resolution diffusion process.
|
53 |
+
super_res_last ([`UNet2DModel`]):
|
54 |
+
Super resolution unet. Used in the last step of the super resolution diffusion process.
|
55 |
+
prior_scheduler ([`UnCLIPScheduler`]):
|
56 |
+
Scheduler used in the prior denoising process. Just a modified DDPMScheduler.
|
57 |
+
decoder_scheduler ([`UnCLIPScheduler`]):
|
58 |
+
Scheduler used in the decoder denoising process. Just a modified DDPMScheduler.
|
59 |
+
super_res_scheduler ([`UnCLIPScheduler`]):
|
60 |
+
Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler.
|
61 |
+
"""
|
62 |
+
|
63 |
+
prior: PriorTransformer
|
64 |
+
decoder: UNet2DConditionModel
|
65 |
+
text_proj: UnCLIPTextProjModel
|
66 |
+
text_encoder: CLIPTextModelWithProjection
|
67 |
+
tokenizer: CLIPTokenizer
|
68 |
+
super_res_first: UNet2DModel
|
69 |
+
super_res_last: UNet2DModel
|
70 |
+
|
71 |
+
prior_scheduler: UnCLIPScheduler
|
72 |
+
decoder_scheduler: UnCLIPScheduler
|
73 |
+
super_res_scheduler: UnCLIPScheduler
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
prior: PriorTransformer,
|
78 |
+
decoder: UNet2DConditionModel,
|
79 |
+
text_encoder: CLIPTextModelWithProjection,
|
80 |
+
tokenizer: CLIPTokenizer,
|
81 |
+
text_proj: UnCLIPTextProjModel,
|
82 |
+
super_res_first: UNet2DModel,
|
83 |
+
super_res_last: UNet2DModel,
|
84 |
+
prior_scheduler: UnCLIPScheduler,
|
85 |
+
decoder_scheduler: UnCLIPScheduler,
|
86 |
+
super_res_scheduler: UnCLIPScheduler,
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
self.register_modules(
|
91 |
+
prior=prior,
|
92 |
+
decoder=decoder,
|
93 |
+
text_encoder=text_encoder,
|
94 |
+
tokenizer=tokenizer,
|
95 |
+
text_proj=text_proj,
|
96 |
+
super_res_first=super_res_first,
|
97 |
+
super_res_last=super_res_last,
|
98 |
+
prior_scheduler=prior_scheduler,
|
99 |
+
decoder_scheduler=decoder_scheduler,
|
100 |
+
super_res_scheduler=super_res_scheduler,
|
101 |
+
)
|
102 |
+
|
103 |
+
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
|
104 |
+
if latents is None:
|
105 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
106 |
+
else:
|
107 |
+
if latents.shape != shape:
|
108 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
109 |
+
latents = latents.to(device)
|
110 |
+
|
111 |
+
latents = latents * scheduler.init_noise_sigma
|
112 |
+
return latents
|
113 |
+
|
114 |
+
def _encode_prompt(
|
115 |
+
self,
|
116 |
+
prompt,
|
117 |
+
device,
|
118 |
+
num_images_per_prompt,
|
119 |
+
do_classifier_free_guidance,
|
120 |
+
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
|
121 |
+
text_attention_mask: Optional[torch.Tensor] = None,
|
122 |
+
):
|
123 |
+
if text_model_output is None:
|
124 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
125 |
+
# get prompt text embeddings
|
126 |
+
text_inputs = self.tokenizer(
|
127 |
+
prompt,
|
128 |
+
padding="max_length",
|
129 |
+
max_length=self.tokenizer.model_max_length,
|
130 |
+
return_tensors="pt",
|
131 |
+
)
|
132 |
+
text_input_ids = text_inputs.input_ids
|
133 |
+
text_mask = text_inputs.attention_mask.bool().to(device)
|
134 |
+
|
135 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
136 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
137 |
+
logger.warning(
|
138 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
139 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
140 |
+
)
|
141 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
142 |
+
|
143 |
+
text_encoder_output = self.text_encoder(text_input_ids.to(device))
|
144 |
+
|
145 |
+
text_embeddings = text_encoder_output.text_embeds
|
146 |
+
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
147 |
+
|
148 |
+
else:
|
149 |
+
batch_size = text_model_output[0].shape[0]
|
150 |
+
text_embeddings, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
|
151 |
+
text_mask = text_attention_mask
|
152 |
+
|
153 |
+
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
154 |
+
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
155 |
+
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
156 |
+
|
157 |
+
if do_classifier_free_guidance:
|
158 |
+
uncond_tokens = [""] * batch_size
|
159 |
+
|
160 |
+
uncond_input = self.tokenizer(
|
161 |
+
uncond_tokens,
|
162 |
+
padding="max_length",
|
163 |
+
max_length=self.tokenizer.model_max_length,
|
164 |
+
truncation=True,
|
165 |
+
return_tensors="pt",
|
166 |
+
)
|
167 |
+
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
|
168 |
+
uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
|
169 |
+
|
170 |
+
uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds
|
171 |
+
uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state
|
172 |
+
|
173 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
174 |
+
|
175 |
+
seq_len = uncond_embeddings.shape[1]
|
176 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt)
|
177 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len)
|
178 |
+
|
179 |
+
seq_len = uncond_text_encoder_hidden_states.shape[1]
|
180 |
+
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
|
181 |
+
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
|
182 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
183 |
+
)
|
184 |
+
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
185 |
+
|
186 |
+
# done duplicates
|
187 |
+
|
188 |
+
# For classifier free guidance, we need to do two forward passes.
|
189 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
190 |
+
# to avoid doing two forward passes
|
191 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
192 |
+
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
|
193 |
+
|
194 |
+
text_mask = torch.cat([uncond_text_mask, text_mask])
|
195 |
+
|
196 |
+
return text_embeddings, text_encoder_hidden_states, text_mask
|
197 |
+
|
198 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
199 |
+
r"""
|
200 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
|
201 |
+
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
|
202 |
+
when their specific submodule has its `forward` method called.
|
203 |
+
"""
|
204 |
+
if is_accelerate_available():
|
205 |
+
from accelerate import cpu_offload
|
206 |
+
else:
|
207 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
208 |
+
|
209 |
+
device = torch.device(f"cuda:{gpu_id}")
|
210 |
+
|
211 |
+
# TODO: self.prior.post_process_latents is not covered by the offload hooks, so it fails if added to the list
|
212 |
+
models = [
|
213 |
+
self.decoder,
|
214 |
+
self.text_proj,
|
215 |
+
self.text_encoder,
|
216 |
+
self.super_res_first,
|
217 |
+
self.super_res_last,
|
218 |
+
]
|
219 |
+
for cpu_offloaded_model in models:
|
220 |
+
if cpu_offloaded_model is not None:
|
221 |
+
cpu_offload(cpu_offloaded_model, device)
|
222 |
+
|
223 |
+
@property
|
224 |
+
def _execution_device(self):
|
225 |
+
r"""
|
226 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
227 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
228 |
+
hooks.
|
229 |
+
"""
|
230 |
+
if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"):
|
231 |
+
return self.device
|
232 |
+
for module in self.decoder.modules():
|
233 |
+
if (
|
234 |
+
hasattr(module, "_hf_hook")
|
235 |
+
and hasattr(module._hf_hook, "execution_device")
|
236 |
+
and module._hf_hook.execution_device is not None
|
237 |
+
):
|
238 |
+
return torch.device(module._hf_hook.execution_device)
|
239 |
+
return self.device
|
240 |
+
|
241 |
+
@torch.no_grad()
|
242 |
+
def __call__(
|
243 |
+
self,
|
244 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
245 |
+
num_images_per_prompt: int = 1,
|
246 |
+
prior_num_inference_steps: int = 25,
|
247 |
+
decoder_num_inference_steps: int = 25,
|
248 |
+
super_res_num_inference_steps: int = 7,
|
249 |
+
generator: Optional[torch.Generator] = None,
|
250 |
+
prior_latents: Optional[torch.FloatTensor] = None,
|
251 |
+
decoder_latents: Optional[torch.FloatTensor] = None,
|
252 |
+
super_res_latents: Optional[torch.FloatTensor] = None,
|
253 |
+
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
|
254 |
+
text_attention_mask: Optional[torch.Tensor] = None,
|
255 |
+
prior_guidance_scale: float = 4.0,
|
256 |
+
decoder_guidance_scale: float = 8.0,
|
257 |
+
output_type: Optional[str] = "pil",
|
258 |
+
return_dict: bool = True,
|
259 |
+
):
|
260 |
+
"""
|
261 |
+
Function invoked when calling the pipeline for generation.
|
262 |
+
Args:
|
263 |
+
prompt (`str` or `List[str]`):
|
264 |
+
The prompt or prompts to guide the image generation. This can only be left undefined if
|
265 |
+
`text_model_output` and `text_attention_mask` is passed.
|
266 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
267 |
+
The number of images to generate per prompt.
|
268 |
+
prior_num_inference_steps (`int`, *optional*, defaults to 25):
|
269 |
+
The number of denoising steps for the prior. More denoising steps usually lead to a higher quality
|
270 |
+
image at the expense of slower inference.
|
271 |
+
decoder_num_inference_steps (`int`, *optional*, defaults to 25):
|
272 |
+
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
|
273 |
+
image at the expense of slower inference.
|
274 |
+
super_res_num_inference_steps (`int`, *optional*, defaults to 7):
|
275 |
+
The number of denoising steps for super resolution. More denoising steps usually lead to a higher
|
276 |
+
quality image at the expense of slower inference.
|
277 |
+
generator (`torch.Generator`, *optional*):
|
278 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
279 |
+
to make generation deterministic.
|
280 |
+
prior_latents (`torch.FloatTensor` of shape (batch size, embeddings dimension), *optional*):
|
281 |
+
Pre-generated noisy latents to be used as inputs for the prior.
|
282 |
+
decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*):
|
283 |
+
Pre-generated noisy latents to be used as inputs for the decoder.
|
284 |
+
super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*):
|
285 |
+
Pre-generated noisy latents to be used as inputs for the decoder.
|
286 |
+
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
|
287 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
288 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
289 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
290 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
291 |
+
usually at the expense of lower image quality.
|
292 |
+
decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
|
293 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
294 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
295 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
296 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
297 |
+
usually at the expense of lower image quality.
|
298 |
+
text_model_output (`CLIPTextModelOutput`, *optional*):
|
299 |
+
Pre-defined CLIPTextModel outputs that can be derived from the text encoder. Pre-defined text outputs
|
300 |
+
can be passed for tasks like text embedding interpolations. Make sure to also pass
|
301 |
+
`text_attention_mask` in this case. `prompt` can the be left to `None`.
|
302 |
+
text_attention_mask (`torch.Tensor`, *optional*):
|
303 |
+
Pre-defined CLIP text attention mask that can be derived from the tokenizer. Pre-defined text attention
|
304 |
+
masks are necessary when passing `text_model_output`.
|
305 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
306 |
+
The output format of the generated image. Choose between
|
307 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
308 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
309 |
+
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
310 |
+
"""
|
311 |
+
if prompt is not None:
|
312 |
+
if isinstance(prompt, str):
|
313 |
+
batch_size = 1
|
314 |
+
elif isinstance(prompt, list):
|
315 |
+
batch_size = len(prompt)
|
316 |
+
else:
|
317 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
318 |
+
else:
|
319 |
+
batch_size = text_model_output[0].shape[0]
|
320 |
+
|
321 |
+
device = self._execution_device
|
322 |
+
|
323 |
+
batch_size = batch_size * num_images_per_prompt
|
324 |
+
|
325 |
+
do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0
|
326 |
+
|
327 |
+
text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt(
|
328 |
+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask
|
329 |
+
)
|
330 |
+
|
331 |
+
# prior
|
332 |
+
|
333 |
+
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
|
334 |
+
prior_timesteps_tensor = self.prior_scheduler.timesteps
|
335 |
+
|
336 |
+
embedding_dim = self.prior.config.embedding_dim
|
337 |
+
|
338 |
+
prior_latents = self.prepare_latents(
|
339 |
+
(batch_size, embedding_dim),
|
340 |
+
text_embeddings.dtype,
|
341 |
+
device,
|
342 |
+
generator,
|
343 |
+
prior_latents,
|
344 |
+
self.prior_scheduler,
|
345 |
+
)
|
346 |
+
|
347 |
+
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
|
348 |
+
# expand the latents if we are doing classifier free guidance
|
349 |
+
latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents
|
350 |
+
|
351 |
+
predicted_image_embedding = self.prior(
|
352 |
+
latent_model_input,
|
353 |
+
timestep=t,
|
354 |
+
proj_embedding=text_embeddings,
|
355 |
+
encoder_hidden_states=text_encoder_hidden_states,
|
356 |
+
attention_mask=text_mask,
|
357 |
+
).predicted_image_embedding
|
358 |
+
|
359 |
+
if do_classifier_free_guidance:
|
360 |
+
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
|
361 |
+
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
|
362 |
+
predicted_image_embedding_text - predicted_image_embedding_uncond
|
363 |
+
)
|
364 |
+
|
365 |
+
if i + 1 == prior_timesteps_tensor.shape[0]:
|
366 |
+
prev_timestep = None
|
367 |
+
else:
|
368 |
+
prev_timestep = prior_timesteps_tensor[i + 1]
|
369 |
+
|
370 |
+
prior_latents = self.prior_scheduler.step(
|
371 |
+
predicted_image_embedding,
|
372 |
+
timestep=t,
|
373 |
+
sample=prior_latents,
|
374 |
+
generator=generator,
|
375 |
+
prev_timestep=prev_timestep,
|
376 |
+
).prev_sample
|
377 |
+
|
378 |
+
prior_latents = self.prior.post_process_latents(prior_latents)
|
379 |
+
|
380 |
+
image_embeddings = prior_latents
|
381 |
+
|
382 |
+
# done prior
|
383 |
+
|
384 |
+
# decoder
|
385 |
+
|
386 |
+
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
|
387 |
+
image_embeddings=image_embeddings,
|
388 |
+
text_embeddings=text_embeddings,
|
389 |
+
text_encoder_hidden_states=text_encoder_hidden_states,
|
390 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
391 |
+
)
|
392 |
+
|
393 |
+
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
|
394 |
+
|
395 |
+
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
|
396 |
+
decoder_timesteps_tensor = self.decoder_scheduler.timesteps
|
397 |
+
|
398 |
+
num_channels_latents = self.decoder.in_channels
|
399 |
+
height = self.decoder.sample_size
|
400 |
+
width = self.decoder.sample_size
|
401 |
+
|
402 |
+
decoder_latents = self.prepare_latents(
|
403 |
+
(batch_size, num_channels_latents, height, width),
|
404 |
+
text_encoder_hidden_states.dtype,
|
405 |
+
device,
|
406 |
+
generator,
|
407 |
+
decoder_latents,
|
408 |
+
self.decoder_scheduler,
|
409 |
+
)
|
410 |
+
|
411 |
+
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
|
412 |
+
# expand the latents if we are doing classifier free guidance
|
413 |
+
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents
|
414 |
+
|
415 |
+
noise_pred = self.decoder(
|
416 |
+
sample=latent_model_input,
|
417 |
+
timestep=t,
|
418 |
+
encoder_hidden_states=text_encoder_hidden_states,
|
419 |
+
class_labels=additive_clip_time_embeddings,
|
420 |
+
attention_mask=decoder_text_mask,
|
421 |
+
).sample
|
422 |
+
|
423 |
+
if do_classifier_free_guidance:
|
424 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
425 |
+
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
|
426 |
+
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
|
427 |
+
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
|
428 |
+
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
|
429 |
+
|
430 |
+
if i + 1 == decoder_timesteps_tensor.shape[0]:
|
431 |
+
prev_timestep = None
|
432 |
+
else:
|
433 |
+
prev_timestep = decoder_timesteps_tensor[i + 1]
|
434 |
+
|
435 |
+
# compute the previous noisy sample x_t -> x_t-1
|
436 |
+
decoder_latents = self.decoder_scheduler.step(
|
437 |
+
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
|
438 |
+
).prev_sample
|
439 |
+
|
440 |
+
decoder_latents = decoder_latents.clamp(-1, 1)
|
441 |
+
|
442 |
+
image_small = decoder_latents
|
443 |
+
|
444 |
+
# done decoder
|
445 |
+
|
446 |
+
# super res
|
447 |
+
|
448 |
+
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
|
449 |
+
super_res_timesteps_tensor = self.super_res_scheduler.timesteps
|
450 |
+
|
451 |
+
channels = self.super_res_first.in_channels // 2
|
452 |
+
height = self.super_res_first.sample_size
|
453 |
+
width = self.super_res_first.sample_size
|
454 |
+
|
455 |
+
super_res_latents = self.prepare_latents(
|
456 |
+
(batch_size, channels, height, width),
|
457 |
+
image_small.dtype,
|
458 |
+
device,
|
459 |
+
generator,
|
460 |
+
super_res_latents,
|
461 |
+
self.super_res_scheduler,
|
462 |
+
)
|
463 |
+
|
464 |
+
interpolate_antialias = {}
|
465 |
+
if "antialias" in inspect.signature(F.interpolate).parameters:
|
466 |
+
interpolate_antialias["antialias"] = True
|
467 |
+
|
468 |
+
image_upscaled = F.interpolate(
|
469 |
+
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
|
470 |
+
)
|
471 |
+
|
472 |
+
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
|
473 |
+
# no classifier free guidance
|
474 |
+
|
475 |
+
if i == super_res_timesteps_tensor.shape[0] - 1:
|
476 |
+
unet = self.super_res_last
|
477 |
+
else:
|
478 |
+
unet = self.super_res_first
|
479 |
+
|
480 |
+
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)
|
481 |
+
|
482 |
+
noise_pred = unet(
|
483 |
+
sample=latent_model_input,
|
484 |
+
timestep=t,
|
485 |
+
).sample
|
486 |
+
|
487 |
+
if i + 1 == super_res_timesteps_tensor.shape[0]:
|
488 |
+
prev_timestep = None
|
489 |
+
else:
|
490 |
+
prev_timestep = super_res_timesteps_tensor[i + 1]
|
491 |
+
|
492 |
+
# compute the previous noisy sample x_t -> x_t-1
|
493 |
+
super_res_latents = self.super_res_scheduler.step(
|
494 |
+
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
|
495 |
+
).prev_sample
|
496 |
+
|
497 |
+
image = super_res_latents
|
498 |
+
# done super res
|
499 |
+
|
500 |
+
# post processing
|
501 |
+
|
502 |
+
image = image * 0.5 + 0.5
|
503 |
+
image = image.clamp(0, 1)
|
504 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
505 |
+
|
506 |
+
if output_type == "pil":
|
507 |
+
image = self.numpy_to_pil(image)
|
508 |
+
|
509 |
+
if not return_dict:
|
510 |
+
return (image,)
|
511 |
+
|
512 |
+
return ImagePipelineOutput(images=image)
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/__init__.py
ADDED
File without changes
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/__init__.py
ADDED
File without changes
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/clip.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Karlo-v1.0.alpha
|
3 |
+
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
|
4 |
+
# ------------------------------------------------------------------------------------
|
5 |
+
# ------------------------------------------------------------------------------------
|
6 |
+
# Adapted from OpenAI's CLIP (https://github.com/openai/CLIP/)
|
7 |
+
# ------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import clip
|
14 |
+
|
15 |
+
from clip.model import CLIP, convert_weights
|
16 |
+
from clip.simple_tokenizer import SimpleTokenizer, default_bpe
|
17 |
+
|
18 |
+
|
19 |
+
"""===== Monkey-Patching original CLIP for JIT compile ====="""
|
20 |
+
|
21 |
+
|
22 |
+
class LayerNorm(nn.LayerNorm):
|
23 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
24 |
+
|
25 |
+
def forward(self, x: torch.Tensor):
|
26 |
+
orig_type = x.dtype
|
27 |
+
ret = F.layer_norm(
|
28 |
+
x.type(torch.float32),
|
29 |
+
self.normalized_shape,
|
30 |
+
self.weight,
|
31 |
+
self.bias,
|
32 |
+
self.eps,
|
33 |
+
)
|
34 |
+
return ret.type(orig_type)
|
35 |
+
|
36 |
+
|
37 |
+
clip.model.LayerNorm = LayerNorm
|
38 |
+
delattr(clip.model.CLIP, "forward")
|
39 |
+
|
40 |
+
"""===== End of Monkey-Patching ====="""
|
41 |
+
|
42 |
+
|
43 |
+
class CustomizedCLIP(CLIP):
|
44 |
+
def __init__(self, *args, **kwargs):
|
45 |
+
super().__init__(*args, **kwargs)
|
46 |
+
|
47 |
+
@torch.jit.export
|
48 |
+
def encode_image(self, image):
|
49 |
+
return self.visual(image)
|
50 |
+
|
51 |
+
@torch.jit.export
|
52 |
+
def encode_text(self, text):
|
53 |
+
# re-define this function to return unpooled text features
|
54 |
+
|
55 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
56 |
+
|
57 |
+
x = x + self.positional_embedding.type(self.dtype)
|
58 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
59 |
+
x = self.transformer(x)
|
60 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
61 |
+
x = self.ln_final(x).type(self.dtype)
|
62 |
+
|
63 |
+
x_seq = x
|
64 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
65 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
66 |
+
x_out = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
67 |
+
|
68 |
+
return x_out, x_seq
|
69 |
+
|
70 |
+
@torch.jit.ignore
|
71 |
+
def forward(self, image, text):
|
72 |
+
super().forward(image, text)
|
73 |
+
|
74 |
+
@classmethod
|
75 |
+
def load_from_checkpoint(cls, ckpt_path: str):
|
76 |
+
state_dict = torch.load(ckpt_path, map_location="cpu").state_dict()
|
77 |
+
|
78 |
+
vit = "visual.proj" in state_dict
|
79 |
+
if vit:
|
80 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
81 |
+
vision_layers = len(
|
82 |
+
[
|
83 |
+
k
|
84 |
+
for k in state_dict.keys()
|
85 |
+
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
|
86 |
+
]
|
87 |
+
)
|
88 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
89 |
+
grid_size = round(
|
90 |
+
(state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5
|
91 |
+
)
|
92 |
+
image_resolution = vision_patch_size * grid_size
|
93 |
+
else:
|
94 |
+
counts: list = [
|
95 |
+
len(
|
96 |
+
set(
|
97 |
+
k.split(".")[2]
|
98 |
+
for k in state_dict
|
99 |
+
if k.startswith(f"visual.layer{b}")
|
100 |
+
)
|
101 |
+
)
|
102 |
+
for b in [1, 2, 3, 4]
|
103 |
+
]
|
104 |
+
vision_layers = tuple(counts)
|
105 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
106 |
+
output_width = round(
|
107 |
+
(state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5
|
108 |
+
)
|
109 |
+
vision_patch_size = None
|
110 |
+
assert (
|
111 |
+
output_width**2 + 1
|
112 |
+
== state_dict["visual.attnpool.positional_embedding"].shape[0]
|
113 |
+
)
|
114 |
+
image_resolution = output_width * 32
|
115 |
+
|
116 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
117 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
118 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
119 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
120 |
+
transformer_heads = transformer_width // 64
|
121 |
+
transformer_layers = len(
|
122 |
+
set(
|
123 |
+
k.split(".")[2]
|
124 |
+
for k in state_dict
|
125 |
+
if k.startswith("transformer.resblocks")
|
126 |
+
)
|
127 |
+
)
|
128 |
+
|
129 |
+
model = cls(
|
130 |
+
embed_dim,
|
131 |
+
image_resolution,
|
132 |
+
vision_layers,
|
133 |
+
vision_width,
|
134 |
+
vision_patch_size,
|
135 |
+
context_length,
|
136 |
+
vocab_size,
|
137 |
+
transformer_width,
|
138 |
+
transformer_heads,
|
139 |
+
transformer_layers,
|
140 |
+
)
|
141 |
+
|
142 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
143 |
+
if key in state_dict:
|
144 |
+
del state_dict[key]
|
145 |
+
|
146 |
+
convert_weights(model)
|
147 |
+
model.load_state_dict(state_dict)
|
148 |
+
model.eval()
|
149 |
+
model.float()
|
150 |
+
return model
|
151 |
+
|
152 |
+
|
153 |
+
class CustomizedTokenizer(SimpleTokenizer):
|
154 |
+
def __init__(self):
|
155 |
+
super().__init__(bpe_path=default_bpe())
|
156 |
+
|
157 |
+
self.sot_token = self.encoder["<|startoftext|>"]
|
158 |
+
self.eot_token = self.encoder["<|endoftext|>"]
|
159 |
+
|
160 |
+
def padded_tokens_and_mask(self, texts, text_ctx):
|
161 |
+
assert isinstance(texts, list) and all(
|
162 |
+
isinstance(elem, str) for elem in texts
|
163 |
+
), "texts should be a list of strings"
|
164 |
+
|
165 |
+
all_tokens = [
|
166 |
+
[self.sot_token] + self.encode(text) + [self.eot_token] for text in texts
|
167 |
+
]
|
168 |
+
|
169 |
+
mask = [
|
170 |
+
[True] * min(text_ctx, len(tokens))
|
171 |
+
+ [False] * max(text_ctx - len(tokens), 0)
|
172 |
+
for tokens in all_tokens
|
173 |
+
]
|
174 |
+
mask = torch.tensor(mask, dtype=torch.bool)
|
175 |
+
result = torch.zeros(len(all_tokens), text_ctx, dtype=torch.int)
|
176 |
+
for i, tokens in enumerate(all_tokens):
|
177 |
+
if len(tokens) > text_ctx:
|
178 |
+
tokens = tokens[:text_ctx]
|
179 |
+
tokens[-1] = self.eot_token
|
180 |
+
result[i, : len(tokens)] = torch.tensor(tokens)
|
181 |
+
|
182 |
+
return result, mask
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/decoder_model.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Karlo-v1.0.alpha
|
3 |
+
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
|
4 |
+
# ------------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from ldm.modules.karlo.kakao.modules import create_gaussian_diffusion
|
10 |
+
from ldm.modules.karlo.kakao.modules.unet import PLMImUNet
|
11 |
+
|
12 |
+
|
13 |
+
class Text2ImProgressiveModel(torch.nn.Module):
|
14 |
+
"""
|
15 |
+
A decoder that generates 64x64px images based on the text prompt.
|
16 |
+
|
17 |
+
:param config: yaml config to define the decoder.
|
18 |
+
:param tokenizer: tokenizer used in clip.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
config,
|
24 |
+
tokenizer,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
self._conf = config
|
29 |
+
self._model_conf = config.model.hparams
|
30 |
+
self._diffusion_kwargs = dict(
|
31 |
+
steps=config.diffusion.steps,
|
32 |
+
learn_sigma=config.diffusion.learn_sigma,
|
33 |
+
sigma_small=config.diffusion.sigma_small,
|
34 |
+
noise_schedule=config.diffusion.noise_schedule,
|
35 |
+
use_kl=config.diffusion.use_kl,
|
36 |
+
predict_xstart=config.diffusion.predict_xstart,
|
37 |
+
rescale_learned_sigmas=config.diffusion.rescale_learned_sigmas,
|
38 |
+
timestep_respacing=config.diffusion.timestep_respacing,
|
39 |
+
)
|
40 |
+
self._tokenizer = tokenizer
|
41 |
+
|
42 |
+
self.model = self.create_plm_dec_model()
|
43 |
+
|
44 |
+
cf_token, cf_mask = self.set_cf_text_tensor()
|
45 |
+
self.register_buffer("cf_token", cf_token, persistent=False)
|
46 |
+
self.register_buffer("cf_mask", cf_mask, persistent=False)
|
47 |
+
|
48 |
+
@classmethod
|
49 |
+
def load_from_checkpoint(cls, config, tokenizer, ckpt_path, strict: bool = True):
|
50 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")["state_dict"]
|
51 |
+
|
52 |
+
model = cls(config, tokenizer)
|
53 |
+
model.load_state_dict(ckpt, strict=strict)
|
54 |
+
return model
|
55 |
+
|
56 |
+
def create_plm_dec_model(self):
|
57 |
+
image_size = self._model_conf.image_size
|
58 |
+
if self._model_conf.channel_mult == "":
|
59 |
+
if image_size == 256:
|
60 |
+
channel_mult = (1, 1, 2, 2, 4, 4)
|
61 |
+
elif image_size == 128:
|
62 |
+
channel_mult = (1, 1, 2, 3, 4)
|
63 |
+
elif image_size == 64:
|
64 |
+
channel_mult = (1, 2, 3, 4)
|
65 |
+
else:
|
66 |
+
raise ValueError(f"unsupported image size: {image_size}")
|
67 |
+
else:
|
68 |
+
channel_mult = tuple(
|
69 |
+
int(ch_mult) for ch_mult in self._model_conf.channel_mult.split(",")
|
70 |
+
)
|
71 |
+
assert 2 ** (len(channel_mult) + 2) == image_size
|
72 |
+
|
73 |
+
attention_ds = []
|
74 |
+
for res in self._model_conf.attention_resolutions.split(","):
|
75 |
+
attention_ds.append(image_size // int(res))
|
76 |
+
|
77 |
+
return PLMImUNet(
|
78 |
+
text_ctx=self._model_conf.text_ctx,
|
79 |
+
xf_width=self._model_conf.xf_width,
|
80 |
+
in_channels=3,
|
81 |
+
model_channels=self._model_conf.num_channels,
|
82 |
+
out_channels=6 if self._model_conf.learn_sigma else 3,
|
83 |
+
num_res_blocks=self._model_conf.num_res_blocks,
|
84 |
+
attention_resolutions=tuple(attention_ds),
|
85 |
+
dropout=self._model_conf.dropout,
|
86 |
+
channel_mult=channel_mult,
|
87 |
+
num_heads=self._model_conf.num_heads,
|
88 |
+
num_head_channels=self._model_conf.num_head_channels,
|
89 |
+
num_heads_upsample=self._model_conf.num_heads_upsample,
|
90 |
+
use_scale_shift_norm=self._model_conf.use_scale_shift_norm,
|
91 |
+
resblock_updown=self._model_conf.resblock_updown,
|
92 |
+
clip_dim=self._model_conf.clip_dim,
|
93 |
+
clip_emb_mult=self._model_conf.clip_emb_mult,
|
94 |
+
clip_emb_type=self._model_conf.clip_emb_type,
|
95 |
+
clip_emb_drop=self._model_conf.clip_emb_drop,
|
96 |
+
)
|
97 |
+
|
98 |
+
def set_cf_text_tensor(self):
|
99 |
+
return self._tokenizer.padded_tokens_and_mask([""], self.model.text_ctx)
|
100 |
+
|
101 |
+
def get_sample_fn(self, timestep_respacing):
|
102 |
+
use_ddim = timestep_respacing.startswith(("ddim", "fast"))
|
103 |
+
|
104 |
+
diffusion_kwargs = copy.deepcopy(self._diffusion_kwargs)
|
105 |
+
diffusion_kwargs.update(timestep_respacing=timestep_respacing)
|
106 |
+
diffusion = create_gaussian_diffusion(**diffusion_kwargs)
|
107 |
+
sample_fn = (
|
108 |
+
diffusion.ddim_sample_loop_progressive
|
109 |
+
if use_ddim
|
110 |
+
else diffusion.p_sample_loop_progressive
|
111 |
+
)
|
112 |
+
|
113 |
+
return sample_fn
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
txt_feat,
|
118 |
+
txt_feat_seq,
|
119 |
+
tok,
|
120 |
+
mask,
|
121 |
+
img_feat=None,
|
122 |
+
cf_guidance_scales=None,
|
123 |
+
timestep_respacing=None,
|
124 |
+
):
|
125 |
+
# cfg should be enabled in inference
|
126 |
+
assert cf_guidance_scales is not None and all(cf_guidance_scales > 0.0)
|
127 |
+
assert img_feat is not None
|
128 |
+
|
129 |
+
bsz = txt_feat.shape[0]
|
130 |
+
img_sz = self._model_conf.image_size
|
131 |
+
|
132 |
+
def guided_model_fn(x_t, ts, **kwargs):
|
133 |
+
half = x_t[: len(x_t) // 2]
|
134 |
+
combined = torch.cat([half, half], dim=0)
|
135 |
+
model_out = self.model(combined, ts, **kwargs)
|
136 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
137 |
+
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
138 |
+
half_eps = uncond_eps + cf_guidance_scales.view(-1, 1, 1, 1) * (
|
139 |
+
cond_eps - uncond_eps
|
140 |
+
)
|
141 |
+
eps = torch.cat([half_eps, half_eps], dim=0)
|
142 |
+
return torch.cat([eps, rest], dim=1)
|
143 |
+
|
144 |
+
cf_feat = self.model.cf_param.unsqueeze(0)
|
145 |
+
cf_feat = cf_feat.expand(bsz // 2, -1)
|
146 |
+
feat = torch.cat([img_feat, cf_feat.to(txt_feat.device)], dim=0)
|
147 |
+
|
148 |
+
cond = {
|
149 |
+
"y": feat,
|
150 |
+
"txt_feat": txt_feat,
|
151 |
+
"txt_feat_seq": txt_feat_seq,
|
152 |
+
"mask": mask,
|
153 |
+
}
|
154 |
+
sample_fn = self.get_sample_fn(timestep_respacing)
|
155 |
+
sample_outputs = sample_fn(
|
156 |
+
guided_model_fn,
|
157 |
+
(bsz, 3, img_sz, img_sz),
|
158 |
+
noise=None,
|
159 |
+
device=txt_feat.device,
|
160 |
+
clip_denoised=True,
|
161 |
+
model_kwargs=cond,
|
162 |
+
)
|
163 |
+
|
164 |
+
for out in sample_outputs:
|
165 |
+
sample = out["sample"]
|
166 |
+
yield sample if cf_guidance_scales is None else sample[
|
167 |
+
: sample.shape[0] // 2
|
168 |
+
]
|
169 |
+
|
170 |
+
|
171 |
+
class Text2ImModel(Text2ImProgressiveModel):
|
172 |
+
def forward(
|
173 |
+
self,
|
174 |
+
txt_feat,
|
175 |
+
txt_feat_seq,
|
176 |
+
tok,
|
177 |
+
mask,
|
178 |
+
img_feat=None,
|
179 |
+
cf_guidance_scales=None,
|
180 |
+
timestep_respacing=None,
|
181 |
+
):
|
182 |
+
last_out = None
|
183 |
+
for out in super().forward(
|
184 |
+
txt_feat,
|
185 |
+
txt_feat_seq,
|
186 |
+
tok,
|
187 |
+
mask,
|
188 |
+
img_feat,
|
189 |
+
cf_guidance_scales,
|
190 |
+
timestep_respacing,
|
191 |
+
):
|
192 |
+
last_out = out
|
193 |
+
return last_out
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/prior_model.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Karlo-v1.0.alpha
|
3 |
+
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
|
4 |
+
# ------------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from ldm.modules.karlo.kakao.modules import create_gaussian_diffusion
|
10 |
+
from ldm.modules.karlo.kakao.modules.xf import PriorTransformer
|
11 |
+
|
12 |
+
|
13 |
+
class PriorDiffusionModel(torch.nn.Module):
|
14 |
+
"""
|
15 |
+
A prior that generates clip image feature based on the text prompt.
|
16 |
+
|
17 |
+
:param config: yaml config to define the decoder.
|
18 |
+
:param tokenizer: tokenizer used in clip.
|
19 |
+
:param clip_mean: mean to normalize the clip image feature (zero-mean, unit variance).
|
20 |
+
:param clip_std: std to noramlize the clip image feature (zero-mean, unit variance).
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, config, tokenizer, clip_mean, clip_std):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self._conf = config
|
27 |
+
self._model_conf = config.model.hparams
|
28 |
+
self._diffusion_kwargs = dict(
|
29 |
+
steps=config.diffusion.steps,
|
30 |
+
learn_sigma=config.diffusion.learn_sigma,
|
31 |
+
sigma_small=config.diffusion.sigma_small,
|
32 |
+
noise_schedule=config.diffusion.noise_schedule,
|
33 |
+
use_kl=config.diffusion.use_kl,
|
34 |
+
predict_xstart=config.diffusion.predict_xstart,
|
35 |
+
rescale_learned_sigmas=config.diffusion.rescale_learned_sigmas,
|
36 |
+
timestep_respacing=config.diffusion.timestep_respacing,
|
37 |
+
)
|
38 |
+
self._tokenizer = tokenizer
|
39 |
+
|
40 |
+
self.register_buffer("clip_mean", clip_mean[None, :], persistent=False)
|
41 |
+
self.register_buffer("clip_std", clip_std[None, :], persistent=False)
|
42 |
+
|
43 |
+
causal_mask = self.get_causal_mask()
|
44 |
+
self.register_buffer("causal_mask", causal_mask, persistent=False)
|
45 |
+
|
46 |
+
self.model = PriorTransformer(
|
47 |
+
text_ctx=self._model_conf.text_ctx,
|
48 |
+
xf_width=self._model_conf.xf_width,
|
49 |
+
xf_layers=self._model_conf.xf_layers,
|
50 |
+
xf_heads=self._model_conf.xf_heads,
|
51 |
+
xf_final_ln=self._model_conf.xf_final_ln,
|
52 |
+
clip_dim=self._model_conf.clip_dim,
|
53 |
+
)
|
54 |
+
|
55 |
+
cf_token, cf_mask = self.set_cf_text_tensor()
|
56 |
+
self.register_buffer("cf_token", cf_token, persistent=False)
|
57 |
+
self.register_buffer("cf_mask", cf_mask, persistent=False)
|
58 |
+
|
59 |
+
@classmethod
|
60 |
+
def load_from_checkpoint(
|
61 |
+
cls, config, tokenizer, clip_mean, clip_std, ckpt_path, strict: bool = True
|
62 |
+
):
|
63 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")["state_dict"]
|
64 |
+
|
65 |
+
model = cls(config, tokenizer, clip_mean, clip_std)
|
66 |
+
model.load_state_dict(ckpt, strict=strict)
|
67 |
+
return model
|
68 |
+
|
69 |
+
def set_cf_text_tensor(self):
|
70 |
+
return self._tokenizer.padded_tokens_and_mask([""], self.model.text_ctx)
|
71 |
+
|
72 |
+
def get_sample_fn(self, timestep_respacing):
|
73 |
+
use_ddim = timestep_respacing.startswith(("ddim", "fast"))
|
74 |
+
|
75 |
+
diffusion_kwargs = copy.deepcopy(self._diffusion_kwargs)
|
76 |
+
diffusion_kwargs.update(timestep_respacing=timestep_respacing)
|
77 |
+
diffusion = create_gaussian_diffusion(**diffusion_kwargs)
|
78 |
+
sample_fn = diffusion.ddim_sample_loop if use_ddim else diffusion.p_sample_loop
|
79 |
+
|
80 |
+
return sample_fn
|
81 |
+
|
82 |
+
def get_causal_mask(self):
|
83 |
+
seq_len = self._model_conf.text_ctx + 4
|
84 |
+
mask = torch.empty(seq_len, seq_len)
|
85 |
+
mask.fill_(float("-inf"))
|
86 |
+
mask.triu_(1)
|
87 |
+
mask = mask[None, ...]
|
88 |
+
return mask
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self,
|
92 |
+
txt_feat,
|
93 |
+
txt_feat_seq,
|
94 |
+
mask,
|
95 |
+
cf_guidance_scales=None,
|
96 |
+
timestep_respacing=None,
|
97 |
+
denoised_fn=True,
|
98 |
+
):
|
99 |
+
# cfg should be enabled in inference
|
100 |
+
assert cf_guidance_scales is not None and all(cf_guidance_scales > 0.0)
|
101 |
+
|
102 |
+
bsz_ = txt_feat.shape[0]
|
103 |
+
bsz = bsz_ // 2
|
104 |
+
|
105 |
+
def guided_model_fn(x_t, ts, **kwargs):
|
106 |
+
half = x_t[: len(x_t) // 2]
|
107 |
+
combined = torch.cat([half, half], dim=0)
|
108 |
+
model_out = self.model(combined, ts, **kwargs)
|
109 |
+
eps, rest = (
|
110 |
+
model_out[:, : int(x_t.shape[1])],
|
111 |
+
model_out[:, int(x_t.shape[1]) :],
|
112 |
+
)
|
113 |
+
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
114 |
+
half_eps = uncond_eps + cf_guidance_scales.view(-1, 1) * (
|
115 |
+
cond_eps - uncond_eps
|
116 |
+
)
|
117 |
+
eps = torch.cat([half_eps, half_eps], dim=0)
|
118 |
+
return torch.cat([eps, rest], dim=1)
|
119 |
+
|
120 |
+
cond = {
|
121 |
+
"text_emb": txt_feat,
|
122 |
+
"text_enc": txt_feat_seq,
|
123 |
+
"mask": mask,
|
124 |
+
"causal_mask": self.causal_mask,
|
125 |
+
}
|
126 |
+
sample_fn = self.get_sample_fn(timestep_respacing)
|
127 |
+
sample = sample_fn(
|
128 |
+
guided_model_fn,
|
129 |
+
(bsz_, self.model.clip_dim),
|
130 |
+
noise=None,
|
131 |
+
device=txt_feat.device,
|
132 |
+
clip_denoised=False,
|
133 |
+
denoised_fn=lambda x: torch.clamp(x, -10, 10),
|
134 |
+
model_kwargs=cond,
|
135 |
+
)
|
136 |
+
sample = (sample * self.clip_std) + self.clip_mean
|
137 |
+
|
138 |
+
return sample[:bsz]
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/sr_256_1k.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Karlo-v1.0.alpha
|
3 |
+
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
|
4 |
+
# ------------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
from ldm.modules.karlo.kakao.models.sr_64_256 import SupRes64to256Progressive
|
7 |
+
|
8 |
+
|
9 |
+
class SupRes256to1kProgressive(SupRes64to256Progressive):
|
10 |
+
pass # no difference currently
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/models/sr_64_256.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Karlo-v1.0.alpha
|
3 |
+
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
|
4 |
+
# ------------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from ldm.modules.karlo.kakao.modules.unet import SuperResUNetModel
|
10 |
+
from ldm.modules.karlo.kakao.modules import create_gaussian_diffusion
|
11 |
+
|
12 |
+
|
13 |
+
class ImprovedSupRes64to256ProgressiveModel(torch.nn.Module):
|
14 |
+
"""
|
15 |
+
ImprovedSR model fine-tunes the pretrained DDPM-based SR model by using adversarial and perceptual losses.
|
16 |
+
In specific, the low-resolution sample is iteratively recovered by 6 steps with the frozen pretrained SR model.
|
17 |
+
In the following additional one step, a seperate fine-tuned model recovers high-frequency details.
|
18 |
+
This approach greatly improves the fidelity of images of 256x256px, even with small number of reverse steps.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, config):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
self._config = config
|
25 |
+
self._diffusion_kwargs = dict(
|
26 |
+
steps=config.diffusion.steps,
|
27 |
+
learn_sigma=config.diffusion.learn_sigma,
|
28 |
+
sigma_small=config.diffusion.sigma_small,
|
29 |
+
noise_schedule=config.diffusion.noise_schedule,
|
30 |
+
use_kl=config.diffusion.use_kl,
|
31 |
+
predict_xstart=config.diffusion.predict_xstart,
|
32 |
+
rescale_learned_sigmas=config.diffusion.rescale_learned_sigmas,
|
33 |
+
)
|
34 |
+
|
35 |
+
self.model_first_steps = SuperResUNetModel(
|
36 |
+
in_channels=3, # auto-changed to 6 inside the model
|
37 |
+
model_channels=config.model.hparams.channels,
|
38 |
+
out_channels=3,
|
39 |
+
num_res_blocks=config.model.hparams.depth,
|
40 |
+
attention_resolutions=(), # no attention
|
41 |
+
dropout=config.model.hparams.dropout,
|
42 |
+
channel_mult=config.model.hparams.channels_multiple,
|
43 |
+
resblock_updown=True,
|
44 |
+
use_middle_attention=False,
|
45 |
+
)
|
46 |
+
self.model_last_step = SuperResUNetModel(
|
47 |
+
in_channels=3, # auto-changed to 6 inside the model
|
48 |
+
model_channels=config.model.hparams.channels,
|
49 |
+
out_channels=3,
|
50 |
+
num_res_blocks=config.model.hparams.depth,
|
51 |
+
attention_resolutions=(), # no attention
|
52 |
+
dropout=config.model.hparams.dropout,
|
53 |
+
channel_mult=config.model.hparams.channels_multiple,
|
54 |
+
resblock_updown=True,
|
55 |
+
use_middle_attention=False,
|
56 |
+
)
|
57 |
+
|
58 |
+
@classmethod
|
59 |
+
def load_from_checkpoint(cls, config, ckpt_path, strict: bool = True):
|
60 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")["state_dict"]
|
61 |
+
|
62 |
+
model = cls(config)
|
63 |
+
model.load_state_dict(ckpt, strict=strict)
|
64 |
+
return model
|
65 |
+
|
66 |
+
def get_sample_fn(self, timestep_respacing):
|
67 |
+
diffusion_kwargs = copy.deepcopy(self._diffusion_kwargs)
|
68 |
+
diffusion_kwargs.update(timestep_respacing=timestep_respacing)
|
69 |
+
diffusion = create_gaussian_diffusion(**diffusion_kwargs)
|
70 |
+
return diffusion.p_sample_loop_progressive_for_improved_sr
|
71 |
+
|
72 |
+
def forward(self, low_res, timestep_respacing="7", **kwargs):
|
73 |
+
assert (
|
74 |
+
timestep_respacing == "7"
|
75 |
+
), "different respacing method may work, but no guaranteed"
|
76 |
+
|
77 |
+
sample_fn = self.get_sample_fn(timestep_respacing)
|
78 |
+
sample_outputs = sample_fn(
|
79 |
+
self.model_first_steps,
|
80 |
+
self.model_last_step,
|
81 |
+
shape=low_res.shape,
|
82 |
+
clip_denoised=True,
|
83 |
+
model_kwargs=dict(low_res=low_res),
|
84 |
+
**kwargs,
|
85 |
+
)
|
86 |
+
for x in sample_outputs:
|
87 |
+
sample = x["sample"]
|
88 |
+
yield sample
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/__init__.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Adapted from Guided-Diffusion repo (https://github.com/openai/guided-diffusion)
|
3 |
+
# ------------------------------------------------------------------------------------
|
4 |
+
|
5 |
+
|
6 |
+
from .diffusion import gaussian_diffusion as gd
|
7 |
+
from .diffusion.respace import (
|
8 |
+
SpacedDiffusion,
|
9 |
+
space_timesteps,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
def create_gaussian_diffusion(
|
14 |
+
steps,
|
15 |
+
learn_sigma,
|
16 |
+
sigma_small,
|
17 |
+
noise_schedule,
|
18 |
+
use_kl,
|
19 |
+
predict_xstart,
|
20 |
+
rescale_learned_sigmas,
|
21 |
+
timestep_respacing,
|
22 |
+
):
|
23 |
+
betas = gd.get_named_beta_schedule(noise_schedule, steps)
|
24 |
+
if use_kl:
|
25 |
+
loss_type = gd.LossType.RESCALED_KL
|
26 |
+
elif rescale_learned_sigmas:
|
27 |
+
loss_type = gd.LossType.RESCALED_MSE
|
28 |
+
else:
|
29 |
+
loss_type = gd.LossType.MSE
|
30 |
+
if not timestep_respacing:
|
31 |
+
timestep_respacing = [steps]
|
32 |
+
|
33 |
+
return SpacedDiffusion(
|
34 |
+
use_timesteps=space_timesteps(steps, timestep_respacing),
|
35 |
+
betas=betas,
|
36 |
+
model_mean_type=(
|
37 |
+
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
|
38 |
+
),
|
39 |
+
model_var_type=(
|
40 |
+
(
|
41 |
+
gd.ModelVarType.FIXED_LARGE
|
42 |
+
if not sigma_small
|
43 |
+
else gd.ModelVarType.FIXED_SMALL
|
44 |
+
)
|
45 |
+
if not learn_sigma
|
46 |
+
else gd.ModelVarType.LEARNED_RANGE
|
47 |
+
),
|
48 |
+
loss_type=loss_type,
|
49 |
+
)
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/diffusion/gaussian_diffusion.py
ADDED
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Adapted from Guided-Diffusion repo (https://github.com/openai/guided-diffusion)
|
3 |
+
# ------------------------------------------------------------------------------------
|
4 |
+
|
5 |
+
import enum
|
6 |
+
import math
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch as th
|
10 |
+
|
11 |
+
|
12 |
+
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
|
13 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
14 |
+
warmup_time = int(num_diffusion_timesteps * warmup_frac)
|
15 |
+
betas[:warmup_time] = np.linspace(
|
16 |
+
beta_start, beta_end, warmup_time, dtype=np.float64
|
17 |
+
)
|
18 |
+
return betas
|
19 |
+
|
20 |
+
|
21 |
+
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
|
22 |
+
"""
|
23 |
+
This is the deprecated API for creating beta schedules.
|
24 |
+
See get_named_beta_schedule() for the new library of schedules.
|
25 |
+
"""
|
26 |
+
if beta_schedule == "quad":
|
27 |
+
betas = (
|
28 |
+
np.linspace(
|
29 |
+
beta_start**0.5,
|
30 |
+
beta_end**0.5,
|
31 |
+
num_diffusion_timesteps,
|
32 |
+
dtype=np.float64,
|
33 |
+
)
|
34 |
+
** 2
|
35 |
+
)
|
36 |
+
elif beta_schedule == "linear":
|
37 |
+
betas = np.linspace(
|
38 |
+
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
|
39 |
+
)
|
40 |
+
elif beta_schedule == "warmup10":
|
41 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
|
42 |
+
elif beta_schedule == "warmup50":
|
43 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
|
44 |
+
elif beta_schedule == "const":
|
45 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
46 |
+
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
|
47 |
+
betas = 1.0 / np.linspace(
|
48 |
+
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
raise NotImplementedError(beta_schedule)
|
52 |
+
assert betas.shape == (num_diffusion_timesteps,)
|
53 |
+
return betas
|
54 |
+
|
55 |
+
|
56 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
57 |
+
"""
|
58 |
+
Get a pre-defined beta schedule for the given name.
|
59 |
+
The beta schedule library consists of beta schedules which remain similar
|
60 |
+
in the limit of num_diffusion_timesteps.
|
61 |
+
Beta schedules may be added, but should not be removed or changed once
|
62 |
+
they are committed to maintain backwards compatibility.
|
63 |
+
"""
|
64 |
+
if schedule_name == "linear":
|
65 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
66 |
+
# diffusion steps.
|
67 |
+
scale = 1000 / num_diffusion_timesteps
|
68 |
+
return get_beta_schedule(
|
69 |
+
"linear",
|
70 |
+
beta_start=scale * 0.0001,
|
71 |
+
beta_end=scale * 0.02,
|
72 |
+
num_diffusion_timesteps=num_diffusion_timesteps,
|
73 |
+
)
|
74 |
+
elif schedule_name == "squaredcos_cap_v2":
|
75 |
+
return betas_for_alpha_bar(
|
76 |
+
num_diffusion_timesteps,
|
77 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
78 |
+
)
|
79 |
+
else:
|
80 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
81 |
+
|
82 |
+
|
83 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
84 |
+
"""
|
85 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
86 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
87 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
88 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
89 |
+
produces the cumulative product of (1-beta) up to that
|
90 |
+
part of the diffusion process.
|
91 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
92 |
+
prevent singularities.
|
93 |
+
"""
|
94 |
+
betas = []
|
95 |
+
for i in range(num_diffusion_timesteps):
|
96 |
+
t1 = i / num_diffusion_timesteps
|
97 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
98 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
99 |
+
return np.array(betas)
|
100 |
+
|
101 |
+
|
102 |
+
class ModelMeanType(enum.Enum):
|
103 |
+
"""
|
104 |
+
Which type of output the model predicts.
|
105 |
+
"""
|
106 |
+
|
107 |
+
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
|
108 |
+
START_X = enum.auto() # the model predicts x_0
|
109 |
+
EPSILON = enum.auto() # the model predicts epsilon
|
110 |
+
|
111 |
+
|
112 |
+
class ModelVarType(enum.Enum):
|
113 |
+
"""
|
114 |
+
What is used as the model's output variance.
|
115 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
116 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
117 |
+
"""
|
118 |
+
|
119 |
+
LEARNED = enum.auto()
|
120 |
+
FIXED_SMALL = enum.auto()
|
121 |
+
FIXED_LARGE = enum.auto()
|
122 |
+
LEARNED_RANGE = enum.auto()
|
123 |
+
|
124 |
+
|
125 |
+
class LossType(enum.Enum):
|
126 |
+
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
|
127 |
+
RESCALED_MSE = (
|
128 |
+
enum.auto()
|
129 |
+
) # use raw MSE loss (with RESCALED_KL when learning variances)
|
130 |
+
KL = enum.auto() # use the variational lower-bound
|
131 |
+
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
|
132 |
+
|
133 |
+
def is_vb(self):
|
134 |
+
return self == LossType.KL or self == LossType.RESCALED_KL
|
135 |
+
|
136 |
+
|
137 |
+
class GaussianDiffusion(th.nn.Module):
|
138 |
+
"""
|
139 |
+
Utilities for training and sampling diffusion models.
|
140 |
+
Original ported from this codebase:
|
141 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
142 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
143 |
+
starting at T and going to 1.
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
*,
|
149 |
+
betas,
|
150 |
+
model_mean_type,
|
151 |
+
model_var_type,
|
152 |
+
loss_type,
|
153 |
+
):
|
154 |
+
super(GaussianDiffusion, self).__init__()
|
155 |
+
self.model_mean_type = model_mean_type
|
156 |
+
self.model_var_type = model_var_type
|
157 |
+
self.loss_type = loss_type
|
158 |
+
|
159 |
+
# Use float64 for accuracy.
|
160 |
+
betas = np.array(betas, dtype=np.float64)
|
161 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
162 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
163 |
+
|
164 |
+
self.num_timesteps = int(betas.shape[0])
|
165 |
+
|
166 |
+
alphas = 1.0 - betas
|
167 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
168 |
+
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
169 |
+
alphas_cumprod_next = np.append(alphas_cumprod[1:], 0.0)
|
170 |
+
assert alphas_cumprod_prev.shape == (self.num_timesteps,)
|
171 |
+
|
172 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
173 |
+
sqrt_alphas_cumprod = np.sqrt(alphas_cumprod)
|
174 |
+
sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - alphas_cumprod)
|
175 |
+
log_one_minus_alphas_cumprod = np.log(1.0 - alphas_cumprod)
|
176 |
+
sqrt_recip_alphas_cumprod = np.sqrt(1.0 / alphas_cumprod)
|
177 |
+
sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / alphas_cumprod - 1)
|
178 |
+
|
179 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
180 |
+
posterior_variance = (
|
181 |
+
betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
|
182 |
+
)
|
183 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
184 |
+
posterior_log_variance_clipped = np.log(
|
185 |
+
np.append(posterior_variance[1], posterior_variance[1:])
|
186 |
+
)
|
187 |
+
posterior_mean_coef1 = (
|
188 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)
|
189 |
+
)
|
190 |
+
posterior_mean_coef2 = (
|
191 |
+
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
|
192 |
+
)
|
193 |
+
|
194 |
+
self.register_buffer("betas", th.from_numpy(betas), persistent=False)
|
195 |
+
self.register_buffer(
|
196 |
+
"alphas_cumprod", th.from_numpy(alphas_cumprod), persistent=False
|
197 |
+
)
|
198 |
+
self.register_buffer(
|
199 |
+
"alphas_cumprod_prev", th.from_numpy(alphas_cumprod_prev), persistent=False
|
200 |
+
)
|
201 |
+
self.register_buffer(
|
202 |
+
"alphas_cumprod_next", th.from_numpy(alphas_cumprod_next), persistent=False
|
203 |
+
)
|
204 |
+
|
205 |
+
self.register_buffer(
|
206 |
+
"sqrt_alphas_cumprod", th.from_numpy(sqrt_alphas_cumprod), persistent=False
|
207 |
+
)
|
208 |
+
self.register_buffer(
|
209 |
+
"sqrt_one_minus_alphas_cumprod",
|
210 |
+
th.from_numpy(sqrt_one_minus_alphas_cumprod),
|
211 |
+
persistent=False,
|
212 |
+
)
|
213 |
+
self.register_buffer(
|
214 |
+
"log_one_minus_alphas_cumprod",
|
215 |
+
th.from_numpy(log_one_minus_alphas_cumprod),
|
216 |
+
persistent=False,
|
217 |
+
)
|
218 |
+
self.register_buffer(
|
219 |
+
"sqrt_recip_alphas_cumprod",
|
220 |
+
th.from_numpy(sqrt_recip_alphas_cumprod),
|
221 |
+
persistent=False,
|
222 |
+
)
|
223 |
+
self.register_buffer(
|
224 |
+
"sqrt_recipm1_alphas_cumprod",
|
225 |
+
th.from_numpy(sqrt_recipm1_alphas_cumprod),
|
226 |
+
persistent=False,
|
227 |
+
)
|
228 |
+
|
229 |
+
self.register_buffer(
|
230 |
+
"posterior_variance", th.from_numpy(posterior_variance), persistent=False
|
231 |
+
)
|
232 |
+
self.register_buffer(
|
233 |
+
"posterior_log_variance_clipped",
|
234 |
+
th.from_numpy(posterior_log_variance_clipped),
|
235 |
+
persistent=False,
|
236 |
+
)
|
237 |
+
self.register_buffer(
|
238 |
+
"posterior_mean_coef1",
|
239 |
+
th.from_numpy(posterior_mean_coef1),
|
240 |
+
persistent=False,
|
241 |
+
)
|
242 |
+
self.register_buffer(
|
243 |
+
"posterior_mean_coef2",
|
244 |
+
th.from_numpy(posterior_mean_coef2),
|
245 |
+
persistent=False,
|
246 |
+
)
|
247 |
+
|
248 |
+
def q_mean_variance(self, x_start, t):
|
249 |
+
"""
|
250 |
+
Get the distribution q(x_t | x_0).
|
251 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
252 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
253 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
254 |
+
"""
|
255 |
+
mean = (
|
256 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
257 |
+
)
|
258 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
259 |
+
log_variance = _extract_into_tensor(
|
260 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
261 |
+
)
|
262 |
+
return mean, variance, log_variance
|
263 |
+
|
264 |
+
def q_sample(self, x_start, t, noise=None):
|
265 |
+
"""
|
266 |
+
Diffuse the data for a given number of diffusion steps.
|
267 |
+
In other words, sample from q(x_t | x_0).
|
268 |
+
:param x_start: the initial data batch.
|
269 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
270 |
+
:param noise: if specified, the split-out normal noise.
|
271 |
+
:return: A noisy version of x_start.
|
272 |
+
"""
|
273 |
+
if noise is None:
|
274 |
+
noise = th.randn_like(x_start)
|
275 |
+
assert noise.shape == x_start.shape
|
276 |
+
return (
|
277 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
278 |
+
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
279 |
+
* noise
|
280 |
+
)
|
281 |
+
|
282 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
283 |
+
"""
|
284 |
+
Compute the mean and variance of the diffusion posterior:
|
285 |
+
q(x_{t-1} | x_t, x_0)
|
286 |
+
"""
|
287 |
+
assert x_start.shape == x_t.shape
|
288 |
+
posterior_mean = (
|
289 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
290 |
+
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
291 |
+
)
|
292 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
293 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
294 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
295 |
+
)
|
296 |
+
assert (
|
297 |
+
posterior_mean.shape[0]
|
298 |
+
== posterior_variance.shape[0]
|
299 |
+
== posterior_log_variance_clipped.shape[0]
|
300 |
+
== x_start.shape[0]
|
301 |
+
)
|
302 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
303 |
+
|
304 |
+
def p_mean_variance(
|
305 |
+
self,
|
306 |
+
model,
|
307 |
+
x,
|
308 |
+
t,
|
309 |
+
clip_denoised=True,
|
310 |
+
denoised_fn=None,
|
311 |
+
model_kwargs=None,
|
312 |
+
**ignore_kwargs,
|
313 |
+
):
|
314 |
+
"""
|
315 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
316 |
+
the initial x, x_0.
|
317 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
318 |
+
as input.
|
319 |
+
:param x: the [N x C x ...] tensor at time t.
|
320 |
+
:param t: a 1-D Tensor of timesteps.
|
321 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
322 |
+
:param denoised_fn: if not None, a function which applies to the
|
323 |
+
x_start prediction before it is used to sample. Applies before
|
324 |
+
clip_denoised.
|
325 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
326 |
+
pass to the model. This can be used for conditioning.
|
327 |
+
:return: a dict with the following keys:
|
328 |
+
- 'mean': the model mean output.
|
329 |
+
- 'variance': the model variance output.
|
330 |
+
- 'log_variance': the log of 'variance'.
|
331 |
+
- 'pred_xstart': the prediction for x_0.
|
332 |
+
"""
|
333 |
+
if model_kwargs is None:
|
334 |
+
model_kwargs = {}
|
335 |
+
|
336 |
+
B, C = x.shape[:2]
|
337 |
+
assert t.shape == (B,)
|
338 |
+
model_output = model(x, t, **model_kwargs)
|
339 |
+
if isinstance(model_output, tuple):
|
340 |
+
model_output, extra = model_output
|
341 |
+
else:
|
342 |
+
extra = None
|
343 |
+
|
344 |
+
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
345 |
+
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
346 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
347 |
+
if self.model_var_type == ModelVarType.LEARNED:
|
348 |
+
model_log_variance = model_var_values
|
349 |
+
model_variance = th.exp(model_log_variance)
|
350 |
+
else:
|
351 |
+
min_log = _extract_into_tensor(
|
352 |
+
self.posterior_log_variance_clipped, t, x.shape
|
353 |
+
)
|
354 |
+
max_log = _extract_into_tensor(th.log(self.betas), t, x.shape)
|
355 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
356 |
+
frac = (model_var_values + 1) / 2
|
357 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
358 |
+
model_variance = th.exp(model_log_variance)
|
359 |
+
else:
|
360 |
+
model_variance, model_log_variance = {
|
361 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
362 |
+
# to get a better decoder log likelihood.
|
363 |
+
ModelVarType.FIXED_LARGE: (
|
364 |
+
th.cat([self.posterior_variance[1][None], self.betas[1:]]),
|
365 |
+
th.log(th.cat([self.posterior_variance[1][None], self.betas[1:]])),
|
366 |
+
),
|
367 |
+
ModelVarType.FIXED_SMALL: (
|
368 |
+
self.posterior_variance,
|
369 |
+
self.posterior_log_variance_clipped,
|
370 |
+
),
|
371 |
+
}[self.model_var_type]
|
372 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
373 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
374 |
+
|
375 |
+
def process_xstart(x):
|
376 |
+
if denoised_fn is not None:
|
377 |
+
x = denoised_fn(x)
|
378 |
+
if clip_denoised:
|
379 |
+
return x.clamp(-1, 1)
|
380 |
+
return x
|
381 |
+
|
382 |
+
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
|
383 |
+
pred_xstart = process_xstart(
|
384 |
+
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
|
385 |
+
)
|
386 |
+
model_mean = model_output
|
387 |
+
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
|
388 |
+
if self.model_mean_type == ModelMeanType.START_X:
|
389 |
+
pred_xstart = process_xstart(model_output)
|
390 |
+
else:
|
391 |
+
pred_xstart = process_xstart(
|
392 |
+
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
393 |
+
)
|
394 |
+
model_mean, _, _ = self.q_posterior_mean_variance(
|
395 |
+
x_start=pred_xstart, x_t=x, t=t
|
396 |
+
)
|
397 |
+
else:
|
398 |
+
raise NotImplementedError(self.model_mean_type)
|
399 |
+
|
400 |
+
assert (
|
401 |
+
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
402 |
+
)
|
403 |
+
return {
|
404 |
+
"mean": model_mean,
|
405 |
+
"variance": model_variance,
|
406 |
+
"log_variance": model_log_variance,
|
407 |
+
"pred_xstart": pred_xstart,
|
408 |
+
}
|
409 |
+
|
410 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
411 |
+
assert x_t.shape == eps.shape
|
412 |
+
return (
|
413 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
414 |
+
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
415 |
+
)
|
416 |
+
|
417 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
418 |
+
return (
|
419 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
420 |
+
- pred_xstart
|
421 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
422 |
+
|
423 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
424 |
+
"""
|
425 |
+
Compute the mean for the previous step, given a function cond_fn that
|
426 |
+
computes the gradient of a conditional log probability with respect to
|
427 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
428 |
+
condition on y.
|
429 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
430 |
+
"""
|
431 |
+
gradient = cond_fn(x, t, **model_kwargs)
|
432 |
+
new_mean = (
|
433 |
+
p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
434 |
+
)
|
435 |
+
return new_mean
|
436 |
+
|
437 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
438 |
+
"""
|
439 |
+
Compute what the p_mean_variance output would have been, should the
|
440 |
+
model's score function be conditioned by cond_fn.
|
441 |
+
See condition_mean() for details on cond_fn.
|
442 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
443 |
+
from Song et al (2020).
|
444 |
+
"""
|
445 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
446 |
+
|
447 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
448 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs)
|
449 |
+
|
450 |
+
out = p_mean_var.copy()
|
451 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
452 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(
|
453 |
+
x_start=out["pred_xstart"], x_t=x, t=t
|
454 |
+
)
|
455 |
+
return out
|
456 |
+
|
457 |
+
def p_sample(
|
458 |
+
self,
|
459 |
+
model,
|
460 |
+
x,
|
461 |
+
t,
|
462 |
+
clip_denoised=True,
|
463 |
+
denoised_fn=None,
|
464 |
+
cond_fn=None,
|
465 |
+
model_kwargs=None,
|
466 |
+
):
|
467 |
+
"""
|
468 |
+
Sample x_{t-1} from the model at the given timestep.
|
469 |
+
:param model: the model to sample from.
|
470 |
+
:param x: the current tensor at x_{t-1}.
|
471 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
472 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
473 |
+
:param denoised_fn: if not None, a function which applies to the
|
474 |
+
x_start prediction before it is used to sample.
|
475 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
476 |
+
similarly to the model.
|
477 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
478 |
+
pass to the model. This can be used for conditioning.
|
479 |
+
:return: a dict containing the following keys:
|
480 |
+
- 'sample': a random sample from the model.
|
481 |
+
- 'pred_xstart': a prediction of x_0.
|
482 |
+
"""
|
483 |
+
out = self.p_mean_variance(
|
484 |
+
model,
|
485 |
+
x,
|
486 |
+
t,
|
487 |
+
clip_denoised=clip_denoised,
|
488 |
+
denoised_fn=denoised_fn,
|
489 |
+
model_kwargs=model_kwargs,
|
490 |
+
)
|
491 |
+
noise = th.randn_like(x)
|
492 |
+
nonzero_mask = (
|
493 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
494 |
+
) # no noise when t == 0
|
495 |
+
if cond_fn is not None:
|
496 |
+
out["mean"] = self.condition_mean(
|
497 |
+
cond_fn, out, x, t, model_kwargs=model_kwargs
|
498 |
+
)
|
499 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
500 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
501 |
+
|
502 |
+
def p_sample_loop(
|
503 |
+
self,
|
504 |
+
model,
|
505 |
+
shape,
|
506 |
+
noise=None,
|
507 |
+
clip_denoised=True,
|
508 |
+
denoised_fn=None,
|
509 |
+
cond_fn=None,
|
510 |
+
model_kwargs=None,
|
511 |
+
device=None,
|
512 |
+
progress=False,
|
513 |
+
):
|
514 |
+
"""
|
515 |
+
Generate samples from the model.
|
516 |
+
:param model: the model module.
|
517 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
518 |
+
:param noise: if specified, the noise from the encoder to sample.
|
519 |
+
Should be of the same shape as `shape`.
|
520 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
521 |
+
:param denoised_fn: if not None, a function which applies to the
|
522 |
+
x_start prediction before it is used to sample.
|
523 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
524 |
+
similarly to the model.
|
525 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
526 |
+
pass to the model. This can be used for conditioning.
|
527 |
+
:param device: if specified, the device to create the samples on.
|
528 |
+
If not specified, use a model parameter's device.
|
529 |
+
:param progress: if True, show a tqdm progress bar.
|
530 |
+
:return: a non-differentiable batch of samples.
|
531 |
+
"""
|
532 |
+
final = None
|
533 |
+
for sample in self.p_sample_loop_progressive(
|
534 |
+
model,
|
535 |
+
shape,
|
536 |
+
noise=noise,
|
537 |
+
clip_denoised=clip_denoised,
|
538 |
+
denoised_fn=denoised_fn,
|
539 |
+
cond_fn=cond_fn,
|
540 |
+
model_kwargs=model_kwargs,
|
541 |
+
device=device,
|
542 |
+
progress=progress,
|
543 |
+
):
|
544 |
+
final = sample
|
545 |
+
return final["sample"]
|
546 |
+
|
547 |
+
def p_sample_loop_progressive(
|
548 |
+
self,
|
549 |
+
model,
|
550 |
+
shape,
|
551 |
+
noise=None,
|
552 |
+
clip_denoised=True,
|
553 |
+
denoised_fn=None,
|
554 |
+
cond_fn=None,
|
555 |
+
model_kwargs=None,
|
556 |
+
device=None,
|
557 |
+
progress=False,
|
558 |
+
):
|
559 |
+
"""
|
560 |
+
Generate samples from the model and yield intermediate samples from
|
561 |
+
each timestep of diffusion.
|
562 |
+
Arguments are the same as p_sample_loop().
|
563 |
+
Returns a generator over dicts, where each dict is the return value of
|
564 |
+
p_sample().
|
565 |
+
"""
|
566 |
+
if device is None:
|
567 |
+
device = next(model.parameters()).device
|
568 |
+
assert isinstance(shape, (tuple, list))
|
569 |
+
if noise is not None:
|
570 |
+
img = noise
|
571 |
+
else:
|
572 |
+
img = th.randn(*shape, device=device)
|
573 |
+
indices = list(range(self.num_timesteps))[::-1]
|
574 |
+
|
575 |
+
if progress:
|
576 |
+
# Lazy import so that we don't depend on tqdm.
|
577 |
+
from tqdm.auto import tqdm
|
578 |
+
|
579 |
+
indices = tqdm(indices)
|
580 |
+
|
581 |
+
for idx, i in enumerate(indices):
|
582 |
+
t = th.tensor([i] * shape[0], device=device)
|
583 |
+
with th.no_grad():
|
584 |
+
out = self.p_sample(
|
585 |
+
model,
|
586 |
+
img,
|
587 |
+
t,
|
588 |
+
clip_denoised=clip_denoised,
|
589 |
+
denoised_fn=denoised_fn,
|
590 |
+
cond_fn=cond_fn,
|
591 |
+
model_kwargs=model_kwargs,
|
592 |
+
)
|
593 |
+
yield out
|
594 |
+
img = out["sample"]
|
595 |
+
|
596 |
+
def p_sample_loop_progressive_for_improved_sr(
|
597 |
+
self,
|
598 |
+
model,
|
599 |
+
model_aux,
|
600 |
+
shape,
|
601 |
+
noise=None,
|
602 |
+
clip_denoised=True,
|
603 |
+
denoised_fn=None,
|
604 |
+
cond_fn=None,
|
605 |
+
model_kwargs=None,
|
606 |
+
device=None,
|
607 |
+
progress=False,
|
608 |
+
):
|
609 |
+
"""
|
610 |
+
Modified version of p_sample_loop_progressive for sampling from the improved sr model
|
611 |
+
"""
|
612 |
+
|
613 |
+
if device is None:
|
614 |
+
device = next(model.parameters()).device
|
615 |
+
assert isinstance(shape, (tuple, list))
|
616 |
+
if noise is not None:
|
617 |
+
img = noise
|
618 |
+
else:
|
619 |
+
img = th.randn(*shape, device=device)
|
620 |
+
indices = list(range(self.num_timesteps))[::-1]
|
621 |
+
|
622 |
+
if progress:
|
623 |
+
# Lazy import so that we don't depend on tqdm.
|
624 |
+
from tqdm.auto import tqdm
|
625 |
+
|
626 |
+
indices = tqdm(indices)
|
627 |
+
|
628 |
+
for idx, i in enumerate(indices):
|
629 |
+
t = th.tensor([i] * shape[0], device=device)
|
630 |
+
with th.no_grad():
|
631 |
+
out = self.p_sample(
|
632 |
+
model_aux if len(indices) - 1 == idx else model,
|
633 |
+
img,
|
634 |
+
t,
|
635 |
+
clip_denoised=clip_denoised,
|
636 |
+
denoised_fn=denoised_fn,
|
637 |
+
cond_fn=cond_fn,
|
638 |
+
model_kwargs=model_kwargs,
|
639 |
+
)
|
640 |
+
yield out
|
641 |
+
img = out["sample"]
|
642 |
+
|
643 |
+
def ddim_sample(
|
644 |
+
self,
|
645 |
+
model,
|
646 |
+
x,
|
647 |
+
t,
|
648 |
+
clip_denoised=True,
|
649 |
+
denoised_fn=None,
|
650 |
+
cond_fn=None,
|
651 |
+
model_kwargs=None,
|
652 |
+
eta=0.0,
|
653 |
+
):
|
654 |
+
"""
|
655 |
+
Sample x_{t-1} from the model using DDIM.
|
656 |
+
Same usage as p_sample().
|
657 |
+
"""
|
658 |
+
out = self.p_mean_variance(
|
659 |
+
model,
|
660 |
+
x,
|
661 |
+
t,
|
662 |
+
clip_denoised=clip_denoised,
|
663 |
+
denoised_fn=denoised_fn,
|
664 |
+
model_kwargs=model_kwargs,
|
665 |
+
)
|
666 |
+
if cond_fn is not None:
|
667 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
668 |
+
|
669 |
+
# Usually our model outputs epsilon, but we re-derive it
|
670 |
+
# in case we used x_start or x_prev prediction.
|
671 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
672 |
+
|
673 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
674 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
675 |
+
sigma = (
|
676 |
+
eta
|
677 |
+
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
678 |
+
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
679 |
+
)
|
680 |
+
# Equation 12.
|
681 |
+
noise = th.randn_like(x)
|
682 |
+
mean_pred = (
|
683 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
684 |
+
+ th.sqrt(1 - alpha_bar_prev - sigma**2) * eps
|
685 |
+
)
|
686 |
+
nonzero_mask = (
|
687 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
688 |
+
) # no noise when t == 0
|
689 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
690 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
691 |
+
|
692 |
+
def ddim_reverse_sample(
|
693 |
+
self,
|
694 |
+
model,
|
695 |
+
x,
|
696 |
+
t,
|
697 |
+
clip_denoised=True,
|
698 |
+
denoised_fn=None,
|
699 |
+
cond_fn=None,
|
700 |
+
model_kwargs=None,
|
701 |
+
eta=0.0,
|
702 |
+
):
|
703 |
+
"""
|
704 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
705 |
+
"""
|
706 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
707 |
+
out = self.p_mean_variance(
|
708 |
+
model,
|
709 |
+
x,
|
710 |
+
t,
|
711 |
+
clip_denoised=clip_denoised,
|
712 |
+
denoised_fn=denoised_fn,
|
713 |
+
model_kwargs=model_kwargs,
|
714 |
+
)
|
715 |
+
if cond_fn is not None:
|
716 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
717 |
+
# Usually our model outputs epsilon, but we re-derive it
|
718 |
+
# in case we used x_start or x_prev prediction.
|
719 |
+
eps = (
|
720 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
721 |
+
- out["pred_xstart"]
|
722 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
723 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
724 |
+
|
725 |
+
# Equation 12. reversed
|
726 |
+
mean_pred = (
|
727 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_next)
|
728 |
+
+ th.sqrt(1 - alpha_bar_next) * eps
|
729 |
+
)
|
730 |
+
|
731 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
732 |
+
|
733 |
+
def ddim_sample_loop(
|
734 |
+
self,
|
735 |
+
model,
|
736 |
+
shape,
|
737 |
+
noise=None,
|
738 |
+
clip_denoised=True,
|
739 |
+
denoised_fn=None,
|
740 |
+
cond_fn=None,
|
741 |
+
model_kwargs=None,
|
742 |
+
device=None,
|
743 |
+
progress=False,
|
744 |
+
eta=0.0,
|
745 |
+
):
|
746 |
+
"""
|
747 |
+
Generate samples from the model using DDIM.
|
748 |
+
Same usage as p_sample_loop().
|
749 |
+
"""
|
750 |
+
final = None
|
751 |
+
for sample in self.ddim_sample_loop_progressive(
|
752 |
+
model,
|
753 |
+
shape,
|
754 |
+
noise=noise,
|
755 |
+
clip_denoised=clip_denoised,
|
756 |
+
denoised_fn=denoised_fn,
|
757 |
+
cond_fn=cond_fn,
|
758 |
+
model_kwargs=model_kwargs,
|
759 |
+
device=device,
|
760 |
+
progress=progress,
|
761 |
+
eta=eta,
|
762 |
+
):
|
763 |
+
final = sample
|
764 |
+
return final["sample"]
|
765 |
+
|
766 |
+
def ddim_sample_loop_progressive(
|
767 |
+
self,
|
768 |
+
model,
|
769 |
+
shape,
|
770 |
+
noise=None,
|
771 |
+
clip_denoised=True,
|
772 |
+
denoised_fn=None,
|
773 |
+
cond_fn=None,
|
774 |
+
model_kwargs=None,
|
775 |
+
device=None,
|
776 |
+
progress=False,
|
777 |
+
eta=0.0,
|
778 |
+
):
|
779 |
+
"""
|
780 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
781 |
+
each timestep of DDIM.
|
782 |
+
Same usage as p_sample_loop_progressive().
|
783 |
+
"""
|
784 |
+
if device is None:
|
785 |
+
device = next(model.parameters()).device
|
786 |
+
assert isinstance(shape, (tuple, list))
|
787 |
+
if noise is not None:
|
788 |
+
img = noise
|
789 |
+
else:
|
790 |
+
img = th.randn(*shape, device=device)
|
791 |
+
indices = list(range(self.num_timesteps))[::-1]
|
792 |
+
|
793 |
+
if progress:
|
794 |
+
# Lazy import so that we don't depend on tqdm.
|
795 |
+
from tqdm.auto import tqdm
|
796 |
+
|
797 |
+
indices = tqdm(indices)
|
798 |
+
|
799 |
+
for i in indices:
|
800 |
+
t = th.tensor([i] * shape[0], device=device)
|
801 |
+
with th.no_grad():
|
802 |
+
out = self.ddim_sample(
|
803 |
+
model,
|
804 |
+
img,
|
805 |
+
t,
|
806 |
+
clip_denoised=clip_denoised,
|
807 |
+
denoised_fn=denoised_fn,
|
808 |
+
cond_fn=cond_fn,
|
809 |
+
model_kwargs=model_kwargs,
|
810 |
+
eta=eta,
|
811 |
+
)
|
812 |
+
yield out
|
813 |
+
img = out["sample"]
|
814 |
+
|
815 |
+
|
816 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
817 |
+
"""
|
818 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
819 |
+
:param arr: the 1-D numpy array.
|
820 |
+
:param timesteps: a tensor of indices into the array to extract.
|
821 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
822 |
+
dimension equal to the length of timesteps.
|
823 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
824 |
+
"""
|
825 |
+
res = arr.to(device=timesteps.device)[timesteps].float()
|
826 |
+
while len(res.shape) < len(broadcast_shape):
|
827 |
+
res = res[..., None]
|
828 |
+
return res + th.zeros(broadcast_shape, device=timesteps.device)
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/diffusion/respace.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Adapted from Guided-Diffusion repo (https://github.com/openai/guided-diffusion)
|
3 |
+
# ------------------------------------------------------------------------------------
|
4 |
+
|
5 |
+
|
6 |
+
import torch as th
|
7 |
+
|
8 |
+
from .gaussian_diffusion import GaussianDiffusion
|
9 |
+
|
10 |
+
|
11 |
+
def space_timesteps(num_timesteps, section_counts):
|
12 |
+
"""
|
13 |
+
Create a list of timesteps to use from an original diffusion process,
|
14 |
+
given the number of timesteps we want to take from equally-sized portions
|
15 |
+
of the original process.
|
16 |
+
|
17 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
18 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
19 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
20 |
+
|
21 |
+
:param num_timesteps: the number of diffusion steps in the original
|
22 |
+
process to divide up.
|
23 |
+
:param section_counts: either a list of numbers, or a string containing
|
24 |
+
comma-separated numbers, indicating the step count
|
25 |
+
per section. As a special case, use "ddimN" where N
|
26 |
+
is a number of steps to use the striding from the
|
27 |
+
DDIM paper.
|
28 |
+
:return: a set of diffusion steps from the original process to use.
|
29 |
+
"""
|
30 |
+
if isinstance(section_counts, str):
|
31 |
+
if section_counts.startswith("ddim"):
|
32 |
+
desired_count = int(section_counts[len("ddim") :])
|
33 |
+
for i in range(1, num_timesteps):
|
34 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
35 |
+
return set(range(0, num_timesteps, i))
|
36 |
+
raise ValueError(
|
37 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
38 |
+
)
|
39 |
+
elif section_counts == "fast27":
|
40 |
+
steps = space_timesteps(num_timesteps, "10,10,3,2,2")
|
41 |
+
# Help reduce DDIM artifacts from noisiest timesteps.
|
42 |
+
steps.remove(num_timesteps - 1)
|
43 |
+
steps.add(num_timesteps - 3)
|
44 |
+
return steps
|
45 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
46 |
+
size_per = num_timesteps // len(section_counts)
|
47 |
+
extra = num_timesteps % len(section_counts)
|
48 |
+
start_idx = 0
|
49 |
+
all_steps = []
|
50 |
+
for i, section_count in enumerate(section_counts):
|
51 |
+
size = size_per + (1 if i < extra else 0)
|
52 |
+
if size < section_count:
|
53 |
+
raise ValueError(
|
54 |
+
f"cannot divide section of {size} steps into {section_count}"
|
55 |
+
)
|
56 |
+
if section_count <= 1:
|
57 |
+
frac_stride = 1
|
58 |
+
else:
|
59 |
+
frac_stride = (size - 1) / (section_count - 1)
|
60 |
+
cur_idx = 0.0
|
61 |
+
taken_steps = []
|
62 |
+
for _ in range(section_count):
|
63 |
+
taken_steps.append(start_idx + round(cur_idx))
|
64 |
+
cur_idx += frac_stride
|
65 |
+
all_steps += taken_steps
|
66 |
+
start_idx += size
|
67 |
+
return set(all_steps)
|
68 |
+
|
69 |
+
|
70 |
+
class SpacedDiffusion(GaussianDiffusion):
|
71 |
+
"""
|
72 |
+
A diffusion process which can skip steps in a base diffusion process.
|
73 |
+
|
74 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
75 |
+
original diffusion process to retain.
|
76 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, use_timesteps, **kwargs):
|
80 |
+
self.use_timesteps = set(use_timesteps)
|
81 |
+
self.original_num_steps = len(kwargs["betas"])
|
82 |
+
|
83 |
+
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
|
84 |
+
last_alpha_cumprod = 1.0
|
85 |
+
new_betas = []
|
86 |
+
timestep_map = []
|
87 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
88 |
+
if i in self.use_timesteps:
|
89 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
90 |
+
last_alpha_cumprod = alpha_cumprod
|
91 |
+
timestep_map.append(i)
|
92 |
+
kwargs["betas"] = th.tensor(new_betas).numpy()
|
93 |
+
super().__init__(**kwargs)
|
94 |
+
self.register_buffer("timestep_map", th.tensor(timestep_map), persistent=False)
|
95 |
+
|
96 |
+
def p_mean_variance(self, model, *args, **kwargs):
|
97 |
+
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
|
98 |
+
|
99 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
100 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
|
101 |
+
|
102 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
103 |
+
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
|
104 |
+
|
105 |
+
def _wrap_model(self, model):
|
106 |
+
def wrapped(x, ts, **kwargs):
|
107 |
+
ts_cpu = ts.detach().to("cpu")
|
108 |
+
return model(
|
109 |
+
x, self.timestep_map[ts_cpu].to(device=ts.device, dtype=ts.dtype), **kwargs
|
110 |
+
)
|
111 |
+
|
112 |
+
return wrapped
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/nn.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Adapted from Guided-Diffusion repo (https://github.com/openai/guided-diffusion)
|
3 |
+
# ------------------------------------------------------------------------------------
|
4 |
+
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class GroupNorm32(nn.GroupNorm):
|
13 |
+
def __init__(self, num_groups, num_channels, swish, eps=1e-5):
|
14 |
+
super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
|
15 |
+
self.swish = swish
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
y = super().forward(x.float()).to(x.dtype)
|
19 |
+
if self.swish == 1.0:
|
20 |
+
y = F.silu(y)
|
21 |
+
elif self.swish:
|
22 |
+
y = y * F.sigmoid(y * float(self.swish))
|
23 |
+
return y
|
24 |
+
|
25 |
+
|
26 |
+
def conv_nd(dims, *args, **kwargs):
|
27 |
+
"""
|
28 |
+
Create a 1D, 2D, or 3D convolution module.
|
29 |
+
"""
|
30 |
+
if dims == 1:
|
31 |
+
return nn.Conv1d(*args, **kwargs)
|
32 |
+
elif dims == 2:
|
33 |
+
return nn.Conv2d(*args, **kwargs)
|
34 |
+
elif dims == 3:
|
35 |
+
return nn.Conv3d(*args, **kwargs)
|
36 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
37 |
+
|
38 |
+
|
39 |
+
def linear(*args, **kwargs):
|
40 |
+
"""
|
41 |
+
Create a linear module.
|
42 |
+
"""
|
43 |
+
return nn.Linear(*args, **kwargs)
|
44 |
+
|
45 |
+
|
46 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
47 |
+
"""
|
48 |
+
Create a 1D, 2D, or 3D average pooling module.
|
49 |
+
"""
|
50 |
+
if dims == 1:
|
51 |
+
return nn.AvgPool1d(*args, **kwargs)
|
52 |
+
elif dims == 2:
|
53 |
+
return nn.AvgPool2d(*args, **kwargs)
|
54 |
+
elif dims == 3:
|
55 |
+
return nn.AvgPool3d(*args, **kwargs)
|
56 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
57 |
+
|
58 |
+
|
59 |
+
def zero_module(module):
|
60 |
+
"""
|
61 |
+
Zero out the parameters of a module and return it.
|
62 |
+
"""
|
63 |
+
for p in module.parameters():
|
64 |
+
p.detach().zero_()
|
65 |
+
return module
|
66 |
+
|
67 |
+
|
68 |
+
def scale_module(module, scale):
|
69 |
+
"""
|
70 |
+
Scale the parameters of a module and return it.
|
71 |
+
"""
|
72 |
+
for p in module.parameters():
|
73 |
+
p.detach().mul_(scale)
|
74 |
+
return module
|
75 |
+
|
76 |
+
|
77 |
+
def normalization(channels, swish=0.0):
|
78 |
+
"""
|
79 |
+
Make a standard normalization layer, with an optional swish activation.
|
80 |
+
|
81 |
+
:param channels: number of input channels.
|
82 |
+
:return: an nn.Module for normalization.
|
83 |
+
"""
|
84 |
+
return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)
|
85 |
+
|
86 |
+
|
87 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
88 |
+
"""
|
89 |
+
Create sinusoidal timestep embeddings.
|
90 |
+
|
91 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
92 |
+
These may be fractional.
|
93 |
+
:param dim: the dimension of the output.
|
94 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
95 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
96 |
+
"""
|
97 |
+
half = dim // 2
|
98 |
+
freqs = th.exp(
|
99 |
+
-math.log(max_period)
|
100 |
+
* th.arange(start=0, end=half, dtype=th.float32, device=timesteps.device)
|
101 |
+
/ half
|
102 |
+
)
|
103 |
+
args = timesteps[:, None].float() * freqs[None]
|
104 |
+
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
|
105 |
+
if dim % 2:
|
106 |
+
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
|
107 |
+
return embedding
|
108 |
+
|
109 |
+
|
110 |
+
def mean_flat(tensor):
|
111 |
+
"""
|
112 |
+
Take the mean over all non-batch dimensions.
|
113 |
+
"""
|
114 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/resample.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Modified from Guided-Diffusion (https://github.com/openai/guided-diffusion)
|
3 |
+
# ------------------------------------------------------------------------------------
|
4 |
+
|
5 |
+
from abc import abstractmethod
|
6 |
+
|
7 |
+
import torch as th
|
8 |
+
|
9 |
+
|
10 |
+
def create_named_schedule_sampler(name, diffusion):
|
11 |
+
"""
|
12 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
13 |
+
|
14 |
+
:param name: the name of the sampler.
|
15 |
+
:param diffusion: the diffusion object to sample for.
|
16 |
+
"""
|
17 |
+
if name == "uniform":
|
18 |
+
return UniformSampler(diffusion)
|
19 |
+
else:
|
20 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
21 |
+
|
22 |
+
|
23 |
+
class ScheduleSampler(th.nn.Module):
|
24 |
+
"""
|
25 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
26 |
+
variance of the objective.
|
27 |
+
|
28 |
+
By default, samplers perform unbiased importance sampling, in which the
|
29 |
+
objective's mean is unchanged.
|
30 |
+
However, subclasses may override sample() to change how the resampled
|
31 |
+
terms are reweighted, allowing for actual changes in the objective.
|
32 |
+
"""
|
33 |
+
|
34 |
+
@abstractmethod
|
35 |
+
def weights(self):
|
36 |
+
"""
|
37 |
+
Get a numpy array of weights, one per diffusion step.
|
38 |
+
|
39 |
+
The weights needn't be normalized, but must be positive.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def sample(self, batch_size, device):
|
43 |
+
"""
|
44 |
+
Importance-sample timesteps for a batch.
|
45 |
+
|
46 |
+
:param batch_size: the number of timesteps.
|
47 |
+
:param device: the torch device to save to.
|
48 |
+
:return: a tuple (timesteps, weights):
|
49 |
+
- timesteps: a tensor of timestep indices.
|
50 |
+
- weights: a tensor of weights to scale the resulting losses.
|
51 |
+
"""
|
52 |
+
w = self.weights()
|
53 |
+
p = w / th.sum(w)
|
54 |
+
indices = p.multinomial(batch_size, replacement=True)
|
55 |
+
weights = 1 / (len(p) * p[indices])
|
56 |
+
return indices, weights
|
57 |
+
|
58 |
+
|
59 |
+
class UniformSampler(ScheduleSampler):
|
60 |
+
def __init__(self, diffusion):
|
61 |
+
super(UniformSampler, self).__init__()
|
62 |
+
self.diffusion = diffusion
|
63 |
+
self.register_buffer(
|
64 |
+
"_weights", th.ones([diffusion.num_timesteps]), persistent=False
|
65 |
+
)
|
66 |
+
|
67 |
+
def weights(self):
|
68 |
+
return self._weights
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/unet.py
ADDED
@@ -0,0 +1,792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Modified from Guided-Diffusion (https://github.com/openai/guided-diffusion)
|
3 |
+
# ------------------------------------------------------------------------------------
|
4 |
+
|
5 |
+
import math
|
6 |
+
from abc import abstractmethod
|
7 |
+
|
8 |
+
import torch as th
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
from .nn import (
|
13 |
+
avg_pool_nd,
|
14 |
+
conv_nd,
|
15 |
+
linear,
|
16 |
+
normalization,
|
17 |
+
timestep_embedding,
|
18 |
+
zero_module,
|
19 |
+
)
|
20 |
+
from .xf import LayerNorm
|
21 |
+
|
22 |
+
|
23 |
+
class TimestepBlock(nn.Module):
|
24 |
+
"""
|
25 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
26 |
+
"""
|
27 |
+
|
28 |
+
@abstractmethod
|
29 |
+
def forward(self, x, emb):
|
30 |
+
"""
|
31 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
36 |
+
"""
|
37 |
+
A sequential module that passes timestep embeddings to the children that
|
38 |
+
support it as an extra input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def forward(self, x, emb, encoder_out=None, mask=None):
|
42 |
+
for layer in self:
|
43 |
+
if isinstance(layer, TimestepBlock):
|
44 |
+
x = layer(x, emb)
|
45 |
+
elif isinstance(layer, AttentionBlock):
|
46 |
+
x = layer(x, encoder_out, mask=mask)
|
47 |
+
else:
|
48 |
+
x = layer(x)
|
49 |
+
return x
|
50 |
+
|
51 |
+
|
52 |
+
class Upsample(nn.Module):
|
53 |
+
"""
|
54 |
+
An upsampling layer with an optional convolution.
|
55 |
+
|
56 |
+
:param channels: channels in the inputs and outputs.
|
57 |
+
:param use_conv: a bool determining if a convolution is applied.
|
58 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
59 |
+
upsampling occurs in the inner-two dimensions.
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
63 |
+
super().__init__()
|
64 |
+
self.channels = channels
|
65 |
+
self.out_channels = out_channels or channels
|
66 |
+
self.use_conv = use_conv
|
67 |
+
self.dims = dims
|
68 |
+
if use_conv:
|
69 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
assert x.shape[1] == self.channels
|
73 |
+
if self.dims == 3:
|
74 |
+
x = F.interpolate(
|
75 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
76 |
+
)
|
77 |
+
else:
|
78 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
79 |
+
if self.use_conv:
|
80 |
+
x = self.conv(x)
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
class Downsample(nn.Module):
|
85 |
+
"""
|
86 |
+
A downsampling layer with an optional convolution.
|
87 |
+
|
88 |
+
:param channels: channels in the inputs and outputs.
|
89 |
+
:param use_conv: a bool determining if a convolution is applied.
|
90 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
91 |
+
downsampling occurs in the inner-two dimensions.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
95 |
+
super().__init__()
|
96 |
+
self.channels = channels
|
97 |
+
self.out_channels = out_channels or channels
|
98 |
+
self.use_conv = use_conv
|
99 |
+
self.dims = dims
|
100 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
101 |
+
if use_conv:
|
102 |
+
self.op = conv_nd(
|
103 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=1
|
104 |
+
)
|
105 |
+
else:
|
106 |
+
assert self.channels == self.out_channels
|
107 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
assert x.shape[1] == self.channels
|
111 |
+
return self.op(x)
|
112 |
+
|
113 |
+
|
114 |
+
class ResBlock(TimestepBlock):
|
115 |
+
"""
|
116 |
+
A residual block that can optionally change the number of channels.
|
117 |
+
|
118 |
+
:param channels: the number of input channels.
|
119 |
+
:param emb_channels: the number of timestep embedding channels.
|
120 |
+
:param dropout: the rate of dropout.
|
121 |
+
:param out_channels: if specified, the number of out channels.
|
122 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
123 |
+
convolution instead of a smaller 1x1 convolution to change the
|
124 |
+
channels in the skip connection.
|
125 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
126 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
127 |
+
:param up: if True, use this block for upsampling.
|
128 |
+
:param down: if True, use this block for downsampling.
|
129 |
+
"""
|
130 |
+
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
channels,
|
134 |
+
emb_channels,
|
135 |
+
dropout,
|
136 |
+
out_channels=None,
|
137 |
+
use_conv=False,
|
138 |
+
use_scale_shift_norm=False,
|
139 |
+
dims=2,
|
140 |
+
use_checkpoint=False,
|
141 |
+
up=False,
|
142 |
+
down=False,
|
143 |
+
):
|
144 |
+
super().__init__()
|
145 |
+
self.channels = channels
|
146 |
+
self.emb_channels = emb_channels
|
147 |
+
self.dropout = dropout
|
148 |
+
self.out_channels = out_channels or channels
|
149 |
+
self.use_conv = use_conv
|
150 |
+
self.use_checkpoint = use_checkpoint
|
151 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
152 |
+
|
153 |
+
self.in_layers = nn.Sequential(
|
154 |
+
normalization(channels, swish=1.0),
|
155 |
+
nn.Identity(),
|
156 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
157 |
+
)
|
158 |
+
|
159 |
+
self.updown = up or down
|
160 |
+
|
161 |
+
if up:
|
162 |
+
self.h_upd = Upsample(channels, False, dims)
|
163 |
+
self.x_upd = Upsample(channels, False, dims)
|
164 |
+
elif down:
|
165 |
+
self.h_upd = Downsample(channels, False, dims)
|
166 |
+
self.x_upd = Downsample(channels, False, dims)
|
167 |
+
else:
|
168 |
+
self.h_upd = self.x_upd = nn.Identity()
|
169 |
+
|
170 |
+
self.emb_layers = nn.Sequential(
|
171 |
+
nn.SiLU(),
|
172 |
+
linear(
|
173 |
+
emb_channels,
|
174 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
175 |
+
),
|
176 |
+
)
|
177 |
+
self.out_layers = nn.Sequential(
|
178 |
+
normalization(
|
179 |
+
self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0
|
180 |
+
),
|
181 |
+
nn.SiLU() if use_scale_shift_norm else nn.Identity(),
|
182 |
+
nn.Dropout(p=dropout),
|
183 |
+
zero_module(
|
184 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
185 |
+
),
|
186 |
+
)
|
187 |
+
|
188 |
+
if self.out_channels == channels:
|
189 |
+
self.skip_connection = nn.Identity()
|
190 |
+
elif use_conv:
|
191 |
+
self.skip_connection = conv_nd(
|
192 |
+
dims, channels, self.out_channels, 3, padding=1
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
196 |
+
|
197 |
+
def forward(self, x, emb):
|
198 |
+
"""
|
199 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
200 |
+
|
201 |
+
:param x: an [N x C x ...] Tensor of features.
|
202 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
203 |
+
:return: an [N x C x ...] Tensor of outputs.
|
204 |
+
"""
|
205 |
+
if self.updown:
|
206 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
207 |
+
h = in_rest(x)
|
208 |
+
h = self.h_upd(h)
|
209 |
+
x = self.x_upd(x)
|
210 |
+
h = in_conv(h)
|
211 |
+
else:
|
212 |
+
h = self.in_layers(x)
|
213 |
+
emb_out = self.emb_layers(emb)
|
214 |
+
while len(emb_out.shape) < len(h.shape):
|
215 |
+
emb_out = emb_out[..., None]
|
216 |
+
if self.use_scale_shift_norm:
|
217 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
218 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
219 |
+
h = out_norm(h) * (1 + scale) + shift
|
220 |
+
h = out_rest(h)
|
221 |
+
else:
|
222 |
+
h = h + emb_out
|
223 |
+
h = self.out_layers(h)
|
224 |
+
return self.skip_connection(x) + h
|
225 |
+
|
226 |
+
|
227 |
+
class ResBlockNoTimeEmbedding(nn.Module):
|
228 |
+
"""
|
229 |
+
A residual block without time embedding
|
230 |
+
|
231 |
+
:param channels: the number of input channels.
|
232 |
+
:param emb_channels: the number of timestep embedding channels.
|
233 |
+
:param dropout: the rate of dropout.
|
234 |
+
:param out_channels: if specified, the number of out channels.
|
235 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
236 |
+
convolution instead of a smaller 1x1 convolution to change the
|
237 |
+
channels in the skip connection.
|
238 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
239 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
240 |
+
:param up: if True, use this block for upsampling.
|
241 |
+
:param down: if True, use this block for downsampling.
|
242 |
+
"""
|
243 |
+
|
244 |
+
def __init__(
|
245 |
+
self,
|
246 |
+
channels,
|
247 |
+
emb_channels,
|
248 |
+
dropout,
|
249 |
+
out_channels=None,
|
250 |
+
use_conv=False,
|
251 |
+
dims=2,
|
252 |
+
use_checkpoint=False,
|
253 |
+
up=False,
|
254 |
+
down=False,
|
255 |
+
**kwargs,
|
256 |
+
):
|
257 |
+
super().__init__()
|
258 |
+
self.channels = channels
|
259 |
+
self.emb_channels = emb_channels
|
260 |
+
self.dropout = dropout
|
261 |
+
self.out_channels = out_channels or channels
|
262 |
+
self.use_conv = use_conv
|
263 |
+
self.use_checkpoint = use_checkpoint
|
264 |
+
|
265 |
+
self.in_layers = nn.Sequential(
|
266 |
+
normalization(channels, swish=1.0),
|
267 |
+
nn.Identity(),
|
268 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
269 |
+
)
|
270 |
+
|
271 |
+
self.updown = up or down
|
272 |
+
|
273 |
+
if up:
|
274 |
+
self.h_upd = Upsample(channels, False, dims)
|
275 |
+
self.x_upd = Upsample(channels, False, dims)
|
276 |
+
elif down:
|
277 |
+
self.h_upd = Downsample(channels, False, dims)
|
278 |
+
self.x_upd = Downsample(channels, False, dims)
|
279 |
+
else:
|
280 |
+
self.h_upd = self.x_upd = nn.Identity()
|
281 |
+
|
282 |
+
self.out_layers = nn.Sequential(
|
283 |
+
normalization(self.out_channels, swish=1.0),
|
284 |
+
nn.Dropout(p=dropout),
|
285 |
+
zero_module(
|
286 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
287 |
+
),
|
288 |
+
)
|
289 |
+
|
290 |
+
if self.out_channels == channels:
|
291 |
+
self.skip_connection = nn.Identity()
|
292 |
+
elif use_conv:
|
293 |
+
self.skip_connection = conv_nd(
|
294 |
+
dims, channels, self.out_channels, 3, padding=1
|
295 |
+
)
|
296 |
+
else:
|
297 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
298 |
+
|
299 |
+
def forward(self, x, emb=None):
|
300 |
+
"""
|
301 |
+
Apply the block to a Tensor, NOT conditioned on a timestep embedding.
|
302 |
+
|
303 |
+
:param x: an [N x C x ...] Tensor of features.
|
304 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
305 |
+
:return: an [N x C x ...] Tensor of outputs.
|
306 |
+
"""
|
307 |
+
assert emb is None
|
308 |
+
|
309 |
+
if self.updown:
|
310 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
311 |
+
h = in_rest(x)
|
312 |
+
h = self.h_upd(h)
|
313 |
+
x = self.x_upd(x)
|
314 |
+
h = in_conv(h)
|
315 |
+
else:
|
316 |
+
h = self.in_layers(x)
|
317 |
+
h = self.out_layers(h)
|
318 |
+
return self.skip_connection(x) + h
|
319 |
+
|
320 |
+
|
321 |
+
class AttentionBlock(nn.Module):
|
322 |
+
"""
|
323 |
+
An attention block that allows spatial positions to attend to each other.
|
324 |
+
|
325 |
+
Originally ported from here, but adapted to the N-d case.
|
326 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
327 |
+
"""
|
328 |
+
|
329 |
+
def __init__(
|
330 |
+
self,
|
331 |
+
channels,
|
332 |
+
num_heads=1,
|
333 |
+
num_head_channels=-1,
|
334 |
+
use_checkpoint=False,
|
335 |
+
encoder_channels=None,
|
336 |
+
):
|
337 |
+
super().__init__()
|
338 |
+
self.channels = channels
|
339 |
+
if num_head_channels == -1:
|
340 |
+
self.num_heads = num_heads
|
341 |
+
else:
|
342 |
+
assert (
|
343 |
+
channels % num_head_channels == 0
|
344 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
345 |
+
self.num_heads = channels // num_head_channels
|
346 |
+
self.use_checkpoint = use_checkpoint
|
347 |
+
self.norm = normalization(channels, swish=0.0)
|
348 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
349 |
+
self.attention = QKVAttention(self.num_heads)
|
350 |
+
|
351 |
+
if encoder_channels is not None:
|
352 |
+
self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1)
|
353 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
354 |
+
|
355 |
+
def forward(self, x, encoder_out=None, mask=None):
|
356 |
+
b, c, *spatial = x.shape
|
357 |
+
qkv = self.qkv(self.norm(x).view(b, c, -1))
|
358 |
+
if encoder_out is not None:
|
359 |
+
encoder_out = self.encoder_kv(encoder_out)
|
360 |
+
h = self.attention(qkv, encoder_out, mask=mask)
|
361 |
+
else:
|
362 |
+
h = self.attention(qkv)
|
363 |
+
h = self.proj_out(h)
|
364 |
+
return x + h.reshape(b, c, *spatial)
|
365 |
+
|
366 |
+
|
367 |
+
class QKVAttention(nn.Module):
|
368 |
+
"""
|
369 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
370 |
+
"""
|
371 |
+
|
372 |
+
def __init__(self, n_heads):
|
373 |
+
super().__init__()
|
374 |
+
self.n_heads = n_heads
|
375 |
+
|
376 |
+
def forward(self, qkv, encoder_kv=None, mask=None):
|
377 |
+
"""
|
378 |
+
Apply QKV attention.
|
379 |
+
|
380 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
381 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
382 |
+
"""
|
383 |
+
bs, width, length = qkv.shape
|
384 |
+
assert width % (3 * self.n_heads) == 0
|
385 |
+
ch = width // (3 * self.n_heads)
|
386 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
387 |
+
if encoder_kv is not None:
|
388 |
+
assert encoder_kv.shape[1] == self.n_heads * ch * 2
|
389 |
+
ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
|
390 |
+
k = th.cat([ek, k], dim=-1)
|
391 |
+
v = th.cat([ev, v], dim=-1)
|
392 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
393 |
+
weight = th.einsum("bct,bcs->bts", q * scale, k * scale)
|
394 |
+
if mask is not None:
|
395 |
+
mask = F.pad(mask, (0, length), value=0.0)
|
396 |
+
mask = (
|
397 |
+
mask.unsqueeze(1)
|
398 |
+
.expand(-1, self.n_heads, -1)
|
399 |
+
.reshape(bs * self.n_heads, 1, -1)
|
400 |
+
)
|
401 |
+
weight = weight + mask
|
402 |
+
weight = th.softmax(weight, dim=-1)
|
403 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
404 |
+
return a.reshape(bs, -1, length)
|
405 |
+
|
406 |
+
|
407 |
+
class UNetModel(nn.Module):
|
408 |
+
"""
|
409 |
+
The full UNet model with attention and timestep embedding.
|
410 |
+
|
411 |
+
:param in_channels: channels in the input Tensor.
|
412 |
+
:param model_channels: base channel count for the model.
|
413 |
+
:param out_channels: channels in the output Tensor.
|
414 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
415 |
+
:param attention_resolutions: a collection of downsample rates at which
|
416 |
+
attention will take place. May be a set, list, or tuple.
|
417 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
418 |
+
will be used.
|
419 |
+
:param dropout: the dropout probability.
|
420 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
421 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
422 |
+
downsampling.
|
423 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
424 |
+
:param clip_dim: dimension of clip feature.
|
425 |
+
:param num_classes: if specified (as an int), then this model will be
|
426 |
+
class-conditional with `num_classes` classes.
|
427 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
428 |
+
:param num_heads: the number of attention heads in each attention layer.
|
429 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
430 |
+
a fixed channel width per attention head.
|
431 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
432 |
+
of heads for upsampling. Deprecated.
|
433 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
434 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
435 |
+
:param encoder_channels: use to make the dimension of query and kv same in AttentionBlock.
|
436 |
+
:param use_time_embedding: use time embedding for condition.
|
437 |
+
"""
|
438 |
+
|
439 |
+
def __init__(
|
440 |
+
self,
|
441 |
+
in_channels,
|
442 |
+
model_channels,
|
443 |
+
out_channels,
|
444 |
+
num_res_blocks,
|
445 |
+
attention_resolutions,
|
446 |
+
dropout=0,
|
447 |
+
channel_mult=(1, 2, 4, 8),
|
448 |
+
conv_resample=True,
|
449 |
+
dims=2,
|
450 |
+
clip_dim=None,
|
451 |
+
use_checkpoint=False,
|
452 |
+
num_heads=1,
|
453 |
+
num_head_channels=-1,
|
454 |
+
num_heads_upsample=-1,
|
455 |
+
use_scale_shift_norm=False,
|
456 |
+
use_middle_attention=True,
|
457 |
+
resblock_updown=False,
|
458 |
+
encoder_channels=None,
|
459 |
+
use_time_embedding=True,
|
460 |
+
):
|
461 |
+
super().__init__()
|
462 |
+
|
463 |
+
if num_heads_upsample == -1:
|
464 |
+
num_heads_upsample = num_heads
|
465 |
+
|
466 |
+
self.in_channels = in_channels
|
467 |
+
self.model_channels = model_channels
|
468 |
+
self.out_channels = out_channels
|
469 |
+
self.num_res_blocks = num_res_blocks
|
470 |
+
self.attention_resolutions = attention_resolutions
|
471 |
+
self.dropout = dropout
|
472 |
+
self.channel_mult = channel_mult
|
473 |
+
self.conv_resample = conv_resample
|
474 |
+
self.clip_dim = clip_dim
|
475 |
+
self.use_checkpoint = use_checkpoint
|
476 |
+
self.num_heads = num_heads
|
477 |
+
self.num_head_channels = num_head_channels
|
478 |
+
self.num_heads_upsample = num_heads_upsample
|
479 |
+
self.use_middle_attention = use_middle_attention
|
480 |
+
self.use_time_embedding = use_time_embedding
|
481 |
+
|
482 |
+
if self.use_time_embedding:
|
483 |
+
time_embed_dim = model_channels * 4
|
484 |
+
self.time_embed = nn.Sequential(
|
485 |
+
linear(model_channels, time_embed_dim),
|
486 |
+
nn.SiLU(),
|
487 |
+
linear(time_embed_dim, time_embed_dim),
|
488 |
+
)
|
489 |
+
|
490 |
+
if self.clip_dim is not None:
|
491 |
+
self.clip_emb = nn.Linear(clip_dim, time_embed_dim)
|
492 |
+
else:
|
493 |
+
time_embed_dim = None
|
494 |
+
|
495 |
+
CustomResidualBlock = (
|
496 |
+
ResBlock if self.use_time_embedding else ResBlockNoTimeEmbedding
|
497 |
+
)
|
498 |
+
ch = input_ch = int(channel_mult[0] * model_channels)
|
499 |
+
self.input_blocks = nn.ModuleList(
|
500 |
+
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
|
501 |
+
)
|
502 |
+
self._feature_size = ch
|
503 |
+
input_block_chans = [ch]
|
504 |
+
ds = 1
|
505 |
+
for level, mult in enumerate(channel_mult):
|
506 |
+
for _ in range(num_res_blocks):
|
507 |
+
layers = [
|
508 |
+
CustomResidualBlock(
|
509 |
+
ch,
|
510 |
+
time_embed_dim,
|
511 |
+
dropout,
|
512 |
+
out_channels=int(mult * model_channels),
|
513 |
+
dims=dims,
|
514 |
+
use_checkpoint=use_checkpoint,
|
515 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
516 |
+
)
|
517 |
+
]
|
518 |
+
ch = int(mult * model_channels)
|
519 |
+
if ds in attention_resolutions:
|
520 |
+
layers.append(
|
521 |
+
AttentionBlock(
|
522 |
+
ch,
|
523 |
+
use_checkpoint=use_checkpoint,
|
524 |
+
num_heads=num_heads,
|
525 |
+
num_head_channels=num_head_channels,
|
526 |
+
encoder_channels=encoder_channels,
|
527 |
+
)
|
528 |
+
)
|
529 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
530 |
+
self._feature_size += ch
|
531 |
+
input_block_chans.append(ch)
|
532 |
+
if level != len(channel_mult) - 1:
|
533 |
+
out_ch = ch
|
534 |
+
self.input_blocks.append(
|
535 |
+
TimestepEmbedSequential(
|
536 |
+
CustomResidualBlock(
|
537 |
+
ch,
|
538 |
+
time_embed_dim,
|
539 |
+
dropout,
|
540 |
+
out_channels=out_ch,
|
541 |
+
dims=dims,
|
542 |
+
use_checkpoint=use_checkpoint,
|
543 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
544 |
+
down=True,
|
545 |
+
)
|
546 |
+
if resblock_updown
|
547 |
+
else Downsample(
|
548 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
549 |
+
)
|
550 |
+
)
|
551 |
+
)
|
552 |
+
ch = out_ch
|
553 |
+
input_block_chans.append(ch)
|
554 |
+
ds *= 2
|
555 |
+
self._feature_size += ch
|
556 |
+
|
557 |
+
self.middle_block = TimestepEmbedSequential(
|
558 |
+
CustomResidualBlock(
|
559 |
+
ch,
|
560 |
+
time_embed_dim,
|
561 |
+
dropout,
|
562 |
+
dims=dims,
|
563 |
+
use_checkpoint=use_checkpoint,
|
564 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
565 |
+
),
|
566 |
+
*(
|
567 |
+
AttentionBlock(
|
568 |
+
ch,
|
569 |
+
use_checkpoint=use_checkpoint,
|
570 |
+
num_heads=num_heads,
|
571 |
+
num_head_channels=num_head_channels,
|
572 |
+
encoder_channels=encoder_channels,
|
573 |
+
),
|
574 |
+
)
|
575 |
+
if self.use_middle_attention
|
576 |
+
else tuple(), # add AttentionBlock or not
|
577 |
+
CustomResidualBlock(
|
578 |
+
ch,
|
579 |
+
time_embed_dim,
|
580 |
+
dropout,
|
581 |
+
dims=dims,
|
582 |
+
use_checkpoint=use_checkpoint,
|
583 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
584 |
+
),
|
585 |
+
)
|
586 |
+
self._feature_size += ch
|
587 |
+
|
588 |
+
self.output_blocks = nn.ModuleList([])
|
589 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
590 |
+
for i in range(num_res_blocks + 1):
|
591 |
+
ich = input_block_chans.pop()
|
592 |
+
layers = [
|
593 |
+
CustomResidualBlock(
|
594 |
+
ch + ich,
|
595 |
+
time_embed_dim,
|
596 |
+
dropout,
|
597 |
+
out_channels=int(model_channels * mult),
|
598 |
+
dims=dims,
|
599 |
+
use_checkpoint=use_checkpoint,
|
600 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
601 |
+
)
|
602 |
+
]
|
603 |
+
ch = int(model_channels * mult)
|
604 |
+
if ds in attention_resolutions:
|
605 |
+
layers.append(
|
606 |
+
AttentionBlock(
|
607 |
+
ch,
|
608 |
+
use_checkpoint=use_checkpoint,
|
609 |
+
num_heads=num_heads_upsample,
|
610 |
+
num_head_channels=num_head_channels,
|
611 |
+
encoder_channels=encoder_channels,
|
612 |
+
)
|
613 |
+
)
|
614 |
+
if level and i == num_res_blocks:
|
615 |
+
out_ch = ch
|
616 |
+
layers.append(
|
617 |
+
CustomResidualBlock(
|
618 |
+
ch,
|
619 |
+
time_embed_dim,
|
620 |
+
dropout,
|
621 |
+
out_channels=out_ch,
|
622 |
+
dims=dims,
|
623 |
+
use_checkpoint=use_checkpoint,
|
624 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
625 |
+
up=True,
|
626 |
+
)
|
627 |
+
if resblock_updown
|
628 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
629 |
+
)
|
630 |
+
ds //= 2
|
631 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
632 |
+
self._feature_size += ch
|
633 |
+
|
634 |
+
self.out = nn.Sequential(
|
635 |
+
normalization(ch, swish=1.0),
|
636 |
+
nn.Identity(),
|
637 |
+
zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
|
638 |
+
)
|
639 |
+
|
640 |
+
def forward(self, x, timesteps, y=None):
|
641 |
+
"""
|
642 |
+
Apply the model to an input batch.
|
643 |
+
|
644 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
645 |
+
:param timesteps: a 1-D batch of timesteps.
|
646 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
647 |
+
:return: an [N x C x ...] Tensor of outputs.
|
648 |
+
"""
|
649 |
+
assert (y is not None) == (
|
650 |
+
self.clip_dim is not None
|
651 |
+
), "must specify y if and only if the model is clip-rep-conditional"
|
652 |
+
|
653 |
+
hs = []
|
654 |
+
if self.use_time_embedding:
|
655 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
656 |
+
if self.clip_dim is not None:
|
657 |
+
emb = emb + self.clip_emb(y)
|
658 |
+
else:
|
659 |
+
emb = None
|
660 |
+
|
661 |
+
h = x
|
662 |
+
for module in self.input_blocks:
|
663 |
+
h = module(h, emb)
|
664 |
+
hs.append(h)
|
665 |
+
h = self.middle_block(h, emb)
|
666 |
+
for module in self.output_blocks:
|
667 |
+
h = th.cat([h, hs.pop()], dim=1)
|
668 |
+
h = module(h, emb)
|
669 |
+
|
670 |
+
return self.out(h)
|
671 |
+
|
672 |
+
|
673 |
+
class SuperResUNetModel(UNetModel):
|
674 |
+
"""
|
675 |
+
A UNetModel that performs super-resolution.
|
676 |
+
|
677 |
+
Expects an extra kwarg `low_res` to condition on a low-resolution image.
|
678 |
+
Assumes that the shape of low-resolution and the input should be the same.
|
679 |
+
"""
|
680 |
+
|
681 |
+
def __init__(self, *args, **kwargs):
|
682 |
+
if "in_channels" in kwargs:
|
683 |
+
kwargs = dict(kwargs)
|
684 |
+
kwargs["in_channels"] = kwargs["in_channels"] * 2
|
685 |
+
else:
|
686 |
+
# Curse you, Python. Or really, just curse positional arguments :|.
|
687 |
+
args = list(args)
|
688 |
+
args[1] = args[1] * 2
|
689 |
+
super().__init__(*args, **kwargs)
|
690 |
+
|
691 |
+
def forward(self, x, timesteps, low_res=None, **kwargs):
|
692 |
+
_, _, new_height, new_width = x.shape
|
693 |
+
assert new_height == low_res.shape[2] and new_width == low_res.shape[3]
|
694 |
+
|
695 |
+
x = th.cat([x, low_res], dim=1)
|
696 |
+
return super().forward(x, timesteps, **kwargs)
|
697 |
+
|
698 |
+
|
699 |
+
class PLMImUNet(UNetModel):
|
700 |
+
"""
|
701 |
+
A UNetModel that conditions on text with a pretrained text encoder in CLIP.
|
702 |
+
|
703 |
+
:param text_ctx: number of text tokens to expect.
|
704 |
+
:param xf_width: width of the transformer.
|
705 |
+
:param clip_emb_mult: #extra tokens by projecting clip text feature.
|
706 |
+
:param clip_emb_type: type of condition (here, we fix clip image feature).
|
707 |
+
:param clip_emb_drop: dropout rato of clip image feature for cfg.
|
708 |
+
"""
|
709 |
+
|
710 |
+
def __init__(
|
711 |
+
self,
|
712 |
+
text_ctx,
|
713 |
+
xf_width,
|
714 |
+
*args,
|
715 |
+
clip_emb_mult=None,
|
716 |
+
clip_emb_type="image",
|
717 |
+
clip_emb_drop=0.0,
|
718 |
+
**kwargs,
|
719 |
+
):
|
720 |
+
self.text_ctx = text_ctx
|
721 |
+
self.xf_width = xf_width
|
722 |
+
self.clip_emb_mult = clip_emb_mult
|
723 |
+
self.clip_emb_type = clip_emb_type
|
724 |
+
self.clip_emb_drop = clip_emb_drop
|
725 |
+
|
726 |
+
if not xf_width:
|
727 |
+
super().__init__(*args, **kwargs, encoder_channels=None)
|
728 |
+
else:
|
729 |
+
super().__init__(*args, **kwargs, encoder_channels=xf_width)
|
730 |
+
|
731 |
+
# Project text encoded feat seq from pre-trained text encoder in CLIP
|
732 |
+
self.text_seq_proj = nn.Sequential(
|
733 |
+
nn.Linear(self.clip_dim, xf_width),
|
734 |
+
LayerNorm(xf_width),
|
735 |
+
)
|
736 |
+
# Project CLIP text feat
|
737 |
+
self.text_feat_proj = nn.Linear(self.clip_dim, self.model_channels * 4)
|
738 |
+
|
739 |
+
assert clip_emb_mult is not None
|
740 |
+
assert clip_emb_type == "image"
|
741 |
+
assert self.clip_dim is not None, "CLIP representation dim should be specified"
|
742 |
+
|
743 |
+
self.clip_tok_proj = nn.Linear(
|
744 |
+
self.clip_dim, self.xf_width * self.clip_emb_mult
|
745 |
+
)
|
746 |
+
if self.clip_emb_drop > 0:
|
747 |
+
self.cf_param = nn.Parameter(th.empty(self.clip_dim, dtype=th.float32))
|
748 |
+
|
749 |
+
def proc_clip_emb_drop(self, feat):
|
750 |
+
if self.clip_emb_drop > 0:
|
751 |
+
bsz, feat_dim = feat.shape
|
752 |
+
assert (
|
753 |
+
feat_dim == self.clip_dim
|
754 |
+
), f"CLIP input dim: {feat_dim}, model CLIP dim: {self.clip_dim}"
|
755 |
+
drop_idx = th.rand((bsz,), device=feat.device) < self.clip_emb_drop
|
756 |
+
feat = th.where(
|
757 |
+
drop_idx[..., None], self.cf_param[None].type_as(feat), feat
|
758 |
+
)
|
759 |
+
return feat
|
760 |
+
|
761 |
+
def forward(
|
762 |
+
self, x, timesteps, txt_feat=None, txt_feat_seq=None, mask=None, y=None
|
763 |
+
):
|
764 |
+
bsz = x.shape[0]
|
765 |
+
hs = []
|
766 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
767 |
+
emb = emb + self.clip_emb(y)
|
768 |
+
|
769 |
+
xf_out = self.text_seq_proj(txt_feat_seq)
|
770 |
+
xf_out = xf_out.permute(0, 2, 1)
|
771 |
+
emb = emb + self.text_feat_proj(txt_feat)
|
772 |
+
xf_out = th.cat(
|
773 |
+
[
|
774 |
+
self.clip_tok_proj(y).reshape(bsz, -1, self.clip_emb_mult),
|
775 |
+
xf_out,
|
776 |
+
],
|
777 |
+
dim=2,
|
778 |
+
)
|
779 |
+
mask = F.pad(mask, (self.clip_emb_mult, 0), value=True)
|
780 |
+
mask = th.where(mask, 0.0, float("-inf"))
|
781 |
+
|
782 |
+
h = x
|
783 |
+
for module in self.input_blocks:
|
784 |
+
h = module(h, emb, xf_out, mask=mask)
|
785 |
+
hs.append(h)
|
786 |
+
h = self.middle_block(h, emb, xf_out, mask=mask)
|
787 |
+
for module in self.output_blocks:
|
788 |
+
h = th.cat([h, hs.pop()], dim=1)
|
789 |
+
h = module(h, emb, xf_out, mask=mask)
|
790 |
+
h = self.out(h)
|
791 |
+
|
792 |
+
return h
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/modules/xf.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Adapted from the repos below:
|
3 |
+
# (a) Guided-Diffusion (https://github.com/openai/guided-diffusion)
|
4 |
+
# (b) CLIP ViT (https://github.com/openai/CLIP/)
|
5 |
+
# ------------------------------------------------------------------------------------
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import torch as th
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from .nn import timestep_embedding
|
14 |
+
|
15 |
+
|
16 |
+
def convert_module_to_f16(param):
|
17 |
+
"""
|
18 |
+
Convert primitive modules to float16.
|
19 |
+
"""
|
20 |
+
if isinstance(param, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
21 |
+
param.weight.data = param.weight.data.half()
|
22 |
+
if param.bias is not None:
|
23 |
+
param.bias.data = param.bias.data.half()
|
24 |
+
|
25 |
+
|
26 |
+
class LayerNorm(nn.LayerNorm):
|
27 |
+
"""
|
28 |
+
Implementation that supports fp16 inputs but fp32 gains/biases.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def forward(self, x: th.Tensor):
|
32 |
+
return super().forward(x.float()).to(x.dtype)
|
33 |
+
|
34 |
+
|
35 |
+
class MultiheadAttention(nn.Module):
|
36 |
+
def __init__(self, n_ctx, width, heads):
|
37 |
+
super().__init__()
|
38 |
+
self.n_ctx = n_ctx
|
39 |
+
self.width = width
|
40 |
+
self.heads = heads
|
41 |
+
self.c_qkv = nn.Linear(width, width * 3)
|
42 |
+
self.c_proj = nn.Linear(width, width)
|
43 |
+
self.attention = QKVMultiheadAttention(heads, n_ctx)
|
44 |
+
|
45 |
+
def forward(self, x, mask=None):
|
46 |
+
x = self.c_qkv(x)
|
47 |
+
x = self.attention(x, mask=mask)
|
48 |
+
x = self.c_proj(x)
|
49 |
+
return x
|
50 |
+
|
51 |
+
|
52 |
+
class MLP(nn.Module):
|
53 |
+
def __init__(self, width):
|
54 |
+
super().__init__()
|
55 |
+
self.width = width
|
56 |
+
self.c_fc = nn.Linear(width, width * 4)
|
57 |
+
self.c_proj = nn.Linear(width * 4, width)
|
58 |
+
self.gelu = nn.GELU()
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
return self.c_proj(self.gelu(self.c_fc(x)))
|
62 |
+
|
63 |
+
|
64 |
+
class QKVMultiheadAttention(nn.Module):
|
65 |
+
def __init__(self, n_heads: int, n_ctx: int):
|
66 |
+
super().__init__()
|
67 |
+
self.n_heads = n_heads
|
68 |
+
self.n_ctx = n_ctx
|
69 |
+
|
70 |
+
def forward(self, qkv, mask=None):
|
71 |
+
bs, n_ctx, width = qkv.shape
|
72 |
+
attn_ch = width // self.n_heads // 3
|
73 |
+
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
74 |
+
qkv = qkv.view(bs, n_ctx, self.n_heads, -1)
|
75 |
+
q, k, v = th.split(qkv, attn_ch, dim=-1)
|
76 |
+
weight = th.einsum("bthc,bshc->bhts", q * scale, k * scale)
|
77 |
+
wdtype = weight.dtype
|
78 |
+
if mask is not None:
|
79 |
+
weight = weight + mask[:, None, ...]
|
80 |
+
weight = th.softmax(weight, dim=-1).type(wdtype)
|
81 |
+
return th.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
82 |
+
|
83 |
+
|
84 |
+
class ResidualAttentionBlock(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
n_ctx: int,
|
88 |
+
width: int,
|
89 |
+
heads: int,
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.attn = MultiheadAttention(
|
94 |
+
n_ctx,
|
95 |
+
width,
|
96 |
+
heads,
|
97 |
+
)
|
98 |
+
self.ln_1 = LayerNorm(width)
|
99 |
+
self.mlp = MLP(width)
|
100 |
+
self.ln_2 = LayerNorm(width)
|
101 |
+
|
102 |
+
def forward(self, x, mask=None):
|
103 |
+
x = x + self.attn(self.ln_1(x), mask=mask)
|
104 |
+
x = x + self.mlp(self.ln_2(x))
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class Transformer(nn.Module):
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
n_ctx: int,
|
112 |
+
width: int,
|
113 |
+
layers: int,
|
114 |
+
heads: int,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
self.n_ctx = n_ctx
|
118 |
+
self.width = width
|
119 |
+
self.layers = layers
|
120 |
+
self.resblocks = nn.ModuleList(
|
121 |
+
[
|
122 |
+
ResidualAttentionBlock(
|
123 |
+
n_ctx,
|
124 |
+
width,
|
125 |
+
heads,
|
126 |
+
)
|
127 |
+
for _ in range(layers)
|
128 |
+
]
|
129 |
+
)
|
130 |
+
|
131 |
+
def forward(self, x, mask=None):
|
132 |
+
for block in self.resblocks:
|
133 |
+
x = block(x, mask=mask)
|
134 |
+
return x
|
135 |
+
|
136 |
+
|
137 |
+
class PriorTransformer(nn.Module):
|
138 |
+
"""
|
139 |
+
A Causal Transformer that conditions on CLIP text embedding, text.
|
140 |
+
|
141 |
+
:param text_ctx: number of text tokens to expect.
|
142 |
+
:param xf_width: width of the transformer.
|
143 |
+
:param xf_layers: depth of the transformer.
|
144 |
+
:param xf_heads: heads in the transformer.
|
145 |
+
:param xf_final_ln: use a LayerNorm after the output layer.
|
146 |
+
:param clip_dim: dimension of clip feature.
|
147 |
+
"""
|
148 |
+
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
text_ctx,
|
152 |
+
xf_width,
|
153 |
+
xf_layers,
|
154 |
+
xf_heads,
|
155 |
+
xf_final_ln,
|
156 |
+
clip_dim,
|
157 |
+
):
|
158 |
+
super().__init__()
|
159 |
+
|
160 |
+
self.text_ctx = text_ctx
|
161 |
+
self.xf_width = xf_width
|
162 |
+
self.xf_layers = xf_layers
|
163 |
+
self.xf_heads = xf_heads
|
164 |
+
self.clip_dim = clip_dim
|
165 |
+
self.ext_len = 4
|
166 |
+
|
167 |
+
self.time_embed = nn.Sequential(
|
168 |
+
nn.Linear(xf_width, xf_width),
|
169 |
+
nn.SiLU(),
|
170 |
+
nn.Linear(xf_width, xf_width),
|
171 |
+
)
|
172 |
+
self.text_enc_proj = nn.Linear(clip_dim, xf_width)
|
173 |
+
self.text_emb_proj = nn.Linear(clip_dim, xf_width)
|
174 |
+
self.clip_img_proj = nn.Linear(clip_dim, xf_width)
|
175 |
+
self.out_proj = nn.Linear(xf_width, clip_dim)
|
176 |
+
self.transformer = Transformer(
|
177 |
+
text_ctx + self.ext_len,
|
178 |
+
xf_width,
|
179 |
+
xf_layers,
|
180 |
+
xf_heads,
|
181 |
+
)
|
182 |
+
if xf_final_ln:
|
183 |
+
self.final_ln = LayerNorm(xf_width)
|
184 |
+
else:
|
185 |
+
self.final_ln = None
|
186 |
+
|
187 |
+
self.positional_embedding = nn.Parameter(
|
188 |
+
th.empty(1, text_ctx + self.ext_len, xf_width)
|
189 |
+
)
|
190 |
+
self.prd_emb = nn.Parameter(th.randn((1, 1, xf_width)))
|
191 |
+
|
192 |
+
nn.init.normal_(self.prd_emb, std=0.01)
|
193 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
194 |
+
|
195 |
+
def forward(
|
196 |
+
self,
|
197 |
+
x,
|
198 |
+
timesteps,
|
199 |
+
text_emb=None,
|
200 |
+
text_enc=None,
|
201 |
+
mask=None,
|
202 |
+
causal_mask=None,
|
203 |
+
):
|
204 |
+
bsz = x.shape[0]
|
205 |
+
mask = F.pad(mask, (0, self.ext_len), value=True)
|
206 |
+
|
207 |
+
t_emb = self.time_embed(timestep_embedding(timesteps, self.xf_width))
|
208 |
+
text_enc = self.text_enc_proj(text_enc)
|
209 |
+
text_emb = self.text_emb_proj(text_emb)
|
210 |
+
x = self.clip_img_proj(x)
|
211 |
+
|
212 |
+
input_seq = [
|
213 |
+
text_enc,
|
214 |
+
text_emb[:, None, :],
|
215 |
+
t_emb[:, None, :],
|
216 |
+
x[:, None, :],
|
217 |
+
self.prd_emb.to(x.dtype).expand(bsz, -1, -1),
|
218 |
+
]
|
219 |
+
input = th.cat(input_seq, dim=1)
|
220 |
+
input = input + self.positional_embedding.to(input.dtype)
|
221 |
+
|
222 |
+
mask = th.where(mask, 0.0, float("-inf"))
|
223 |
+
mask = (mask[:, None, :] + causal_mask).to(input.dtype)
|
224 |
+
|
225 |
+
out = self.transformer(input, mask=mask)
|
226 |
+
if self.final_ln is not None:
|
227 |
+
out = self.final_ln(out)
|
228 |
+
|
229 |
+
out = self.out_proj(out[:, -1])
|
230 |
+
|
231 |
+
return out
|
repositories/stable-diffusion-stability-ai/ldm/modules/karlo/kakao/sampler.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Karlo-v1.0.alpha
|
3 |
+
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
|
4 |
+
|
5 |
+
# source: https://github.com/kakaobrain/karlo/blob/3c68a50a16d76b48a15c181d1c5a5e0879a90f85/karlo/sampler/t2i.py#L15
|
6 |
+
# ------------------------------------------------------------------------------------
|
7 |
+
|
8 |
+
from typing import Iterator
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torchvision.transforms.functional as TVF
|
12 |
+
from torchvision.transforms import InterpolationMode
|
13 |
+
|
14 |
+
from .template import BaseSampler, CKPT_PATH
|
15 |
+
|
16 |
+
|
17 |
+
class T2ISampler(BaseSampler):
|
18 |
+
"""
|
19 |
+
A sampler for text-to-image generation.
|
20 |
+
:param root_dir: directory for model checkpoints.
|
21 |
+
:param sampling_type: ["default", "fast"]
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
root_dir: str,
|
27 |
+
sampling_type: str = "default",
|
28 |
+
):
|
29 |
+
super().__init__(root_dir, sampling_type)
|
30 |
+
|
31 |
+
@classmethod
|
32 |
+
def from_pretrained(
|
33 |
+
cls,
|
34 |
+
root_dir: str,
|
35 |
+
clip_model_path: str,
|
36 |
+
clip_stat_path: str,
|
37 |
+
sampling_type: str = "default",
|
38 |
+
):
|
39 |
+
|
40 |
+
model = cls(
|
41 |
+
root_dir=root_dir,
|
42 |
+
sampling_type=sampling_type,
|
43 |
+
)
|
44 |
+
model.load_clip(clip_model_path)
|
45 |
+
model.load_prior(
|
46 |
+
f"{CKPT_PATH['prior']}",
|
47 |
+
clip_stat_path=clip_stat_path,
|
48 |
+
prior_config="configs/karlo/prior_1B_vit_l.yaml"
|
49 |
+
)
|
50 |
+
model.load_decoder(f"{CKPT_PATH['decoder']}", decoder_config="configs/karlo/decoder_900M_vit_l.yaml")
|
51 |
+
model.load_sr_64_256(CKPT_PATH["sr_256"], sr_config="configs/karlo/improved_sr_64_256_1.4B.yaml")
|
52 |
+
return model
|
53 |
+
|
54 |
+
def preprocess(
|
55 |
+
self,
|
56 |
+
prompt: str,
|
57 |
+
bsz: int,
|
58 |
+
):
|
59 |
+
"""Setup prompts & cfg scales"""
|
60 |
+
prompts_batch = [prompt for _ in range(bsz)]
|
61 |
+
|
62 |
+
prior_cf_scales_batch = [self._prior_cf_scale] * len(prompts_batch)
|
63 |
+
prior_cf_scales_batch = torch.tensor(prior_cf_scales_batch, device="cuda")
|
64 |
+
|
65 |
+
decoder_cf_scales_batch = [self._decoder_cf_scale] * len(prompts_batch)
|
66 |
+
decoder_cf_scales_batch = torch.tensor(decoder_cf_scales_batch, device="cuda")
|
67 |
+
|
68 |
+
""" Get CLIP text feature """
|
69 |
+
clip_model = self._clip
|
70 |
+
tokenizer = self._tokenizer
|
71 |
+
max_txt_length = self._prior.model.text_ctx
|
72 |
+
|
73 |
+
tok, mask = tokenizer.padded_tokens_and_mask(prompts_batch, max_txt_length)
|
74 |
+
cf_token, cf_mask = tokenizer.padded_tokens_and_mask([""], max_txt_length)
|
75 |
+
if not (cf_token.shape == tok.shape):
|
76 |
+
cf_token = cf_token.expand(tok.shape[0], -1)
|
77 |
+
cf_mask = cf_mask.expand(tok.shape[0], -1)
|
78 |
+
|
79 |
+
tok = torch.cat([tok, cf_token], dim=0)
|
80 |
+
mask = torch.cat([mask, cf_mask], dim=0)
|
81 |
+
|
82 |
+
tok, mask = tok.to(device="cuda"), mask.to(device="cuda")
|
83 |
+
txt_feat, txt_feat_seq = clip_model.encode_text(tok)
|
84 |
+
|
85 |
+
return (
|
86 |
+
prompts_batch,
|
87 |
+
prior_cf_scales_batch,
|
88 |
+
decoder_cf_scales_batch,
|
89 |
+
txt_feat,
|
90 |
+
txt_feat_seq,
|
91 |
+
tok,
|
92 |
+
mask,
|
93 |
+
)
|
94 |
+
|
95 |
+
def __call__(
|
96 |
+
self,
|
97 |
+
prompt: str,
|
98 |
+
bsz: int,
|
99 |
+
progressive_mode=None,
|
100 |
+
) -> Iterator[torch.Tensor]:
|
101 |
+
assert progressive_mode in ("loop", "stage", "final")
|
102 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
103 |
+
(
|
104 |
+
prompts_batch,
|
105 |
+
prior_cf_scales_batch,
|
106 |
+
decoder_cf_scales_batch,
|
107 |
+
txt_feat,
|
108 |
+
txt_feat_seq,
|
109 |
+
tok,
|
110 |
+
mask,
|
111 |
+
) = self.preprocess(
|
112 |
+
prompt,
|
113 |
+
bsz,
|
114 |
+
)
|
115 |
+
|
116 |
+
""" Transform CLIP text feature into image feature """
|
117 |
+
img_feat = self._prior(
|
118 |
+
txt_feat,
|
119 |
+
txt_feat_seq,
|
120 |
+
mask,
|
121 |
+
prior_cf_scales_batch,
|
122 |
+
timestep_respacing=self._prior_sm,
|
123 |
+
)
|
124 |
+
|
125 |
+
""" Generate 64x64px images """
|
126 |
+
images_64_outputs = self._decoder(
|
127 |
+
txt_feat,
|
128 |
+
txt_feat_seq,
|
129 |
+
tok,
|
130 |
+
mask,
|
131 |
+
img_feat,
|
132 |
+
cf_guidance_scales=decoder_cf_scales_batch,
|
133 |
+
timestep_respacing=self._decoder_sm,
|
134 |
+
)
|
135 |
+
|
136 |
+
images_64 = None
|
137 |
+
for k, out in enumerate(images_64_outputs):
|
138 |
+
images_64 = out
|
139 |
+
if progressive_mode == "loop":
|
140 |
+
yield torch.clamp(out * 0.5 + 0.5, 0.0, 1.0)
|
141 |
+
if progressive_mode == "stage":
|
142 |
+
yield torch.clamp(out * 0.5 + 0.5, 0.0, 1.0)
|
143 |
+
|
144 |
+
images_64 = torch.clamp(images_64, -1, 1)
|
145 |
+
|
146 |
+
""" Upsample 64x64 to 256x256 """
|
147 |
+
images_256 = TVF.resize(
|
148 |
+
images_64,
|
149 |
+
[256, 256],
|
150 |
+
interpolation=InterpolationMode.BICUBIC,
|
151 |
+
antialias=True,
|
152 |
+
)
|
153 |
+
images_256_outputs = self._sr_64_256(
|
154 |
+
images_256, timestep_respacing=self._sr_sm
|
155 |
+
)
|
156 |
+
|
157 |
+
for k, out in enumerate(images_256_outputs):
|
158 |
+
images_256 = out
|
159 |
+
if progressive_mode == "loop":
|
160 |
+
yield torch.clamp(out * 0.5 + 0.5, 0.0, 1.0)
|
161 |
+
if progressive_mode == "stage":
|
162 |
+
yield torch.clamp(out * 0.5 + 0.5, 0.0, 1.0)
|
163 |
+
|
164 |
+
yield torch.clamp(images_256 * 0.5 + 0.5, 0.0, 1.0)
|
165 |
+
|
166 |
+
|
167 |
+
class PriorSampler(BaseSampler):
|
168 |
+
"""
|
169 |
+
A sampler for text-to-image generation, but only the prior.
|
170 |
+
:param root_dir: directory for model checkpoints.
|
171 |
+
:param sampling_type: ["default", "fast"]
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
root_dir: str,
|
177 |
+
sampling_type: str = "default",
|
178 |
+
):
|
179 |
+
super().__init__(root_dir, sampling_type)
|
180 |
+
|
181 |
+
@classmethod
|
182 |
+
def from_pretrained(
|
183 |
+
cls,
|
184 |
+
root_dir: str,
|
185 |
+
clip_model_path: str,
|
186 |
+
clip_stat_path: str,
|
187 |
+
sampling_type: str = "default",
|
188 |
+
):
|
189 |
+
model = cls(
|
190 |
+
root_dir=root_dir,
|
191 |
+
sampling_type=sampling_type,
|
192 |
+
)
|
193 |
+
model.load_clip(clip_model_path)
|
194 |
+
model.load_prior(
|
195 |
+
f"{CKPT_PATH['prior']}",
|
196 |
+
clip_stat_path=clip_stat_path,
|
197 |
+
prior_config="configs/karlo/prior_1B_vit_l.yaml"
|
198 |
+
)
|
199 |
+
return model
|
200 |
+
|
201 |
+
def preprocess(
|
202 |
+
self,
|
203 |
+
prompt: str,
|
204 |
+
bsz: int,
|
205 |
+
):
|
206 |
+
"""Setup prompts & cfg scales"""
|
207 |
+
prompts_batch = [prompt for _ in range(bsz)]
|
208 |
+
|
209 |
+
prior_cf_scales_batch = [self._prior_cf_scale] * len(prompts_batch)
|
210 |
+
prior_cf_scales_batch = torch.tensor(prior_cf_scales_batch, device="cuda")
|
211 |
+
|
212 |
+
decoder_cf_scales_batch = [self._decoder_cf_scale] * len(prompts_batch)
|
213 |
+
decoder_cf_scales_batch = torch.tensor(decoder_cf_scales_batch, device="cuda")
|
214 |
+
|
215 |
+
""" Get CLIP text feature """
|
216 |
+
clip_model = self._clip
|
217 |
+
tokenizer = self._tokenizer
|
218 |
+
max_txt_length = self._prior.model.text_ctx
|
219 |
+
|
220 |
+
tok, mask = tokenizer.padded_tokens_and_mask(prompts_batch, max_txt_length)
|
221 |
+
cf_token, cf_mask = tokenizer.padded_tokens_and_mask([""], max_txt_length)
|
222 |
+
if not (cf_token.shape == tok.shape):
|
223 |
+
cf_token = cf_token.expand(tok.shape[0], -1)
|
224 |
+
cf_mask = cf_mask.expand(tok.shape[0], -1)
|
225 |
+
|
226 |
+
tok = torch.cat([tok, cf_token], dim=0)
|
227 |
+
mask = torch.cat([mask, cf_mask], dim=0)
|
228 |
+
|
229 |
+
tok, mask = tok.to(device="cuda"), mask.to(device="cuda")
|
230 |
+
txt_feat, txt_feat_seq = clip_model.encode_text(tok)
|
231 |
+
|
232 |
+
return (
|
233 |
+
prompts_batch,
|
234 |
+
prior_cf_scales_batch,
|
235 |
+
decoder_cf_scales_batch,
|
236 |
+
txt_feat,
|
237 |
+
txt_feat_seq,
|
238 |
+
tok,
|
239 |
+
mask,
|
240 |
+
)
|
241 |
+
|
242 |
+
def __call__(
|
243 |
+
self,
|
244 |
+
prompt: str,
|
245 |
+
bsz: int,
|
246 |
+
progressive_mode=None,
|
247 |
+
) -> Iterator[torch.Tensor]:
|
248 |
+
assert progressive_mode in ("loop", "stage", "final")
|
249 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
250 |
+
(
|
251 |
+
prompts_batch,
|
252 |
+
prior_cf_scales_batch,
|
253 |
+
decoder_cf_scales_batch,
|
254 |
+
txt_feat,
|
255 |
+
txt_feat_seq,
|
256 |
+
tok,
|
257 |
+
mask,
|
258 |
+
) = self.preprocess(
|
259 |
+
prompt,
|
260 |
+
bsz,
|
261 |
+
)
|
262 |
+
|
263 |
+
""" Transform CLIP text feature into image feature """
|
264 |
+
img_feat = self._prior(
|
265 |
+
txt_feat,
|
266 |
+
txt_feat_seq,
|
267 |
+
mask,
|
268 |
+
prior_cf_scales_batch,
|
269 |
+
timestep_respacing=self._prior_sm,
|
270 |
+
)
|
271 |
+
|
272 |
+
yield img_feat
|