Ooga / repositories /BLIP /predict.py
toto10's picture
a3c6b89051a7c02aa0bd0ae169d7a0a36641797f6750fa736a8a768ec5056573
cc8fd6b
raw
history blame
3.8 kB
"""
Download the weights in ./checkpoints beforehand for fast inference
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth
"""
from pathlib import Path
from PIL import Image
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import cog
from models.blip import blip_decoder
from models.blip_vqa import blip_vqa
from models.blip_itm import blip_itm
class Predictor(cog.Predictor):
def setup(self):
self.device = "cuda:0"
self.models = {
'image_captioning': blip_decoder(pretrained='checkpoints/model*_base_caption.pth',
image_size=384, vit='base'),
'visual_question_answering': blip_vqa(pretrained='checkpoints/model*_vqa.pth',
image_size=480, vit='base'),
'image_text_matching': blip_itm(pretrained='checkpoints/model_base_retrieval_coco.pth',
image_size=384, vit='base')
}
@cog.input(
"image",
type=Path,
help="input image",
)
@cog.input(
"task",
type=str,
default='image_captioning',
options=['image_captioning', 'visual_question_answering', 'image_text_matching'],
help="Choose a task.",
)
@cog.input(
"question",
type=str,
default=None,
help="Type question for the input image for visual question answering task.",
)
@cog.input(
"caption",
type=str,
default=None,
help="Type caption for the input image for image text matching task.",
)
def predict(self, image, task, question, caption):
if task == 'visual_question_answering':
assert question is not None, 'Please type a question for visual question answering task.'
if task == 'image_text_matching':
assert caption is not None, 'Please type a caption for mage text matching task.'
im = load_image(image, image_size=480 if task == 'visual_question_answering' else 384, device=self.device)
model = self.models[task]
model.eval()
model = model.to(self.device)
if task == 'image_captioning':
with torch.no_grad():
caption = model.generate(im, sample=False, num_beams=3, max_length=20, min_length=5)
return 'Caption: ' + caption[0]
if task == 'visual_question_answering':
with torch.no_grad():
answer = model(im, question, train=False, inference='generate')
return 'Answer: ' + answer[0]
# image_text_matching
itm_output = model(im, caption, match_head='itm')
itm_score = torch.nn.functional.softmax(itm_output, dim=1)[:, 1]
itc_score = model(im, caption, match_head='itc')
return f'The image and text is matched with a probability of {itm_score.item():.4f}.\n' \
f'The image feature and text feature has a cosine similarity of {itc_score.item():.4f}.'
def load_image(image, image_size, device):
raw_image = Image.open(str(image)).convert('RGB')
w, h = raw_image.size
transform = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
image = transform(raw_image).unsqueeze(0).to(device)
return image