|
import os |
|
import numpy as np |
|
import PIL |
|
import torch |
|
from PIL import Image |
|
from torch.utils.data import Dataset, DataLoader, Sampler |
|
from torchvision import transforms |
|
from collections import defaultdict |
|
from random import shuffle, choices |
|
|
|
import random |
|
import tqdm |
|
from modules import devices, shared |
|
import re |
|
|
|
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution |
|
|
|
re_numbers_at_start = re.compile(r"^[-\d]+\s*") |
|
|
|
|
|
class DatasetEntry: |
|
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None, weight=None): |
|
self.filename = filename |
|
self.filename_text = filename_text |
|
self.weight = weight |
|
self.latent_dist = latent_dist |
|
self.latent_sample = latent_sample |
|
self.cond = cond |
|
self.cond_text = cond_text |
|
self.pixel_values = pixel_values |
|
|
|
|
|
class PersonalizedBase(Dataset): |
|
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False): |
|
re_word = re.compile(shared.opts.dataset_filename_word_regex) if shared.opts.dataset_filename_word_regex else None |
|
|
|
self.placeholder_token = placeholder_token |
|
|
|
self.flip = transforms.RandomHorizontalFlip(p=flip_p) |
|
|
|
self.dataset = [] |
|
|
|
with open(template_file, "r") as file: |
|
lines = [x.strip() for x in file.readlines()] |
|
|
|
self.lines = lines |
|
|
|
assert data_root, 'dataset directory not specified' |
|
assert os.path.isdir(data_root), "Dataset directory doesn't exist" |
|
assert os.listdir(data_root), "Dataset directory is empty" |
|
|
|
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] |
|
|
|
self.shuffle_tags = shuffle_tags |
|
self.tag_drop_out = tag_drop_out |
|
groups = defaultdict(list) |
|
|
|
print("Preparing dataset...") |
|
for path in tqdm.tqdm(self.image_paths): |
|
alpha_channel = None |
|
if shared.state.interrupted: |
|
raise Exception("interrupted") |
|
try: |
|
image = Image.open(path) |
|
|
|
|
|
if use_weight and 'A' in image.getbands(): |
|
alpha_channel = image.getchannel('A') |
|
image = image.convert('RGB') |
|
if not varsize: |
|
image = image.resize((width, height), PIL.Image.BICUBIC) |
|
except Exception: |
|
continue |
|
|
|
text_filename = f"{os.path.splitext(path)[0]}.txt" |
|
filename = os.path.basename(path) |
|
|
|
if os.path.exists(text_filename): |
|
with open(text_filename, "r", encoding="utf8") as file: |
|
filename_text = file.read() |
|
else: |
|
filename_text = os.path.splitext(filename)[0] |
|
filename_text = re.sub(re_numbers_at_start, '', filename_text) |
|
if re_word: |
|
tokens = re_word.findall(filename_text) |
|
filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens) |
|
|
|
npimage = np.array(image).astype(np.uint8) |
|
npimage = (npimage / 127.5 - 1.0).astype(np.float32) |
|
|
|
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32) |
|
latent_sample = None |
|
|
|
with devices.autocast(): |
|
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0)) |
|
|
|
|
|
|
|
if latent_sampling_method == "deterministic": |
|
if isinstance(latent_dist, DiagonalGaussianDistribution): |
|
|
|
latent_dist.std = 0 |
|
else: |
|
latent_sampling_method = "once" |
|
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu) |
|
|
|
if use_weight and alpha_channel is not None: |
|
channels, *latent_size = latent_sample.shape |
|
weight_img = alpha_channel.resize(latent_size) |
|
npweight = np.array(weight_img).astype(np.float32) |
|
|
|
weight = torch.tensor([npweight] * channels).reshape([channels] + latent_size) |
|
|
|
weight -= weight.min() |
|
weight /= weight.mean() |
|
elif use_weight: |
|
|
|
weight = torch.ones(latent_sample.shape) |
|
else: |
|
weight = None |
|
|
|
if latent_sampling_method == "random": |
|
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight) |
|
else: |
|
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample, weight=weight) |
|
|
|
if not (self.tag_drop_out != 0 or self.shuffle_tags): |
|
entry.cond_text = self.create_text(filename_text) |
|
|
|
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags): |
|
with devices.autocast(): |
|
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0) |
|
groups[image.size].append(len(self.dataset)) |
|
self.dataset.append(entry) |
|
del torchdata |
|
del latent_dist |
|
del latent_sample |
|
del weight |
|
|
|
self.length = len(self.dataset) |
|
self.groups = list(groups.values()) |
|
assert self.length > 0, "No images have been found in the dataset." |
|
self.batch_size = min(batch_size, self.length) |
|
self.gradient_step = min(gradient_step, self.length // self.batch_size) |
|
self.latent_sampling_method = latent_sampling_method |
|
|
|
if len(groups) > 1: |
|
print("Buckets:") |
|
for (w, h), ids in sorted(groups.items(), key=lambda x: x[0]): |
|
print(f" {w}x{h}: {len(ids)}") |
|
print() |
|
|
|
def create_text(self, filename_text): |
|
text = random.choice(self.lines) |
|
tags = filename_text.split(',') |
|
if self.tag_drop_out != 0: |
|
tags = [t for t in tags if random.random() > self.tag_drop_out] |
|
if self.shuffle_tags: |
|
random.shuffle(tags) |
|
text = text.replace("[filewords]", ','.join(tags)) |
|
text = text.replace("[name]", self.placeholder_token) |
|
return text |
|
|
|
def __len__(self): |
|
return self.length |
|
|
|
def __getitem__(self, i): |
|
entry = self.dataset[i] |
|
if self.tag_drop_out != 0 or self.shuffle_tags: |
|
entry.cond_text = self.create_text(entry.filename_text) |
|
if self.latent_sampling_method == "random": |
|
entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu) |
|
return entry |
|
|
|
|
|
class GroupedBatchSampler(Sampler): |
|
def __init__(self, data_source: PersonalizedBase, batch_size: int): |
|
super().__init__(data_source) |
|
|
|
n = len(data_source) |
|
self.groups = data_source.groups |
|
self.len = n_batch = n // batch_size |
|
expected = [len(g) / n * n_batch * batch_size for g in data_source.groups] |
|
self.base = [int(e) // batch_size for e in expected] |
|
self.n_rand_batches = nrb = n_batch - sum(self.base) |
|
self.probs = [e%batch_size/nrb/batch_size if nrb>0 else 0 for e in expected] |
|
self.batch_size = batch_size |
|
|
|
def __len__(self): |
|
return self.len |
|
|
|
def __iter__(self): |
|
b = self.batch_size |
|
|
|
for g in self.groups: |
|
shuffle(g) |
|
|
|
batches = [] |
|
for g in self.groups: |
|
batches.extend(g[i*b:(i+1)*b] for i in range(len(g) // b)) |
|
for _ in range(self.n_rand_batches): |
|
rand_group = choices(self.groups, self.probs)[0] |
|
batches.append(choices(rand_group, k=b)) |
|
|
|
shuffle(batches) |
|
|
|
yield from batches |
|
|
|
|
|
class PersonalizedDataLoader(DataLoader): |
|
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False): |
|
super(PersonalizedDataLoader, self).__init__(dataset, batch_sampler=GroupedBatchSampler(dataset, batch_size), pin_memory=pin_memory) |
|
if latent_sampling_method == "random": |
|
self.collate_fn = collate_wrapper_random |
|
else: |
|
self.collate_fn = collate_wrapper |
|
|
|
|
|
class BatchLoader: |
|
def __init__(self, data): |
|
self.cond_text = [entry.cond_text for entry in data] |
|
self.cond = [entry.cond for entry in data] |
|
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1) |
|
if all(entry.weight is not None for entry in data): |
|
self.weight = torch.stack([entry.weight for entry in data]).squeeze(1) |
|
else: |
|
self.weight = None |
|
|
|
|
|
|
|
def pin_memory(self): |
|
self.latent_sample = self.latent_sample.pin_memory() |
|
return self |
|
|
|
def collate_wrapper(batch): |
|
return BatchLoader(batch) |
|
|
|
class BatchLoaderRandom(BatchLoader): |
|
def __init__(self, data): |
|
super().__init__(data) |
|
|
|
def pin_memory(self): |
|
return self |
|
|
|
def collate_wrapper_random(batch): |
|
return BatchLoaderRandom(batch) |
|
|