|
""" |
|
Download the weights in ./checkpoints beforehand for fast inference |
|
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth |
|
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth |
|
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth |
|
""" |
|
|
|
from pathlib import Path |
|
|
|
from PIL import Image |
|
import torch |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
import cog |
|
|
|
from models.blip import blip_decoder |
|
from models.blip_vqa import blip_vqa |
|
from models.blip_itm import blip_itm |
|
|
|
|
|
class Predictor(cog.Predictor): |
|
def setup(self): |
|
self.device = "cuda:0" |
|
|
|
self.models = { |
|
'image_captioning': blip_decoder(pretrained='checkpoints/model*_base_caption.pth', |
|
image_size=384, vit='base'), |
|
'visual_question_answering': blip_vqa(pretrained='checkpoints/model*_vqa.pth', |
|
image_size=480, vit='base'), |
|
'image_text_matching': blip_itm(pretrained='checkpoints/model_base_retrieval_coco.pth', |
|
image_size=384, vit='base') |
|
} |
|
|
|
@cog.input( |
|
"image", |
|
type=Path, |
|
help="input image", |
|
) |
|
@cog.input( |
|
"task", |
|
type=str, |
|
default='image_captioning', |
|
options=['image_captioning', 'visual_question_answering', 'image_text_matching'], |
|
help="Choose a task.", |
|
) |
|
@cog.input( |
|
"question", |
|
type=str, |
|
default=None, |
|
help="Type question for the input image for visual question answering task.", |
|
) |
|
@cog.input( |
|
"caption", |
|
type=str, |
|
default=None, |
|
help="Type caption for the input image for image text matching task.", |
|
) |
|
def predict(self, image, task, question, caption): |
|
if task == 'visual_question_answering': |
|
assert question is not None, 'Please type a question for visual question answering task.' |
|
if task == 'image_text_matching': |
|
assert caption is not None, 'Please type a caption for mage text matching task.' |
|
|
|
im = load_image(image, image_size=480 if task == 'visual_question_answering' else 384, device=self.device) |
|
model = self.models[task] |
|
model.eval() |
|
model = model.to(self.device) |
|
|
|
if task == 'image_captioning': |
|
with torch.no_grad(): |
|
caption = model.generate(im, sample=False, num_beams=3, max_length=20, min_length=5) |
|
return 'Caption: ' + caption[0] |
|
|
|
if task == 'visual_question_answering': |
|
with torch.no_grad(): |
|
answer = model(im, question, train=False, inference='generate') |
|
return 'Answer: ' + answer[0] |
|
|
|
|
|
itm_output = model(im, caption, match_head='itm') |
|
itm_score = torch.nn.functional.softmax(itm_output, dim=1)[:, 1] |
|
itc_score = model(im, caption, match_head='itc') |
|
return f'The image and text is matched with a probability of {itm_score.item():.4f}.\n' \ |
|
f'The image feature and text feature has a cosine similarity of {itc_score.item():.4f}.' |
|
|
|
|
|
def load_image(image, image_size, device): |
|
raw_image = Image.open(str(image)).convert('RGB') |
|
|
|
w, h = raw_image.size |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|
]) |
|
image = transform(raw_image).unsqueeze(0).to(device) |
|
return image |
|
|