|
''' |
|
* Copyright (c) 2022, salesforce.com, inc. |
|
* All rights reserved. |
|
* SPDX-License-Identifier: BSD-3-Clause |
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
* By Junnan Li |
|
''' |
|
import argparse |
|
import os |
|
import ruamel_yaml as yaml |
|
import numpy as np |
|
import random |
|
import time |
|
import datetime |
|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed as dist |
|
from torch.utils.data import DataLoader |
|
|
|
from models.blip_retrieval import blip_retrieval |
|
import utils |
|
from utils import cosine_lr_schedule |
|
from data import create_dataset, create_sampler, create_loader |
|
|
|
|
|
def train(model, data_loader, optimizer, epoch, device, config): |
|
|
|
model.train() |
|
|
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) |
|
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) |
|
header = 'Train Epoch: [{}]'.format(epoch) |
|
print_freq = 50 |
|
|
|
for i,(image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): |
|
image = image.to(device,non_blocking=True) |
|
idx = idx.to(device,non_blocking=True) |
|
|
|
if epoch>0: |
|
alpha = config['alpha'] |
|
else: |
|
alpha = config['alpha']*min(1,i/len(data_loader)) |
|
|
|
loss_ita, loss_itm = model(image, caption, alpha=alpha, idx=idx) |
|
loss = loss_ita + loss_itm |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
metric_logger.update(loss_itm=loss_itm.item()) |
|
metric_logger.update(loss_ita=loss_ita.item()) |
|
metric_logger.update(lr=optimizer.param_groups[0]["lr"]) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger.global_avg()) |
|
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} |
|
|
|
|
|
@torch.no_grad() |
|
def evaluation(model, data_loader, device, config): |
|
|
|
model.eval() |
|
|
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
header = 'Evaluation:' |
|
|
|
print('Computing features for evaluation...') |
|
start_time = time.time() |
|
|
|
texts = data_loader.dataset.text |
|
num_text = len(texts) |
|
text_bs = 256 |
|
text_ids = [] |
|
text_embeds = [] |
|
text_atts = [] |
|
for i in range(0, num_text, text_bs): |
|
text = texts[i: min(num_text, i+text_bs)] |
|
text_input = model.tokenizer(text, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(device) |
|
text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask, mode='text') |
|
text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:,0,:])) |
|
text_embeds.append(text_embed) |
|
text_ids.append(text_input.input_ids) |
|
text_atts.append(text_input.attention_mask) |
|
|
|
text_embeds = torch.cat(text_embeds,dim=0) |
|
text_ids = torch.cat(text_ids,dim=0) |
|
text_atts = torch.cat(text_atts,dim=0) |
|
text_ids[:,0] = model.tokenizer.enc_token_id |
|
|
|
image_feats = [] |
|
image_embeds = [] |
|
for image, img_id in data_loader: |
|
image = image.to(device) |
|
image_feat = model.visual_encoder(image) |
|
image_embed = model.vision_proj(image_feat[:,0,:]) |
|
image_embed = F.normalize(image_embed,dim=-1) |
|
|
|
image_feats.append(image_feat.cpu()) |
|
image_embeds.append(image_embed) |
|
|
|
image_feats = torch.cat(image_feats,dim=0) |
|
image_embeds = torch.cat(image_embeds,dim=0) |
|
|
|
sims_matrix = image_embeds @ text_embeds.t() |
|
score_matrix_i2t = torch.full((len(data_loader.dataset.image),len(texts)),-100.0).to(device) |
|
|
|
num_tasks = utils.get_world_size() |
|
rank = utils.get_rank() |
|
step = sims_matrix.size(0)//num_tasks + 1 |
|
start = rank*step |
|
end = min(sims_matrix.size(0),start+step) |
|
|
|
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)): |
|
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0) |
|
|
|
encoder_output = image_feats[start+i].repeat(config['k_test'],1,1).to(device) |
|
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device) |
|
output = model.text_encoder(text_ids[topk_idx], |
|
attention_mask = text_atts[topk_idx], |
|
encoder_hidden_states = encoder_output, |
|
encoder_attention_mask = encoder_att, |
|
return_dict = True, |
|
) |
|
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1] |
|
score_matrix_i2t[start+i,topk_idx] = score + topk_sim |
|
|
|
sims_matrix = sims_matrix.t() |
|
score_matrix_t2i = torch.full((len(texts),len(data_loader.dataset.image)),-100.0).to(device) |
|
|
|
step = sims_matrix.size(0)//num_tasks + 1 |
|
start = rank*step |
|
end = min(sims_matrix.size(0),start+step) |
|
|
|
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)): |
|
|
|
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0) |
|
encoder_output = image_feats[topk_idx].to(device) |
|
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device) |
|
output = model.text_encoder(text_ids[start+i].repeat(config['k_test'],1), |
|
attention_mask = text_atts[start+i].repeat(config['k_test'],1), |
|
encoder_hidden_states = encoder_output, |
|
encoder_attention_mask = encoder_att, |
|
return_dict = True, |
|
) |
|
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1] |
|
score_matrix_t2i[start+i,topk_idx] = score + topk_sim |
|
|
|
if args.distributed: |
|
dist.barrier() |
|
torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM) |
|
torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM) |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Evaluation time {}'.format(total_time_str)) |
|
|
|
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy() |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt): |
|
|
|
|
|
ranks = np.zeros(scores_i2t.shape[0]) |
|
for index,score in enumerate(scores_i2t): |
|
inds = np.argsort(score)[::-1] |
|
|
|
rank = 1e20 |
|
for i in img2txt[index]: |
|
tmp = np.where(inds == i)[0][0] |
|
if tmp < rank: |
|
rank = tmp |
|
ranks[index] = rank |
|
|
|
|
|
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) |
|
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) |
|
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) |
|
|
|
|
|
ranks = np.zeros(scores_t2i.shape[0]) |
|
|
|
for index,score in enumerate(scores_t2i): |
|
inds = np.argsort(score)[::-1] |
|
ranks[index] = np.where(inds == txt2img[index])[0][0] |
|
|
|
|
|
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) |
|
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) |
|
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) |
|
|
|
tr_mean = (tr1 + tr5 + tr10) / 3 |
|
ir_mean = (ir1 + ir5 + ir10) / 3 |
|
r_mean = (tr_mean + ir_mean) / 2 |
|
|
|
eval_result = {'txt_r1': tr1, |
|
'txt_r5': tr5, |
|
'txt_r10': tr10, |
|
'txt_r_mean': tr_mean, |
|
'img_r1': ir1, |
|
'img_r5': ir5, |
|
'img_r10': ir10, |
|
'img_r_mean': ir_mean, |
|
'r_mean': r_mean} |
|
return eval_result |
|
|
|
|
|
def main(args, config): |
|
utils.init_distributed_mode(args) |
|
|
|
device = torch.device(args.device) |
|
|
|
|
|
seed = args.seed + utils.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
cudnn.benchmark = True |
|
|
|
|
|
print("Creating retrieval dataset") |
|
train_dataset, val_dataset, test_dataset = create_dataset('retrieval_%s'%config['dataset'], config) |
|
|
|
if args.distributed: |
|
num_tasks = utils.get_world_size() |
|
global_rank = utils.get_rank() |
|
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None, None] |
|
else: |
|
samplers = [None, None, None] |
|
|
|
train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset],samplers, |
|
batch_size=[config['batch_size_train']]+[config['batch_size_test']]*2, |
|
num_workers=[4,4,4], |
|
is_trains=[True, False, False], |
|
collate_fns=[None,None,None]) |
|
|
|
|
|
|
|
print("Creating model") |
|
model = blip_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'], |
|
vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'], |
|
queue_size=config['queue_size'], negative_all_rank=config['negative_all_rank']) |
|
|
|
model = model.to(device) |
|
|
|
model_without_ddp = model |
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) |
|
model_without_ddp = model.module |
|
|
|
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay']) |
|
|
|
best = 0 |
|
best_epoch = 0 |
|
|
|
print("Start training") |
|
start_time = time.time() |
|
|
|
for epoch in range(0, config['max_epoch']): |
|
if not args.evaluate: |
|
if args.distributed: |
|
train_loader.sampler.set_epoch(epoch) |
|
|
|
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr']) |
|
|
|
train_stats = train(model, train_loader, optimizer, epoch, device, config) |
|
|
|
score_val_i2t, score_val_t2i, = evaluation(model_without_ddp, val_loader, device, config) |
|
score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, device, config) |
|
|
|
if utils.is_main_process(): |
|
|
|
val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt) |
|
print(val_result) |
|
|
|
if val_result['r_mean']>best: |
|
save_obj = { |
|
'model': model_without_ddp.state_dict(), |
|
'optimizer': optimizer.state_dict(), |
|
'config': config, |
|
'epoch': epoch, |
|
} |
|
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth')) |
|
best = val_result['r_mean'] |
|
best_epoch = epoch |
|
|
|
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt) |
|
print(test_result) |
|
|
|
if args.evaluate: |
|
log_stats = {**{f'val_{k}': v for k, v in val_result.items()}, |
|
**{f'test_{k}': v for k, v in test_result.items()}, |
|
} |
|
with open(os.path.join(args.output_dir, "evaluate.txt"),"a") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
else: |
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
**{f'val_{k}': v for k, v in val_result.items()}, |
|
**{f'test_{k}': v for k, v in test_result.items()}, |
|
'epoch': epoch, |
|
'best_epoch': best_epoch, |
|
} |
|
with open(os.path.join(args.output_dir, "log.txt"),"a") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
if args.evaluate: |
|
break |
|
|
|
dist.barrier() |
|
torch.cuda.empty_cache() |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Training time {}'.format(total_time_str)) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config', default='./configs/retrieval_flickr.yaml') |
|
parser.add_argument('--output_dir', default='output/Retrieval_flickr') |
|
parser.add_argument('--evaluate', action='store_true') |
|
parser.add_argument('--device', default='cuda') |
|
parser.add_argument('--seed', default=42, type=int) |
|
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') |
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') |
|
parser.add_argument('--distributed', default=True, type=bool) |
|
args = parser.parse_args() |
|
|
|
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) |
|
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w')) |
|
|
|
main(args, config) |