torinriley
commited on
Commit
•
387dfb8
1
Parent(s):
3f726f1
Update handler.py
Browse files- handler.py +23 -18
handler.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
|
|
|
7 |
from model import get_model
|
8 |
|
9 |
class EndpointHandler:
|
@@ -12,49 +12,54 @@ class EndpointHandler:
|
|
12 |
Initialize the handler. Load the Faster R-CNN model.
|
13 |
"""
|
14 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
-
self.model_weights_path = os.path.join(path, "model.pt")
|
16 |
-
|
17 |
-
# Load
|
18 |
self.model = get_model(num_classes=4)
|
19 |
-
print(f"Loading weights from: {self.model_weights_path}")
|
20 |
checkpoint = torch.load(self.model_weights_path, map_location=self.device)
|
21 |
self.model.load_state_dict(checkpoint["model_state_dict"])
|
22 |
self.model.to(self.device)
|
23 |
self.model.eval()
|
24 |
|
25 |
-
#
|
26 |
self.transform = transforms.Compose([
|
27 |
-
transforms.Resize((640, 640)),
|
28 |
transforms.ToTensor(),
|
29 |
])
|
30 |
|
31 |
def __call__(self, data):
|
32 |
"""
|
33 |
-
Process
|
34 |
"""
|
35 |
try:
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
41 |
|
|
|
42 |
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
43 |
|
|
|
44 |
with torch.no_grad():
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
|
|
51 |
threshold = 0.5
|
52 |
-
|
53 |
{"box": box, "label": label, "score": score}
|
54 |
for box, label, score in zip(boxes, labels, scores)
|
55 |
if score > threshold
|
56 |
]
|
57 |
|
58 |
-
return
|
59 |
except Exception as e:
|
60 |
-
return
|
|
|
|
|
1 |
import torch
|
2 |
from torchvision import transforms
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
|
6 |
+
# Load the Faster R-CNN model
|
7 |
from model import get_model
|
8 |
|
9 |
class EndpointHandler:
|
|
|
12 |
Initialize the handler. Load the Faster R-CNN model.
|
13 |
"""
|
14 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
self.model_weights_path = os.path.join(path, "model.pt") # Adjust path
|
16 |
+
|
17 |
+
# Load model
|
18 |
self.model = get_model(num_classes=4)
|
|
|
19 |
checkpoint = torch.load(self.model_weights_path, map_location=self.device)
|
20 |
self.model.load_state_dict(checkpoint["model_state_dict"])
|
21 |
self.model.to(self.device)
|
22 |
self.model.eval()
|
23 |
|
24 |
+
# Image preprocessing
|
25 |
self.transform = transforms.Compose([
|
26 |
+
transforms.Resize((640, 640)),
|
27 |
transforms.ToTensor(),
|
28 |
])
|
29 |
|
30 |
def __call__(self, data):
|
31 |
"""
|
32 |
+
Process incoming binary image data and return object detection results.
|
33 |
"""
|
34 |
try:
|
35 |
+
# Read raw binary data (image file)
|
36 |
+
image_bytes = data.get("body", b"")
|
37 |
+
if not image_bytes:
|
38 |
+
return {"error": "No image data provided in request."}
|
39 |
|
40 |
+
|
41 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
42 |
|
43 |
+
|
44 |
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
45 |
|
46 |
+
|
47 |
with torch.no_grad():
|
48 |
+
predictions = self.model(input_tensor)
|
49 |
|
50 |
+
|
51 |
+
boxes = predictions[0]["boxes"].cpu().tolist()
|
52 |
+
labels = predictions[0]["labels"].cpu().tolist()
|
53 |
+
scores = predictions[0]["scores"].cpu().tolist()
|
54 |
|
55 |
+
|
56 |
threshold = 0.5
|
57 |
+
results = [
|
58 |
{"box": box, "label": label, "score": score}
|
59 |
for box, label, score in zip(boxes, labels, scores)
|
60 |
if score > threshold
|
61 |
]
|
62 |
|
63 |
+
return {"predictions": results}
|
64 |
except Exception as e:
|
65 |
+
return {"error": str(e)}
|