|
import base64 |
|
import io |
|
import os |
|
import time |
|
import datetime |
|
import uvicorn |
|
import gradio as gr |
|
from threading import Lock |
|
from io import BytesIO |
|
from fastapi import APIRouter, Depends, FastAPI, Request, Response |
|
from fastapi.security import HTTPBasic, HTTPBasicCredentials |
|
from fastapi.exceptions import HTTPException |
|
from fastapi.responses import JSONResponse |
|
from fastapi.encoders import jsonable_encoder |
|
from secrets import compare_digest |
|
|
|
import modules.shared as shared |
|
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart |
|
from modules.api import models |
|
from modules.shared import opts |
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images |
|
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding |
|
from modules.textual_inversion.preprocess import preprocess |
|
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork |
|
from PIL import PngImagePlugin,Image |
|
from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights, checkpoint_aliases |
|
from modules.sd_vae import vae_dict |
|
from modules.sd_models_config import find_checkpoint_config_near_filename |
|
from modules.realesrgan_model import get_realesrgan_models |
|
from modules import devices |
|
from typing import Dict, List, Any |
|
import piexif |
|
import piexif.helper |
|
from contextlib import closing |
|
|
|
|
|
def script_name_to_index(name, scripts): |
|
try: |
|
return [script.title().lower() for script in scripts].index(name.lower()) |
|
except Exception as e: |
|
raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e |
|
|
|
|
|
def validate_sampler_name(name): |
|
config = sd_samplers.all_samplers_map.get(name, None) |
|
if config is None: |
|
raise HTTPException(status_code=404, detail="Sampler not found") |
|
|
|
return name |
|
|
|
|
|
def setUpscalers(req: dict): |
|
reqDict = vars(req) |
|
reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None) |
|
reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None) |
|
return reqDict |
|
|
|
|
|
def decode_base64_to_image(encoding): |
|
if encoding.startswith("data:image/"): |
|
encoding = encoding.split(";")[1].split(",")[1] |
|
try: |
|
image = Image.open(BytesIO(base64.b64decode(encoding))) |
|
return image |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail="Invalid encoded image") from e |
|
|
|
|
|
def encode_pil_to_base64(image): |
|
with io.BytesIO() as output_bytes: |
|
|
|
if opts.samples_format.lower() == 'png': |
|
use_metadata = False |
|
metadata = PngImagePlugin.PngInfo() |
|
for key, value in image.info.items(): |
|
if isinstance(key, str) and isinstance(value, str): |
|
metadata.add_text(key, value) |
|
use_metadata = True |
|
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality) |
|
|
|
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"): |
|
if image.mode == "RGBA": |
|
image = image.convert("RGB") |
|
parameters = image.info.get('parameters', None) |
|
exif_bytes = piexif.dump({ |
|
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") } |
|
}) |
|
if opts.samples_format.lower() in ("jpg", "jpeg"): |
|
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality) |
|
else: |
|
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality) |
|
|
|
else: |
|
raise HTTPException(status_code=500, detail="Invalid image format") |
|
|
|
bytes_data = output_bytes.getvalue() |
|
|
|
return base64.b64encode(bytes_data) |
|
|
|
|
|
def api_middleware(app: FastAPI): |
|
rich_available = False |
|
try: |
|
if os.environ.get('WEBUI_RICH_EXCEPTIONS', None) is not None: |
|
import anyio |
|
import starlette |
|
from rich.console import Console |
|
console = Console() |
|
rich_available = True |
|
except Exception: |
|
pass |
|
|
|
@app.middleware("http") |
|
async def log_and_time(req: Request, call_next): |
|
ts = time.time() |
|
res: Response = await call_next(req) |
|
duration = str(round(time.time() - ts, 4)) |
|
res.headers["X-Process-Time"] = duration |
|
endpoint = req.scope.get('path', 'err') |
|
if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'): |
|
print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format( |
|
t=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"), |
|
code=res.status_code, |
|
ver=req.scope.get('http_version', '0.0'), |
|
cli=req.scope.get('client', ('0:0.0.0', 0))[0], |
|
prot=req.scope.get('scheme', 'err'), |
|
method=req.scope.get('method', 'err'), |
|
endpoint=endpoint, |
|
duration=duration, |
|
)) |
|
return res |
|
|
|
def handle_exception(request: Request, e: Exception): |
|
err = { |
|
"error": type(e).__name__, |
|
"detail": vars(e).get('detail', ''), |
|
"body": vars(e).get('body', ''), |
|
"errors": str(e), |
|
} |
|
if not isinstance(e, HTTPException): |
|
message = f"API error: {request.method}: {request.url} {err}" |
|
if rich_available: |
|
print(message) |
|
console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200])) |
|
else: |
|
errors.report(message, exc_info=True) |
|
return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err)) |
|
|
|
@app.middleware("http") |
|
async def exception_handling(request: Request, call_next): |
|
try: |
|
return await call_next(request) |
|
except Exception as e: |
|
return handle_exception(request, e) |
|
|
|
@app.exception_handler(Exception) |
|
async def fastapi_exception_handler(request: Request, e: Exception): |
|
return handle_exception(request, e) |
|
|
|
@app.exception_handler(HTTPException) |
|
async def http_exception_handler(request: Request, e: HTTPException): |
|
return handle_exception(request, e) |
|
|
|
|
|
class Api: |
|
def __init__(self, app: FastAPI, queue_lock: Lock): |
|
if shared.cmd_opts.api_auth: |
|
self.credentials = {} |
|
for auth in shared.cmd_opts.api_auth.split(","): |
|
user, password = auth.split(":") |
|
self.credentials[user] = password |
|
|
|
self.router = APIRouter() |
|
self.app = app |
|
self.queue_lock = queue_lock |
|
api_middleware(self.app) |
|
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse) |
|
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse) |
|
self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse) |
|
self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse) |
|
self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse) |
|
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse) |
|
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel) |
|
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel) |
|
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem]) |
|
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem]) |
|
self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=List[models.LatentUpscalerModeItem]) |
|
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem]) |
|
self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem]) |
|
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem]) |
|
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem]) |
|
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem]) |
|
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem]) |
|
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse) |
|
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse) |
|
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse) |
|
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse) |
|
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse) |
|
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse) |
|
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse) |
|
self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) |
|
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo]) |
|
|
|
if shared.cmd_opts.api_server_stop: |
|
self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"]) |
|
self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"]) |
|
|
|
self.default_script_arg_txt2img = [] |
|
self.default_script_arg_img2img = [] |
|
|
|
def add_api_route(self, path: str, endpoint, **kwargs): |
|
if shared.cmd_opts.api_auth: |
|
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs) |
|
return self.app.add_api_route(path, endpoint, **kwargs) |
|
|
|
def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())): |
|
if credentials.username in self.credentials: |
|
if compare_digest(credentials.password, self.credentials[credentials.username]): |
|
return True |
|
|
|
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"}) |
|
|
|
def get_selectable_script(self, script_name, script_runner): |
|
if script_name is None or script_name == "": |
|
return None, None |
|
|
|
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) |
|
script = script_runner.selectable_scripts[script_idx] |
|
return script, script_idx |
|
|
|
def get_scripts_list(self): |
|
t2ilist = [script.name for script in scripts.scripts_txt2img.scripts if script.name is not None] |
|
i2ilist = [script.name for script in scripts.scripts_img2img.scripts if script.name is not None] |
|
|
|
return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist) |
|
|
|
def get_script_info(self): |
|
res = [] |
|
|
|
for script_list in [scripts.scripts_txt2img.scripts, scripts.scripts_img2img.scripts]: |
|
res += [script.api_info for script in script_list if script.api_info is not None] |
|
|
|
return res |
|
|
|
def get_script(self, script_name, script_runner): |
|
if script_name is None or script_name == "": |
|
return None, None |
|
|
|
script_idx = script_name_to_index(script_name, script_runner.scripts) |
|
return script_runner.scripts[script_idx] |
|
|
|
def init_default_script_args(self, script_runner): |
|
|
|
last_arg_index = 1 |
|
for script in script_runner.scripts: |
|
if last_arg_index < script.args_to: |
|
last_arg_index = script.args_to |
|
|
|
script_args = [None]*last_arg_index |
|
script_args[0] = 0 |
|
|
|
|
|
with gr.Blocks(): |
|
for script in script_runner.scripts: |
|
if script.ui(script.is_img2img): |
|
ui_default_values = [] |
|
for elem in script.ui(script.is_img2img): |
|
ui_default_values.append(elem.value) |
|
script_args[script.args_from:script.args_to] = ui_default_values |
|
return script_args |
|
|
|
def init_script_args(self, request, default_script_args, selectable_scripts, selectable_idx, script_runner): |
|
script_args = default_script_args.copy() |
|
|
|
if selectable_scripts: |
|
script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args |
|
script_args[0] = selectable_idx + 1 |
|
|
|
|
|
if request.alwayson_scripts: |
|
for alwayson_script_name in request.alwayson_scripts.keys(): |
|
alwayson_script = self.get_script(alwayson_script_name, script_runner) |
|
if alwayson_script is None: |
|
raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found") |
|
|
|
if alwayson_script.alwayson is False: |
|
raise HTTPException(status_code=422, detail="Cannot have a selectable script in the always on scripts params") |
|
|
|
if "args" in request.alwayson_scripts[alwayson_script_name]: |
|
|
|
for idx in range(0, min((alwayson_script.args_to - alwayson_script.args_from), len(request.alwayson_scripts[alwayson_script_name]["args"]))): |
|
script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx] |
|
return script_args |
|
|
|
def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI): |
|
script_runner = scripts.scripts_txt2img |
|
if not script_runner.scripts: |
|
script_runner.initialize_scripts(False) |
|
ui.create_ui() |
|
if not self.default_script_arg_txt2img: |
|
self.default_script_arg_txt2img = self.init_default_script_args(script_runner) |
|
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner) |
|
|
|
populate = txt2imgreq.copy(update={ |
|
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index), |
|
"do_not_save_samples": not txt2imgreq.save_images, |
|
"do_not_save_grid": not txt2imgreq.save_images, |
|
}) |
|
if populate.sampler_name: |
|
populate.sampler_index = None |
|
|
|
args = vars(populate) |
|
args.pop('script_name', None) |
|
args.pop('script_args', None) |
|
args.pop('alwayson_scripts', None) |
|
|
|
script_args = self.init_script_args(txt2imgreq, self.default_script_arg_txt2img, selectable_scripts, selectable_script_idx, script_runner) |
|
|
|
send_images = args.pop('send_images', True) |
|
args.pop('save_images', None) |
|
|
|
with self.queue_lock: |
|
with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p: |
|
p.scripts = script_runner |
|
p.outpath_grids = opts.outdir_txt2img_grids |
|
p.outpath_samples = opts.outdir_txt2img_samples |
|
|
|
try: |
|
shared.state.begin(job="scripts_txt2img") |
|
if selectable_scripts is not None: |
|
p.script_args = script_args |
|
processed = scripts.scripts_txt2img.run(p, *p.script_args) |
|
else: |
|
p.script_args = tuple(script_args) |
|
processed = process_images(p) |
|
finally: |
|
shared.state.end() |
|
|
|
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] |
|
|
|
return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) |
|
|
|
def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI): |
|
init_images = img2imgreq.init_images |
|
if init_images is None: |
|
raise HTTPException(status_code=404, detail="Init image not found") |
|
|
|
mask = img2imgreq.mask |
|
if mask: |
|
mask = decode_base64_to_image(mask) |
|
|
|
script_runner = scripts.scripts_img2img |
|
if not script_runner.scripts: |
|
script_runner.initialize_scripts(True) |
|
ui.create_ui() |
|
if not self.default_script_arg_img2img: |
|
self.default_script_arg_img2img = self.init_default_script_args(script_runner) |
|
selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner) |
|
|
|
populate = img2imgreq.copy(update={ |
|
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index), |
|
"do_not_save_samples": not img2imgreq.save_images, |
|
"do_not_save_grid": not img2imgreq.save_images, |
|
"mask": mask, |
|
}) |
|
if populate.sampler_name: |
|
populate.sampler_index = None |
|
|
|
args = vars(populate) |
|
args.pop('include_init_images', None) |
|
args.pop('script_name', None) |
|
args.pop('script_args', None) |
|
args.pop('alwayson_scripts', None) |
|
|
|
script_args = self.init_script_args(img2imgreq, self.default_script_arg_img2img, selectable_scripts, selectable_script_idx, script_runner) |
|
|
|
send_images = args.pop('send_images', True) |
|
args.pop('save_images', None) |
|
|
|
with self.queue_lock: |
|
with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p: |
|
p.init_images = [decode_base64_to_image(x) for x in init_images] |
|
p.scripts = script_runner |
|
p.outpath_grids = opts.outdir_img2img_grids |
|
p.outpath_samples = opts.outdir_img2img_samples |
|
|
|
try: |
|
shared.state.begin(job="scripts_img2img") |
|
if selectable_scripts is not None: |
|
p.script_args = script_args |
|
processed = scripts.scripts_img2img.run(p, *p.script_args) |
|
else: |
|
p.script_args = tuple(script_args) |
|
processed = process_images(p) |
|
finally: |
|
shared.state.end() |
|
|
|
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] |
|
|
|
if not img2imgreq.include_init_images: |
|
img2imgreq.init_images = None |
|
img2imgreq.mask = None |
|
|
|
return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) |
|
|
|
def extras_single_image_api(self, req: models.ExtrasSingleImageRequest): |
|
reqDict = setUpscalers(req) |
|
|
|
reqDict['image'] = decode_base64_to_image(reqDict['image']) |
|
|
|
with self.queue_lock: |
|
result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict) |
|
|
|
return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) |
|
|
|
def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest): |
|
reqDict = setUpscalers(req) |
|
|
|
image_list = reqDict.pop('imageList', []) |
|
image_folder = [decode_base64_to_image(x.data) for x in image_list] |
|
|
|
with self.queue_lock: |
|
result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict) |
|
|
|
return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) |
|
|
|
def pnginfoapi(self, req: models.PNGInfoRequest): |
|
if(not req.image.strip()): |
|
return models.PNGInfoResponse(info="") |
|
|
|
image = decode_base64_to_image(req.image.strip()) |
|
if image is None: |
|
return models.PNGInfoResponse(info="") |
|
|
|
geninfo, items = images.read_info_from_image(image) |
|
if geninfo is None: |
|
geninfo = "" |
|
|
|
items = {**{'parameters': geninfo}, **items} |
|
|
|
return models.PNGInfoResponse(info=geninfo, items=items) |
|
|
|
def progressapi(self, req: models.ProgressRequest = Depends()): |
|
|
|
|
|
if shared.state.job_count == 0: |
|
return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) |
|
|
|
|
|
progress = 0.01 |
|
|
|
if shared.state.job_count > 0: |
|
progress += shared.state.job_no / shared.state.job_count |
|
if shared.state.sampling_steps > 0: |
|
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps |
|
|
|
time_since_start = time.time() - shared.state.time_start |
|
eta = (time_since_start/progress) |
|
eta_relative = eta-time_since_start |
|
|
|
progress = min(progress, 1) |
|
|
|
shared.state.set_current_image() |
|
|
|
current_image = None |
|
if shared.state.current_image and not req.skip_current_image: |
|
current_image = encode_pil_to_base64(shared.state.current_image) |
|
|
|
return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) |
|
|
|
def interrogateapi(self, interrogatereq: models.InterrogateRequest): |
|
image_b64 = interrogatereq.image |
|
if image_b64 is None: |
|
raise HTTPException(status_code=404, detail="Image not found") |
|
|
|
img = decode_base64_to_image(image_b64) |
|
img = img.convert('RGB') |
|
|
|
|
|
with self.queue_lock: |
|
if interrogatereq.model == "clip": |
|
processed = shared.interrogator.interrogate(img) |
|
elif interrogatereq.model == "deepdanbooru": |
|
processed = deepbooru.model.tag(img) |
|
else: |
|
raise HTTPException(status_code=404, detail="Model not found") |
|
|
|
return models.InterrogateResponse(caption=processed) |
|
|
|
def interruptapi(self): |
|
shared.state.interrupt() |
|
|
|
return {} |
|
|
|
def unloadapi(self): |
|
unload_model_weights() |
|
|
|
return {} |
|
|
|
def reloadapi(self): |
|
reload_model_weights() |
|
|
|
return {} |
|
|
|
def skip(self): |
|
shared.state.skip() |
|
|
|
def get_config(self): |
|
options = {} |
|
for key in shared.opts.data.keys(): |
|
metadata = shared.opts.data_labels.get(key) |
|
if(metadata is not None): |
|
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)}) |
|
else: |
|
options.update({key: shared.opts.data.get(key, None)}) |
|
|
|
return options |
|
|
|
def set_config(self, req: Dict[str, Any]): |
|
checkpoint_name = req.get("sd_model_checkpoint", None) |
|
if checkpoint_name is not None and checkpoint_name not in checkpoint_aliases: |
|
raise RuntimeError(f"model {checkpoint_name!r} not found") |
|
|
|
for k, v in req.items(): |
|
shared.opts.set(k, v) |
|
|
|
shared.opts.save(shared.config_filename) |
|
return |
|
|
|
def get_cmd_flags(self): |
|
return vars(shared.cmd_opts) |
|
|
|
def get_samplers(self): |
|
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers] |
|
|
|
def get_upscalers(self): |
|
return [ |
|
{ |
|
"name": upscaler.name, |
|
"model_name": upscaler.scaler.model_name, |
|
"model_path": upscaler.data_path, |
|
"model_url": None, |
|
"scale": upscaler.scale, |
|
} |
|
for upscaler in shared.sd_upscalers |
|
] |
|
|
|
def get_latent_upscale_modes(self): |
|
return [ |
|
{ |
|
"name": upscale_mode, |
|
} |
|
for upscale_mode in [*(shared.latent_upscale_modes or {})] |
|
] |
|
|
|
def get_sd_models(self): |
|
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()] |
|
|
|
def get_sd_vaes(self): |
|
return [{"model_name": x, "filename": vae_dict[x]} for x in vae_dict.keys()] |
|
|
|
def get_hypernetworks(self): |
|
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] |
|
|
|
def get_face_restorers(self): |
|
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers] |
|
|
|
def get_realesrgan_models(self): |
|
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)] |
|
|
|
def get_prompt_styles(self): |
|
styleList = [] |
|
for k in shared.prompt_styles.styles: |
|
style = shared.prompt_styles.styles[k] |
|
styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]}) |
|
|
|
return styleList |
|
|
|
def get_embeddings(self): |
|
db = sd_hijack.model_hijack.embedding_db |
|
|
|
def convert_embedding(embedding): |
|
return { |
|
"step": embedding.step, |
|
"sd_checkpoint": embedding.sd_checkpoint, |
|
"sd_checkpoint_name": embedding.sd_checkpoint_name, |
|
"shape": embedding.shape, |
|
"vectors": embedding.vectors, |
|
} |
|
|
|
def convert_embeddings(embeddings): |
|
return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()} |
|
|
|
return { |
|
"loaded": convert_embeddings(db.word_embeddings), |
|
"skipped": convert_embeddings(db.skipped_embeddings), |
|
} |
|
|
|
def refresh_checkpoints(self): |
|
with self.queue_lock: |
|
shared.refresh_checkpoints() |
|
|
|
def create_embedding(self, args: dict): |
|
try: |
|
shared.state.begin(job="create_embedding") |
|
filename = create_embedding(**args) |
|
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() |
|
return models.CreateResponse(info=f"create embedding filename: {filename}") |
|
except AssertionError as e: |
|
return models.TrainResponse(info=f"create embedding error: {e}") |
|
finally: |
|
shared.state.end() |
|
|
|
|
|
def create_hypernetwork(self, args: dict): |
|
try: |
|
shared.state.begin(job="create_hypernetwork") |
|
filename = create_hypernetwork(**args) |
|
return models.CreateResponse(info=f"create hypernetwork filename: {filename}") |
|
except AssertionError as e: |
|
return models.TrainResponse(info=f"create hypernetwork error: {e}") |
|
finally: |
|
shared.state.end() |
|
|
|
def preprocess(self, args: dict): |
|
try: |
|
shared.state.begin(job="preprocess") |
|
preprocess(**args) |
|
shared.state.end() |
|
return models.PreprocessResponse(info='preprocess complete') |
|
except KeyError as e: |
|
return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}") |
|
except Exception as e: |
|
return models.PreprocessResponse(info=f"preprocess error: {e}") |
|
finally: |
|
shared.state.end() |
|
|
|
def train_embedding(self, args: dict): |
|
try: |
|
shared.state.begin(job="train_embedding") |
|
apply_optimizations = shared.opts.training_xattention_optimizations |
|
error = None |
|
filename = '' |
|
if not apply_optimizations: |
|
sd_hijack.undo_optimizations() |
|
try: |
|
embedding, filename = train_embedding(**args) |
|
except Exception as e: |
|
error = e |
|
finally: |
|
if not apply_optimizations: |
|
sd_hijack.apply_optimizations() |
|
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") |
|
except Exception as msg: |
|
return models.TrainResponse(info=f"train embedding error: {msg}") |
|
finally: |
|
shared.state.end() |
|
|
|
def train_hypernetwork(self, args: dict): |
|
try: |
|
shared.state.begin(job="train_hypernetwork") |
|
shared.loaded_hypernetworks = [] |
|
apply_optimizations = shared.opts.training_xattention_optimizations |
|
error = None |
|
filename = '' |
|
if not apply_optimizations: |
|
sd_hijack.undo_optimizations() |
|
try: |
|
hypernetwork, filename = train_hypernetwork(**args) |
|
except Exception as e: |
|
error = e |
|
finally: |
|
shared.sd_model.cond_stage_model.to(devices.device) |
|
shared.sd_model.first_stage_model.to(devices.device) |
|
if not apply_optimizations: |
|
sd_hijack.apply_optimizations() |
|
shared.state.end() |
|
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") |
|
except Exception as exc: |
|
return models.TrainResponse(info=f"train embedding error: {exc}") |
|
finally: |
|
shared.state.end() |
|
|
|
def get_memory(self): |
|
try: |
|
import os |
|
import psutil |
|
process = psutil.Process(os.getpid()) |
|
res = process.memory_info() |
|
ram_total = 100 * res.rss / process.memory_percent() |
|
ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total } |
|
except Exception as err: |
|
ram = { 'error': f'{err}' } |
|
try: |
|
import torch |
|
if torch.cuda.is_available(): |
|
s = torch.cuda.mem_get_info() |
|
system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] } |
|
s = dict(torch.cuda.memory_stats(shared.device)) |
|
allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] } |
|
reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] } |
|
active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] } |
|
inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] } |
|
warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] } |
|
cuda = { |
|
'system': system, |
|
'active': active, |
|
'allocated': allocated, |
|
'reserved': reserved, |
|
'inactive': inactive, |
|
'events': warnings, |
|
} |
|
else: |
|
cuda = {'error': 'unavailable'} |
|
except Exception as err: |
|
cuda = {'error': f'{err}'} |
|
return models.MemoryResponse(ram=ram, cuda=cuda) |
|
|
|
def launch(self, server_name, port, root_path): |
|
self.app.include_router(self.router) |
|
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive, root_path=root_path) |
|
|
|
def kill_webui(self): |
|
restart.stop_program() |
|
|
|
def restart_webui(self): |
|
if restart.is_restartable(): |
|
restart.restart_program() |
|
return Response(status_code=501) |
|
|
|
def stop_webui(request): |
|
shared.state.server_command = "stop" |
|
return Response("Stopping.") |
|
|
|
|