ppo-LunarLander-v2 / config.json
torkable's picture
land it better
cc09bc3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e6f2c54a440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6f2c54a4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6f2c54a560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6f2c54a5f0>", "_build": "<function ActorCriticPolicy._build at 0x7e6f2c54a680>", "forward": "<function ActorCriticPolicy.forward at 0x7e6f2c54a710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6f2c54a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6f2c54a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7e6f2c54a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6f2c54a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6f2c54a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6f2c54aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e6f2c4dfd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695079327493424466, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYHQL47Xpk+4CLmPh34zr7clie9ikaYPgAAAAAAAAAAWmRCPtxvET5z1P2+G5mcvhCbTr0asv69AAAAAAAAAABmdkG8h/y5Pzp/ZL5DSqQ+ZemOuynPh70AAAAAAAAAAAAvPz3UVkc+0YYYvWxMwr4Q/ug8fQTDvAAAAAAAAAAAeieFPiKUKj8lIyU+cRo3v+/qAD9SX/i8AAAAAAAAAACzv589l98/P7uE2jyLGDO/z8TMPd4VzrwAAAAAAAAAAGb+pTu4Y7Y/POUuPudlOT7nTr27Bb0cvQAAAAAAAAAA5mEkPcPpLbqhQEI1MvOEMOIAirrDIE+0AACAPwAAgD+AIA09dMW1PhtR7L1Ftb2+3+7uO4R3lr0AAAAAAAAAAM3tZz00PLs9YwmhvidppL63Sy++eKKhvQAAAAAAAAAAs0vOPUHdsT3l72u+UiS8vrQ8z734XXC8AAAAAAAAAACaOfs8aDe/P2j+zD1aoy6+GhCGvca4Sz0AAAAAAAAAAGYEKLwM0KE/0tqvvSzqOb9ehTO9QvK9vQAAAAAAAAAApqOXPVx7cT1FhjC+VMpIvrIBkr0Akla9AAAAAAAAAACabU09Cnspu9kmvbxGPog8agqGPFZwa70AAIA/AACAPzOFHbxB2au8HKckvu00cj3gnwe78eGrPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOpQ6hg3LqMAWyUS7eMAXSUR0Cwjl9joZAIdX2UKGgGR0Bz9JY7q6e5aAdL4WgIR0CwjmHVsk6cdX2UKGgGR0BxKlZxJd0JaAdL3GgIR0CwjpFwgkkbdX2UKGgGR0ByzqBoVVPvaAdNxgFoCEdAsI6hpcophHV9lChoBkdAcUYY1YQrc2gHS8doCEdAsI68//vOQnV9lChoBkdAcIBFlTWGy2gHS79oCEdAsI7V2zOX3XV9lChoBkdAcV/E1EVnEmgHS6FoCEdAsI7idz4k/3V9lChoBkdAcbZvxYq5LGgHS8xoCEdAsI8Pzd1uBXV9lChoBkdAcynWk8A7xWgHS9hoCEdAsI80M5OrQ3V9lChoBkdAcP80o0ALiWgHS8VoCEdAsI9cVKwpv3V9lChoBkdAcl1EW69TP2gHS6RoCEdAsI9n6j323HV9lChoBkdAcosdk8Rtg2gHS9BoCEdAsI9+x0MgEHV9lChoBkdAcihUuctoSWgHS61oCEdAsI+F/MGHHnV9lChoBkdAcwHzkZJkG2gHS8ZoCEdAsJk5W4mTknV9lChoBkdAcrnA31jAi2gHS7VoCEdAsJk5Iy0rsnV9lChoBkdAcbNmCAc1fmgHS8VoCEdAsJlP/zasZHV9lChoBkdAcb81UEPlMmgHS9poCEdAsJl1DZ13dXV9lChoBkdAcUpAsCkoF2gHS7doCEdAsJl9edCmdnV9lChoBkdAcfdAaNuLrGgHS8xoCEdAsJmBH09QoHV9lChoBkdAcuAbjtG/e2gHS8ZoCEdAsJmDGuLaVXV9lChoBkdAcMKNKh+OO2gHS7FoCEdAsJmHCTEBKnV9lChoBkdAccWZaV2RrGgHS7loCEdAsJm26Ae7tnV9lChoBkdAcdWUtI0652gHS9xoCEdAsJnMq0+kg3V9lChoBkdAcI8ZwGW2PWgHS9poCEdAsJoC/ATIvXV9lChoBkdAcpq+w1R+B2gHS8FoCEdAsJoAdBBzFXV9lChoBkdAc86HCXQdCGgHS7xoCEdAsJoOQA+6iHV9lChoBkdAczNY8dPtUmgHS9loCEdAsJoedYnv2HV9lChoBkdAcgEKTB68hGgHS89oCEdAsJonY02tMnV9lChoBkdAcjTAbQ1JlWgHS6hoCEdAsJo8uJ1q33V9lChoBkdAcEM3KSxJNGgHS8BoCEdAsJpdbC79RHV9lChoBkdASC16w+t8u2gHS35oCEdAsJp4K1G9YnV9lChoBkdAcxwJBPbfxmgHS69oCEdAsJqIyJsO5XV9lChoBkdAcUI1lXiiqWgHS8RoCEdAsJqlLPD503V9lChoBkdAdAL7qptJnWgHS+RoCEdAsJqtY+0PYnV9lChoBkdAciaJBw++umgHS89oCEdAsJquV1Oj7HV9lChoBkdAc/baVUuL8GgHS8toCEdAsJq6B/Zuh3V9lChoBkdAcvIVt4zJp2gHS9doCEdAsJrIk8ifQXV9lChoBkdAb0ylchTwUmgHS7poCEdAsJrpW8yvcXV9lChoBkdAcLBr5IpYtGgHS7FoCEdAsJsRdC3PRnV9lChoBkdAcAHUT+NtImgHS7RoCEdAsJsTZUT+N3V9lChoBkdAcwZyBClabGgHS81oCEdAsJtH2/SH/XV9lChoBkdAczaOjZcs2GgHS8toCEdAsJtVeUpuuXV9lChoBkdAcTuVh1DBuWgHS8toCEdAsJtfTG5tnHV9lChoBkdAcgztL+PzWmgHS8ZoCEdAsJtvc2zfJnV9lChoBkdAcFlNwBHTZ2gHS7doCEdAsJt9vIfbK3V9lChoBkdAcGR7TUiIL2gHS7hoCEdAsJursqril3V9lChoBkdAcLjolUp/gGgHS6VoCEdAsJu1DneSCHV9lChoBkdAcpanpjc2zmgHS6xoCEdAsJvMUVSGanV9lChoBkdAc8EdJJ5E+mgHS9xoCEdAsJvU40dilXV9lChoBkdAcyuTzND+i2gHS7toCEdAsJvYVGkN4XV9lChoBkdAcsygXMyJsWgHS9VoCEdAsJv3hLoOhHV9lChoBkdAbyYSxqwhXGgHS7hoCEdAsJwPPcBU73V9lChoBkdAbzclAu7HyWgHS89oCEdAsJwQpDu0C3V9lChoBkdAaA4W/rSmZWgHTegDaAhHQLCcJjABT4t1fZQoaAZHQHDQvG2kSEloB0u8aAhHQLCcOTpgTh51fZQoaAZHQHJApHiFTNtoB0u8aAhHQLCcOkNWluZ1fZQoaAZHQHLrvLDAJsxoB0utaAhHQLCcWsEJSix1fZQoaAZHQG7kvtD2JzloB0u4aAhHQLCcXs3hn8N1fZQoaAZHQHI4lRpDeCVoB0upaAhHQLCca3pfQa91fZQoaAZHQHDt7w4KhL5oB0u5aAhHQLCccse4kNZ1fZQoaAZHQHFjOM6zVtpoB0u1aAhHQLCchZ7Xxvx1fZQoaAZHQHALJ9E1EVpoB0utaAhHQLCcnz9jwx51fZQoaAZHQHQbObRWtEJoB0u1aAhHQLCcsXXRPXV1fZQoaAZHQHGa6JMxoIxoB0uuaAhHQLCcu0hNdqt1fZQoaAZHQHALmS+xnnNoB0u8aAhHQLCc16mO2iN1fZQoaAZHQHBriprDZUVoB0vAaAhHQLCc4O7QLNR1fZQoaAZHQHDzuymhufpoB0upaAhHQLCc8ziS7oV1fZQoaAZHQHGdCWzF+/hoB0vGaAhHQLCdBahHskZ1fZQoaAZHQHNc3QQcxTNoB0vMaAhHQLCdJmYSg5B1fZQoaAZHQESQ7NjbzshoB0tiaAhHQLCdLFJg9eR1fZQoaAZHQHHffMKTjedoB0vHaAhHQLCdNZdv8651fZQoaAZHQHJSauKXOW1oB0ujaAhHQLCdQJ9y9251fZQoaAZHQHHwJ7sv7FdoB0vOaAhHQLCdVdYGMXJ1fZQoaAZHQHIHBi5NGmVoB0vSaAhHQLCdYg6ltTF1fZQoaAZHQHKdQV9F4LVoB0u/aAhHQLCdcMtK7I11fZQoaAZHQHHXbofSx7loB0uxaAhHQLCdd1eSjg11fZQoaAZHQHOIVSsKb8ZoB0vLaAhHQLCdnIn0Cih1fZQoaAZHQHBoWR3eN1hoB0vBaAhHQLCdrumrKeV1fZQoaAZHQHAILdN34bloB0u5aAhHQLCd34rSVnp1fZQoaAZHQHKAU5EMLF5oB0u+aAhHQLCd9avzOHF1fZQoaAZHQHF/xkRSP2hoB0u0aAhHQLCeLeiSJTF1fZQoaAZHQHFnluJk5IZoB0vIaAhHQLCeOpIczZZ1fZQoaAZHQHJq0G7jDKpoB0vRaAhHQLCeQKqXF991fZQoaAZHQHEXTk2gnMNoB0u0aAhHQLCeSCBwuNB1fZQoaAZHQHNDJY5ksjFoB0vJaAhHQLCenAnUlRh1fZQoaAZHQHBxmicoYvZoB0vFaAhHQLCep8Tzund1fZQoaAZHQHIeIldC3PRoB0vQaAhHQLCesKCg9Nh1fZQoaAZHQHELDGo73f1oB0uyaAhHQLCetwVTJhh1fZQoaAZHQHERX/T9bX9oB0uqaAhHQLCetvZAY511fZQoaAZHQHOjOObRWtFoB0vJaAhHQLCewfhuO0d1fZQoaAZHQHEUOI2wV0toB0vOaAhHQLCe3v2Xb/R1fZQoaAZHQHKeV7D2rXFoB0vJaAhHQLCe98Lront1fZQoaAZHQG6/HBtUGV1oB0u9aAhHQLCfBiNKh+R1fZQoaAZHQHCgO9i+cpdoB0u6aAhHQLCfFjRD1Gt1fZQoaAZHQHCBT7EYO2BoB0vCaAhHQLCfVxEfDDV1fZQoaAZHQHIB0cfeUINoB0u4aAhHQLCfW5eZ5Rl1fZQoaAZHQHEtW74BV+9oB0usaAhHQLCfmjQAuI11fZQoaAZHQHFvhiG34KxoB0u2aAhHQLCfvuejEeh1fZQoaAZHQHJrU3Kji4toB0vEaAhHQLCfz/gzguR1fZQoaAZHQHFlT3Zf2K5oB0vMaAhHQLCf070nPVx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.022, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}