land it better
Browse files- LunarLander-v2.zip +2 -2
- LunarLander-v2/data +18 -18
- LunarLander-v2/policy.optimizer.pth +2 -2
- LunarLander-v2/policy.pth +2 -2
- LunarLander-v2/system_info.txt +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f09450099a363704f6fe04663e6d37eb9ee120febd3403d9f3fed20f3ec99690
|
3 |
+
size 146111
|
LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -78,9 +78,9 @@
|
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
-
"gamma":
|
82 |
"gae_lambda": 0.99,
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a3ac5120700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3ac5120790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3ac5120820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3ac51208b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a3ac5120940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a3ac51209d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3ac5120a60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3ac5120af0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a3ac5120b80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3ac5120c10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3ac5120ca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3ac5120d30>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a3ac50bb100>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1695010575027885195,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGazob2+Rro/0wm2vg0+Mb4srN29KOwmvgAAAAAAAAAALVsRPutzrj9hvx4/MTq5vsHXJD4KePk+AAAAAAAAAAAahBs9w9FCusJSZDyTVmu9pn7LOxac6zsAAAAAAAAAAJp5XDqVGlA+yz5Ivp0vE78SPR++un0LvgAAAAAAAAAAQFyavZ+Ul7uGTwm9kmK0vT+SBb3PbZO+AACAPwAAgD8macg92BSSP1KHwT56dSK/goHiPaVMUT4AAAAAAAAAAABoXz2pAhI/ZnJwvZ5dOb9aP5e8wHtSvgAAAAAAAAAAU5tIvt13Cz8sELk9ZCAav6JVfr4vYoc9AAAAAAAAAAAaxg0+5OclP9AXTzw6YCO/5RuWPqYwHr0AAAAAAAAAAGbUHTzxb7U/lbj2PlleCD5m4Ri8+zSYvQAAAAAAAAAAWqezPVTYhD9s0Eu7iakYv4LaQj5KFzW+AAAAAAAAAABawpy+Y04xP7oryr43Qki/U873vlC6AL4AAAAAAAAAAI0/Vj7h6BE/eBdtPVMBP7/l6QY/LufPvQAAAAAAAAAAthlVvsAZfj8Fg2i+gfkkv5EKsL7S+7a9AAAAAAAAAAA6cyK+uJS1OoLsiz69PAi/B5cpviKYfj8AAIA/AAAAAGbooT2vnWg/YFZlvEPhHL8itBE+FveCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEI/nLaEi+uMAWyUS3CMAXSUR0CMBM/wiJO4dX2UKGgGR0BGw5iuuA7QaAdLX2gIR0CMBOCSRr8BdX2UKGgGR8AYznW8RL9NaAdLdGgIR0CMBcz5XU6QdX2UKGgGR0A9Bvg3tKI0aAdLbGgIR0CMBi1D0DlpdX2UKGgGR0BHTaF23azvaAdLZGgIR0CMBkTs6aLGdX2UKGgGR0A4YUsWfseGaAdLcWgIR0CMBvVqesgddX2UKGgGR0ArfhE0BOpLaAdLVmgIR0CMCOE12q1gdX2UKGgGR0AxR0XP7el9aAdLfGgIR0CMCUJqIrOJdX2UKGgGR0A5ozTnaFmGaAdLaWgIR0CMCVCl7+kydX2UKGgGR0BBGCiyprDZaAdLW2gIR0CMCWk4WDYidX2UKGgGR0BEFzHKfWc0aAdLZGgIR0CMCZKlHjIadX2UKGgGR0A8rbVjI7vHaAdLeGgIR0CMCj6guh9LdX2UKGgGR0A+AQb+98JEaAdLbWgIR0CMCl5ooNNKdX2UKGgGR0BBm9Sde6ZqaAdLWmgIR0CMCtW07bL2dX2UKGgGR0BFufQSi/O/aAdLmGgIR0CMCuZpi7TVdX2UKGgGR0BCIvAwfyPNaAdLZ2gIR0CMC/sLv1DjdX2UKGgGR0A5q25hBqsVaAdLbmgIR0CMDEVFhG6PdX2UKGgGR0BGyw7cO9WZaAdLj2gIR0CMDLnkDIRzdX2UKGgGR0A77yzollbvaAdLkGgIR0CMDOsDnvDxdX2UKGgGR0BUfxvFWGRFaAdN6ANoCEdAjA2I60Y0mHV9lChoBkdAPjQrlNlAeWgHS3hoCEdAjA4l6Z6Uq3V9lChoBkdAQtvo7muDBmgHS2BoCEdAjA9L2QGOdXV9lChoBkdAUN4WAPNFB2gHS2toCEdAjBA0JfICEHV9lChoBkdASNjc2zfJm2gHS3hoCEdAjBCbypaRp3V9lChoBkdAOeHVbzK9wmgHS1xoCEdAjBEA1Nxlx3V9lChoBkdASxj1schkiGgHS3NoCEdAjBEPiDM/yHV9lChoBkdANsCxA0Kqn2gHS3loCEdAjBFDM3ZPEnV9lChoBkdAOCBbfP5YYGgHS3NoCEdAjBHtpdrwfHV9lChoBkdARX9TcZccEWgHS4ZoCEdAjBL9OqNp/XV9lChoBkdASnV03fhuO2gHS1hoCEdAjBN/thNM5HV9lChoBkdALaQmmce8w2gHS4RoCEdAjBOif6Ggz3V9lChoBkdAISYEfT1CgWgHS3hoCEdAjBQ3iJfplnV9lChoBkdAFVWJ79hqkGgHS3poCEdAjBS2ykbgj3V9lChoBkdAOlk6gdwNsmgHS39oCEdAjBV3dTHbRHV9lChoBkdAOw0GqxTsIGgHS4xoCEdAjBZ/kFOfunV9lChoBkdANaYhyKekHmgHS1xoCEdAjBa0QbuMM3V9lChoBkdARPStaIN3GGgHS2VoCEdAjBfQjt5UtXV9lChoBkdAR9pfICEHuGgHS5BoCEdAjBf2kBS1mnV9lChoBkdAJWj3mFJxvWgHS3NoCEdAjBf3oLXtjXV9lChoBkdAQc1HvttygmgHS4RoCEdAjBhRL9MsYnV9lChoBkdAOGBNZeRgZ2gHS2FoCEdAjBiGRvFWGXV9lChoBkdAN7avRqoIfWgHS4FoCEdAjBmfpMYdhnV9lChoBkdAKBdy1eBxxWgHS29oCEdAjBqPb48EFHV9lChoBkdAQkZgqmTC+GgHS4xoCEdAjBqp2U0N0HV9lChoBkdAQa4LLIPsiWgHS3NoCEdAjBtfEn9ehXV9lChoBkdAO0vduYQarGgHS2FoCEdAjBtq0MPSUnV9lChoBkdAGXJ7LMcIaGgHS3toCEdAjByrFfiPyXV9lChoBkdAQz+s5n13+2gHS4RoCEdAjByq6vq1PXV9lChoBkdAMOyliz9jw2gHS1hoCEdAjB4B5HEuQXV9lChoBkdALWKw6hg3LmgHS21oCEdAjB4YjB2wFHV9lChoBkdAPJwPy08eS2gHS3VoCEdAjB8APVd5ZHV9lChoBkdAPcbYChew92gHS29oCEdAjCAx6F/QSnV9lChoBkdARc3MjeKsMmgHS5loCEdAjCBp1aGHpXV9lChoBkdAM4iOvMbFTGgHS3poCEdAjCCSRjjJdXV9lChoBkdAB3D8cdYGMWgHS3BoCEdAjCCUvGp++nV9lChoBkdAQWt6/qPfbmgHS4poCEdAjCHjYI0IknV9lChoBkdASjEJ6Y3Ns2gHS3VoCEdAjCJAyVObiXV9lChoBkdAThDMcIZ62WgHS2toCEdAjCKJI+W4VnV9lChoBkfAFJl4keIVM2gHS3poCEdAjCPCl7+kxnV9lChoBkdAOfDDbah6B2gHS3ZoCEdAjCRBVU+9rXV9lChoBkdALey39aUzK2gHS4NoCEdAjCVM6aLGaXV9lChoBkdAJs59mYjSomgHS2BoCEdAjCWVMM7U5XV9lChoBkfAEeV3EAHVw2gHS1JoCEdAjCcBhQWN3nV9lChoBkdAMqO54GD+SGgHS4ZoCEdAjCciW3Sa3XV9lChoBkdANOgbdadMCmgHS4doCEdAjCc6JAMUh3V9lChoBkdANmiudPLxJGgHS3FoCEdAjCfsUqQRw3V9lChoBkdARiWtfXwsoWgHS4ZoCEdAjCiqnWJ79nV9lChoBkdAO+jQqqfe12gHS2ZoCEdAjCi3HBDXv3V9lChoBkfAMqVwDNhVl2gHS2loCEdAjCjIybhFVnV9lChoBkdAMdChakhzNmgHS19oCEdAjCnR5kbxVnV9lChoBkdAMLXT3IuGsWgHS4doCEdAjCrRXGOuJXV9lChoBkdANmoxQBPsRmgHS4JoCEdAjCwsXBP9DXV9lChoBkdAPEVB6a9bo2gHS3BoCEdAjCzBPbfxc3V9lChoBkdARJbafzz3AWgHS49oCEdAjC4DcmBvrHV9lChoBkdAMIwZ88cMmWgHS31oCEdAjC5jtXxOL3V9lChoBkdARDPUjLSuyWgHS3doCEdAjC9RRl6JInV9lChoBkdAQlM1l5GBnWgHS2xoCEdAjDAP863iJnV9lChoBkdASvQTdtVJc2gHS4hoCEdAjDCPTgEU03V9lChoBkdAQ52SwGGEf2gHS25oCEdAjDG8JMQEp3V9lChoBkdAO6MXSBshxGgHS3BoCEdAjDH6lDWsinV9lChoBkdAUBDKU3XI2mgHS2doCEdAjDJrwOOKfnV9lChoBkdAR+2OXE61cGgHS5FoCEdAjDL3gccU/XV9lChoBkdAMe6OtGNJe2gHS39oCEdAjDMYWLxZuHV9lChoBkdARcs+eOGTLWgHS5hoCEdAjDOix/ustHV9lChoBkdAOGkQkHD77GgHS11oCEdAjDSLO7g883V9lChoBkdAHDQQ+UyHmGgHS3loCEdAjDThePaL43V9lChoBkdARKFTYNAkcGgHS4ZoCEdAjDdgTqSowXV9lChoBkdATUaMYMvysmgHS4FoCEdAjDjr+5vtMXV9lChoBke//iSyMUAT7GgHS3JoCEdAjDmrSmZVn3V9lChoBkdAIFjMV1wHaGgHS2hoCEdAjDqU34sVcnV9lChoBkdAQHcqjJuEVWgHS5BoCEdAjDq05+6RQ3V9lChoBkdAQBNzfaYeDGgHS2hoCEdAjDrZw4sEq3V9lChoBkdAOpFF2FFlTWgHS2loCEdAjDtleOXE63V9lChoBkdARDw/NZ/0/WgHS49oCEdAjDuPDP4VRHV9lChoBkdAORXIlt0mt2gHS4JoCEdAjDumzru6VnV9lChoBkdAUJGmCROk+GgHS2loCEdAjDv6V+qioXV9lChoBkdAQOiE12q1gGgHS31oCEdAjD35J9RaYHV9lChoBkdAOB+YlY2bX2gHS4VoCEdAjD4MSK3uu3V9lChoBkdAQHIlruYx+WgHS29oCEdAjD4Y+0PYnXV9lChoBkdAQjA3FUADJWgHS4VoCEdAjD8czqKP4nVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
+
"gamma": 1,
|
82 |
"gae_lambda": 0.99,
|
83 |
+
"ent_coef": 0.05,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bcf5227a9c2186f90f659579750d2576afd36aa43f7ef8e891c1e51d57f8a7c
|
3 |
+
size 87545
|
LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4650ba102f2277041224f6cb034375336a4a24c511bd00d6597b789be712b37
|
3 |
+
size 43201
|
LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.23.5
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.23.5
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 213.27 +/- 93.28
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cb86d1441f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cb86d144280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cb86d144310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cb86d1443a0>", "_build": "<function ActorCriticPolicy._build at 0x7cb86d144430>", "forward": "<function ActorCriticPolicy.forward at 0x7cb86d1444c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cb86d144550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cb86d1445e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7cb86d144670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cb86d144700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cb86d144790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cb86d144820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cb86d0debc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695005613383561565, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrrGz2k3wS7XeNOvXVVtDwuB0q8mN+ZPQAAgD8AAIA/ptarvWEkijv6DHi7ySTmPDEjGTzd4zs9AAAAAAAAAACz8ry99rZvO3ytRT6y9GI967QZvNKsJ70AAAAAAAAAAIrhpD4RmSu9MEzxPW+EpLwj4Xi+sPwOuwAAgD8AAIA/cws0Pi5xqDsWPxK83hvMuUg7OT3XirK6AACAPwAAgD9mdP48H6mmOquOZz0TdEO9DgV0O2IoLr4AAAAAAACAP30K7L5Ewym9RpZXuYlHDDaQgwa++2tMNwAAgD8AAIA/Gq+OvT1eQDpSFYe8VQIOvapP4zp0isi7AAAAAAAAAABm5sy6j0ITuF6oiTw8t4S8QRHVO0DgVDwAAAAAAAAAABpz8r0f2bs6/T+oPH1GALz3ziO89kbQvAAAAAAAAAAANvOrPkV1gz52FZm8fKEdv91SuT41Kqq9AAAAAAAAAABz8MK9haPduUC4kr3lgkm9g5lLO4QFMj0AAAAAAAAAAFqUsL0yLZE/cDQZvs6yML+OM2S+UJkIvgAAAAAAAAAAM7SQPD0kALsGA6m8ZVtTvILWKjsKdDw9AACAPwAAgD9Nr729riOcunx2LT0XiHu9M8cCvCvWXj4AAIA/AAAAAJp/0r2PMnY5IR2jPILvBbz1+Zc6HgHrPAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC1O49X9zfeMAWyUS3OMAXSUR0CQb3ky1uzhdX2UKGgGR0BgXGRV6u4gaAdN6ANoCEdAkHHrSuyNXHV9lChoBkdAR3ZHLA57xGgHS3xoCEdAkHNgmAskIHV9lChoBkdAVsjx8UmD2GgHTegDaAhHQJB1r0HyEtd1fZQoaAZHQGHziFTNt65oB03oA2gIR0CQd7Tr3TNMdX2UKGgGR0Aw4GmUGFBZaAdLZWgIR0CQee4UeuFIdX2UKGgGR0BOqkqlP8AJaAdLj2gIR0CQgq28IzFddX2UKGgGR0BZ5ZmVZ9uxaAdN6ANoCEdAkILUgW8AaXV9lChoBkfAWqnx9XtBwGgHTXgBaAhHQJCJK6NEPUd1fZQoaAZHQFklbExZdOZoB03oA2gIR0CQic8Djin6dX2UKGgGR0A37GrS3LFGaAdLd2gIR0CQivOwgTysdX2UKGgGR0BQKgEIPbwjaAdN6ANoCEdAkI3zhky1u3V9lChoBkdAQKN6LOzIFWgHS3loCEdAkJH9Qj2SMnV9lChoBkfAUkW/xlQMyGgHS4VoCEdAkJI2pEQXh3V9lChoBkdAK6g44p+c6WgHS4FoCEdAkJO6mO2iL3V9lChoBkdAWzPdFfAsTWgHTegDaAhHQJCjUoVmBe51fZQoaAZHQFJWSPluFYdoB03oA2gIR0CQp1pCrtE5dX2UKGgGR0BVWDSG8EmqaAdN6ANoCEdAkKd7rLQokXV9lChoBkdAV/VuDSPU8WgHTegDaAhHQJDBBMJx//h1fZQoaAZHQEqaZIg/1QJoB0t0aAhHQJDCLhzeXRh1fZQoaAZHQEIo9dNWU8poB0tpaAhHQJDEHRMN+b51fZQoaAZHQFXoIeYD1XhoB03oA2gIR0CQxij+JgstdX2UKGgGR0BR6vs3Q2MsaAdN6ANoCEdAkMh265Gz8nV9lChoBkdAP8utOmBOHmgHS3loCEdAkMpv2saKk3V9lChoBkdATEbLIPsiS2gHTegDaAhHQJDL2RvFWGR1fZQoaAZHwDGo9ic5Ke1oB0uBaAhHQJDMCoMrmQt1fZQoaAZHQEAKrz5GjKxoB0tqaAhHQJDNueK8+Rp1fZQoaAZHQFB4U1Q66rhoB03oA2gIR0CQzfObiIcjdX2UKGgGR0A3vo3aSLZSaAdLkGgIR0CQzoEwnH/+dX2UKGgGR0BNX+EqUeMiaAdN6ANoCEdAkNA9LUTcqXV9lChoBkdAW4xar3j+72gHTegDaAhHQJDSugVXV9Z1fZQoaAZHQFwUV6/qPfdoB03oA2gIR0CQ1JVt4zJqdX2UKGgGR8BhUA4ACGN8aAdLp2gIR0CQ1Le/Ho5hdX2UKGgGR0AhqoJiRW92aAdLdmgIR0CQ1LBUrCm/dX2UKGgGR0Ao9ke6qbSaaAdLcGgIR0CQ1mg5zYEodX2UKGgGR8Agtzyz5XU6aAdLWmgIR0CQ12YI0IkadX2UKGgGR0BHNs7lq8DkaAdLgmgIR0CQ28rIo3JgdX2UKGgGR0BWIg+EAYHgaAdN6ANoCEdAkOFmETQE6nV9lChoBkdAW/OZNO/L1WgHTegDaAhHQJDyGFg2Ift1fZQoaAZHwGXSDZlFtsNoB03XAmgIR0CQ9KaAFxGUdX2UKGgGR0BVJgW8AaNuaAdN6ANoCEdAkPdd+LFXJnV9lChoBkdAUMgna37UG2gHTegDaAhHQJD3k/7iyY51fZQoaAZHQFjgqO938oBoB03oA2gIR0CQ+SQrtmcwdX2UKGgGR8Aw8rMkhRqHaAdLcmgIR0CQ+xPLgXMydX2UKGgGR0BA2fZmI0qIaAdLeWgIR0CQ/U7JGOMmdX2UKGgGR0BF2z3IuGsWaAdLhmgIR0CRAL8vVVghdX2UKGgGR8BgcaV4X40uaAdNNgFoCEdAkSFhdUsFuHV9lChoBkc/+oJRfnfVJGgHTegDaAhHQJEtA3ZPEbZ1fZQoaAZHQEm/xEv0yxloB03oA2gIR0CRMuL/S6UadX2UKGgGR0BVHQydnTRZaAdN6ANoCEdAkTMrTYukDnV9lChoBkdAWpO0Xxe9jGgHTegDaAhHQJE1tgCwKSh1fZQoaAZHQFI2G5c1O0toB03oA2gIR0CRNopmVZ9vdX2UKGgGR8Bm3dZ/0/W2aAdLe2gIR0CRPQ+fRNRFdX2UKGgGR0BeW8YVIqb0aAdN6ANoCEdAkT87mEGqxXV9lChoBkdAYmcqiGnGbWgHTegDaAhHQJE/OjrRjSZ1fZQoaAZHwDyqt1ZDArRoB0uCaAhHQJFBDcclw991fZQoaAZHQFFkWiUPhAJoB03oA2gIR0CRQcsbedkKdX2UKGgGR0Ba7OI2wV0taAdN6ANoCEdAkUMcUdq+J3V9lChoBkdAECYgq3EycmgHS3VoCEdAkUdscp9ZzXV9lChoBkdAV6WBwuM+/2gHTegDaAhHQJFIM/3WWhR1fZQoaAZHQFo2qgAZKnNoB03oA2gIR0CRTBIJZ4fPdX2UKGgGR0BO4A5R0lqraAdLUWgIR0CRTN8J2MbWdX2UKGgGR0BBGc/UvwmWaAdLZ2gIR0CRT1/5LytndX2UKGgGR0BJQz987ZFoaAdLcmgIR0CRVGcMEzO5dX2UKGgGR8BhPnGIbfgraAdNOgJoCEdAkVshOk+HJ3V9lChoBkdASudwNsnAqWgHS2poCEdAkV6D7655JXV9lChoBkdAUFKM72criGgHTegDaAhHQJFheemNzbN1fZQoaAZHQFaAhmGucMFoB03oA2gIR0CRZL+2mYShdX2UKGgGR8A5cCEpRXOoaAdN6ANoCEdAkWgOrlvIfnV9lChoBkdAVVMLKFIuoWgHTegDaAhHQJFsg2MsH0N1fZQoaAZHwEwKoFV1fVtoB0toaAhHQJFuyaZx7zF1fZQoaAZHQEIWIhyKekJoB0tmaAhHQJF2kqbz9TB1fZQoaAZHQFcbCYCyQgdoB03oA2gIR0CReuhaTwDvdX2UKGgGR0AyCL6k690zaAdLgGgIR0CRkWRwqAjIdX2UKGgGR0BPUpvxYq5LaAdN6ANoCEdAkZa4PwuuinV9lChoBkdAXw9XT3IuG2gHTegDaAhHQJGZdJNCZ4R1fZQoaAZHQEjhEhJRO1xoB0teaAhHQJGZz4pMHr11fZQoaAZHwDhxZX+2mYVoB03oA2gIR0CRpFY3vQWvdX2UKGgGR0AxoRlHz6JqaAdLe2gIR0CRpK97WuoxdX2UKGgGR0A6Dl5GBnSOaAdLamgIR0CRpk9YwIt2dX2UKGgGR0BUmTMibDuSaAdN6ANoCEdAkabyz1K5CnV9lChoBkdAJWJZ4fOlf2gHS31oCEdAkaf6q4pc5nV9lChoBkdAWfxEqlP8AWgHTegDaAhHQJGpvnGKhtd1fZQoaAZHQGAbDa4+bExoB03oA2gIR0CRqrjj7yhBdX2UKGgGR0BgX6M98qnWaAdN6ANoCEdAkaxbr5ZbIXV9lChoBkfANfw176YVqWgHS4hoCEdAkbLLl7tzCHV9lChoBkdATD10knkT6GgHS4hoCEdAkbRzgQ6IWXV9lChoBkdAXTIaNuLrHGgHTegDaAhHQJG2ZB/qgRN1fZQoaAZHQE+UsYl6Z6VoB03oA2gIR0CRuLRXfZVXdX2UKGgGR0A5pVEuxrzoaAdN6ANoCEdAkcMStzS1E3V9lChoBkdAIIlbFCLMtGgHTegDaAhHQJHFOT5ftyB1fZQoaAZHQF83WH1vl2hoB03oA2gIR0CRxwps41gqdX2UKGgGR0BX/2WQfZElaAdN6ANoCEdAkctD/Q0GeXV9lChoBkfALNbqY7aIvmgHS3BoCEdAkczkQPI4l3V9lChoBkfAJgWEbo8p1GgHS15oCEdAkc1vN3W4E3V9lChoBkdAYMhpxm03O2gHTegDaAhHQJHObrnkkrx1fZQoaAZHQDhi2Dxsl9loB0tdaAhHQJHRj8vVVgh1fZQoaAZHQB3fOMVDa5BoB0tzaAhHQJHVY0ygwoN1fZQoaAZHQELVsabWmP5oB0tlaAhHQJHZmSntOVR1fZQoaAZHQFagW07bL2ZoB03oA2gIR0CR3Tbor4FidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.99, "ent_coef": 0.1, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3ac5120700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3ac5120790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3ac5120820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3ac51208b0>", "_build": "<function ActorCriticPolicy._build at 0x7a3ac5120940>", "forward": "<function ActorCriticPolicy.forward at 0x7a3ac51209d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3ac5120a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3ac5120af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a3ac5120b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3ac5120c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3ac5120ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3ac5120d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a3ac50bb100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695010575027885195, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGazob2+Rro/0wm2vg0+Mb4srN29KOwmvgAAAAAAAAAALVsRPutzrj9hvx4/MTq5vsHXJD4KePk+AAAAAAAAAAAahBs9w9FCusJSZDyTVmu9pn7LOxac6zsAAAAAAAAAAJp5XDqVGlA+yz5Ivp0vE78SPR++un0LvgAAAAAAAAAAQFyavZ+Ul7uGTwm9kmK0vT+SBb3PbZO+AACAPwAAgD8macg92BSSP1KHwT56dSK/goHiPaVMUT4AAAAAAAAAAABoXz2pAhI/ZnJwvZ5dOb9aP5e8wHtSvgAAAAAAAAAAU5tIvt13Cz8sELk9ZCAav6JVfr4vYoc9AAAAAAAAAAAaxg0+5OclP9AXTzw6YCO/5RuWPqYwHr0AAAAAAAAAAGbUHTzxb7U/lbj2PlleCD5m4Ri8+zSYvQAAAAAAAAAAWqezPVTYhD9s0Eu7iakYv4LaQj5KFzW+AAAAAAAAAABawpy+Y04xP7oryr43Qki/U873vlC6AL4AAAAAAAAAAI0/Vj7h6BE/eBdtPVMBP7/l6QY/LufPvQAAAAAAAAAAthlVvsAZfj8Fg2i+gfkkv5EKsL7S+7a9AAAAAAAAAAA6cyK+uJS1OoLsiz69PAi/B5cpviKYfj8AAIA/AAAAAGbooT2vnWg/YFZlvEPhHL8itBE+FveCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEI/nLaEi+uMAWyUS3CMAXSUR0CMBM/wiJO4dX2UKGgGR0BGw5iuuA7QaAdLX2gIR0CMBOCSRr8BdX2UKGgGR8AYznW8RL9NaAdLdGgIR0CMBcz5XU6QdX2UKGgGR0A9Bvg3tKI0aAdLbGgIR0CMBi1D0DlpdX2UKGgGR0BHTaF23azvaAdLZGgIR0CMBkTs6aLGdX2UKGgGR0A4YUsWfseGaAdLcWgIR0CMBvVqesgddX2UKGgGR0ArfhE0BOpLaAdLVmgIR0CMCOE12q1gdX2UKGgGR0AxR0XP7el9aAdLfGgIR0CMCUJqIrOJdX2UKGgGR0A5ozTnaFmGaAdLaWgIR0CMCVCl7+kydX2UKGgGR0BBGCiyprDZaAdLW2gIR0CMCWk4WDYidX2UKGgGR0BEFzHKfWc0aAdLZGgIR0CMCZKlHjIadX2UKGgGR0A8rbVjI7vHaAdLeGgIR0CMCj6guh9LdX2UKGgGR0A+AQb+98JEaAdLbWgIR0CMCl5ooNNKdX2UKGgGR0BBm9Sde6ZqaAdLWmgIR0CMCtW07bL2dX2UKGgGR0BFufQSi/O/aAdLmGgIR0CMCuZpi7TVdX2UKGgGR0BCIvAwfyPNaAdLZ2gIR0CMC/sLv1DjdX2UKGgGR0A5q25hBqsVaAdLbmgIR0CMDEVFhG6PdX2UKGgGR0BGyw7cO9WZaAdLj2gIR0CMDLnkDIRzdX2UKGgGR0A77yzollbvaAdLkGgIR0CMDOsDnvDxdX2UKGgGR0BUfxvFWGRFaAdN6ANoCEdAjA2I60Y0mHV9lChoBkdAPjQrlNlAeWgHS3hoCEdAjA4l6Z6Uq3V9lChoBkdAQtvo7muDBmgHS2BoCEdAjA9L2QGOdXV9lChoBkdAUN4WAPNFB2gHS2toCEdAjBA0JfICEHV9lChoBkdASNjc2zfJm2gHS3hoCEdAjBCbypaRp3V9lChoBkdAOeHVbzK9wmgHS1xoCEdAjBEA1Nxlx3V9lChoBkdASxj1schkiGgHS3NoCEdAjBEPiDM/yHV9lChoBkdANsCxA0Kqn2gHS3loCEdAjBFDM3ZPEnV9lChoBkdAOCBbfP5YYGgHS3NoCEdAjBHtpdrwfHV9lChoBkdARX9TcZccEWgHS4ZoCEdAjBL9OqNp/XV9lChoBkdASnV03fhuO2gHS1hoCEdAjBN/thNM5HV9lChoBkdALaQmmce8w2gHS4RoCEdAjBOif6Ggz3V9lChoBkdAISYEfT1CgWgHS3hoCEdAjBQ3iJfplnV9lChoBkdAFVWJ79hqkGgHS3poCEdAjBS2ykbgj3V9lChoBkdAOlk6gdwNsmgHS39oCEdAjBV3dTHbRHV9lChoBkdAOw0GqxTsIGgHS4xoCEdAjBZ/kFOfunV9lChoBkdANaYhyKekHmgHS1xoCEdAjBa0QbuMM3V9lChoBkdARPStaIN3GGgHS2VoCEdAjBfQjt5UtXV9lChoBkdAR9pfICEHuGgHS5BoCEdAjBf2kBS1mnV9lChoBkdAJWj3mFJxvWgHS3NoCEdAjBf3oLXtjXV9lChoBkdAQc1HvttygmgHS4RoCEdAjBhRL9MsYnV9lChoBkdAOGBNZeRgZ2gHS2FoCEdAjBiGRvFWGXV9lChoBkdAN7avRqoIfWgHS4FoCEdAjBmfpMYdhnV9lChoBkdAKBdy1eBxxWgHS29oCEdAjBqPb48EFHV9lChoBkdAQkZgqmTC+GgHS4xoCEdAjBqp2U0N0HV9lChoBkdAQa4LLIPsiWgHS3NoCEdAjBtfEn9ehXV9lChoBkdAO0vduYQarGgHS2FoCEdAjBtq0MPSUnV9lChoBkdAGXJ7LMcIaGgHS3toCEdAjByrFfiPyXV9lChoBkdAQz+s5n13+2gHS4RoCEdAjByq6vq1PXV9lChoBkdAMOyliz9jw2gHS1hoCEdAjB4B5HEuQXV9lChoBkdALWKw6hg3LmgHS21oCEdAjB4YjB2wFHV9lChoBkdAPJwPy08eS2gHS3VoCEdAjB8APVd5ZHV9lChoBkdAPcbYChew92gHS29oCEdAjCAx6F/QSnV9lChoBkdARc3MjeKsMmgHS5loCEdAjCBp1aGHpXV9lChoBkdAM4iOvMbFTGgHS3poCEdAjCCSRjjJdXV9lChoBkdAB3D8cdYGMWgHS3BoCEdAjCCUvGp++nV9lChoBkdAQWt6/qPfbmgHS4poCEdAjCHjYI0IknV9lChoBkdASjEJ6Y3Ns2gHS3VoCEdAjCJAyVObiXV9lChoBkdAThDMcIZ62WgHS2toCEdAjCKJI+W4VnV9lChoBkfAFJl4keIVM2gHS3poCEdAjCPCl7+kxnV9lChoBkdAOfDDbah6B2gHS3ZoCEdAjCRBVU+9rXV9lChoBkdALey39aUzK2gHS4NoCEdAjCVM6aLGaXV9lChoBkdAJs59mYjSomgHS2BoCEdAjCWVMM7U5XV9lChoBkfAEeV3EAHVw2gHS1JoCEdAjCcBhQWN3nV9lChoBkdAMqO54GD+SGgHS4ZoCEdAjCciW3Sa3XV9lChoBkdANOgbdadMCmgHS4doCEdAjCc6JAMUh3V9lChoBkdANmiudPLxJGgHS3FoCEdAjCfsUqQRw3V9lChoBkdARiWtfXwsoWgHS4ZoCEdAjCiqnWJ79nV9lChoBkdAO+jQqqfe12gHS2ZoCEdAjCi3HBDXv3V9lChoBkfAMqVwDNhVl2gHS2loCEdAjCjIybhFVnV9lChoBkdAMdChakhzNmgHS19oCEdAjCnR5kbxVnV9lChoBkdAMLXT3IuGsWgHS4doCEdAjCrRXGOuJXV9lChoBkdANmoxQBPsRmgHS4JoCEdAjCwsXBP9DXV9lChoBkdAPEVB6a9bo2gHS3BoCEdAjCzBPbfxc3V9lChoBkdARJbafzz3AWgHS49oCEdAjC4DcmBvrHV9lChoBkdAMIwZ88cMmWgHS31oCEdAjC5jtXxOL3V9lChoBkdARDPUjLSuyWgHS3doCEdAjC9RRl6JInV9lChoBkdAQlM1l5GBnWgHS2xoCEdAjDAP863iJnV9lChoBkdASvQTdtVJc2gHS4hoCEdAjDCPTgEU03V9lChoBkdAQ52SwGGEf2gHS25oCEdAjDG8JMQEp3V9lChoBkdAO6MXSBshxGgHS3BoCEdAjDH6lDWsinV9lChoBkdAUBDKU3XI2mgHS2doCEdAjDJrwOOKfnV9lChoBkdAR+2OXE61cGgHS5FoCEdAjDL3gccU/XV9lChoBkdAMe6OtGNJe2gHS39oCEdAjDMYWLxZuHV9lChoBkdARcs+eOGTLWgHS5hoCEdAjDOix/ustHV9lChoBkdAOGkQkHD77GgHS11oCEdAjDSLO7g883V9lChoBkdAHDQQ+UyHmGgHS3loCEdAjDThePaL43V9lChoBkdARKFTYNAkcGgHS4ZoCEdAjDdgTqSowXV9lChoBkdATUaMYMvysmgHS4FoCEdAjDjr+5vtMXV9lChoBke//iSyMUAT7GgHS3JoCEdAjDmrSmZVn3V9lChoBkdAIFjMV1wHaGgHS2hoCEdAjDqU34sVcnV9lChoBkdAQHcqjJuEVWgHS5BoCEdAjDq05+6RQ3V9lChoBkdAQBNzfaYeDGgHS2hoCEdAjDrZw4sEq3V9lChoBkdAOpFF2FFlTWgHS2loCEdAjDtleOXE63V9lChoBkdARDw/NZ/0/WgHS49oCEdAjDuPDP4VRHV9lChoBkdAORXIlt0mt2gHS4JoCEdAjDumzru6VnV9lChoBkdAUJGmCROk+GgHS2loCEdAjDv6V+qioXV9lChoBkdAQOiE12q1gGgHS31oCEdAjD35J9RaYHV9lChoBkdAOB+YlY2bX2gHS4VoCEdAjD4MSK3uu3V9lChoBkdAQHIlruYx+WgHS29oCEdAjD4Y+0PYnXV9lChoBkdAQjA3FUADJWgHS4VoCEdAjD8czqKP4nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 1, "gae_lambda": 0.99, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 213.2654877, "std_reward": 93.28038728534352, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-18T04:31:49.226860"}
|