|
import os |
|
import json |
|
import random |
|
|
|
from torch.utils.data import Dataset |
|
from torchvision.datasets.utils import download_url |
|
|
|
from PIL import Image |
|
|
|
from data.utils import pre_caption |
|
|
|
class nlvr_dataset(Dataset): |
|
def __init__(self, transform, image_root, ann_root, split): |
|
''' |
|
image_root (string): Root directory of images |
|
ann_root (string): directory to store the annotation file |
|
split (string): train, val or test |
|
''' |
|
urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json', |
|
'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json', |
|
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'} |
|
filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'} |
|
|
|
download_url(urls[split],ann_root) |
|
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r')) |
|
|
|
self.transform = transform |
|
self.image_root = image_root |
|
|
|
|
|
def __len__(self): |
|
return len(self.annotation) |
|
|
|
|
|
def __getitem__(self, index): |
|
|
|
ann = self.annotation[index] |
|
|
|
image0_path = os.path.join(self.image_root,ann['images'][0]) |
|
image0 = Image.open(image0_path).convert('RGB') |
|
image0 = self.transform(image0) |
|
|
|
image1_path = os.path.join(self.image_root,ann['images'][1]) |
|
image1 = Image.open(image1_path).convert('RGB') |
|
image1 = self.transform(image1) |
|
|
|
sentence = pre_caption(ann['sentence'], 40) |
|
|
|
if ann['label']=='True': |
|
label = 1 |
|
else: |
|
label = 0 |
|
|
|
words = sentence.split(' ') |
|
|
|
if 'left' not in words and 'right' not in words: |
|
if random.random()<0.5: |
|
return image0, image1, sentence, label |
|
else: |
|
return image1, image0, sentence, label |
|
else: |
|
if random.random()<0.5: |
|
return image0, image1, sentence, label |
|
else: |
|
new_words = [] |
|
for word in words: |
|
if word=='left': |
|
new_words.append('right') |
|
elif word=='right': |
|
new_words.append('left') |
|
else: |
|
new_words.append(word) |
|
|
|
sentence = ' '.join(new_words) |
|
return image1, image0, sentence, label |
|
|
|
|
|
|