torinriley commited on
Commit
1e11062
·
verified ·
1 Parent(s): a3af870

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +13 -9
handler.py CHANGED
@@ -1,13 +1,16 @@
 
1
  import torch
2
  from torchvision import transforms
3
  from PIL import Image
4
  import io
5
 
6
- MODEL_PATH = "model.pt"
7
- NUM_CLASSES = 4
 
 
 
8
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
9
 
10
- # Load Faster R-CNN model
11
  def load_model(model_path, num_classes):
12
  from torchvision.models.detection import fasterrcnn_resnet50_fpn
13
  model = fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes)
@@ -17,13 +20,13 @@ def load_model(model_path, num_classes):
17
  model.eval()
18
  return model
19
 
 
 
20
  transform = transforms.Compose([
21
  transforms.Resize((640, 640)),
22
  transforms.ToTensor(),
23
  ])
24
 
25
- model = load_model(MODEL_PATH, NUM_CLASSES)
26
-
27
  def detect_objects(image_bytes):
28
  image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
29
  input_tensor = transform(image).unsqueeze(0).to(DEVICE)
@@ -45,12 +48,13 @@ def detect_objects(image_bytes):
45
  return {"predictions": results}
46
 
47
  def inference(payload):
 
48
  try:
49
  if "image" not in payload:
50
- return {"error": "No image provided. Please send an image."}
51
-
52
- image_bytes = payload["image"].encode("latin1")
53
-
54
  results = detect_objects(image_bytes)
55
  return results
56
  except Exception as e:
 
1
+ import os
2
  import torch
3
  from torchvision import transforms
4
  from PIL import Image
5
  import io
6
 
7
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
8
+ MODEL_FILENAME = "model.pt"
9
+ MODEL_PATH = os.path.join(BASE_DIR, MODEL_FILENAME)
10
+
11
+ NUM_CLASSES = 4
12
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
13
 
 
14
  def load_model(model_path, num_classes):
15
  from torchvision.models.detection import fasterrcnn_resnet50_fpn
16
  model = fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes)
 
20
  model.eval()
21
  return model
22
 
23
+ model = load_model(MODEL_PATH, NUM_CLASSES)
24
+
25
  transform = transforms.Compose([
26
  transforms.Resize((640, 640)),
27
  transforms.ToTensor(),
28
  ])
29
 
 
 
30
  def detect_objects(image_bytes):
31
  image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
32
  input_tensor = transform(image).unsqueeze(0).to(DEVICE)
 
48
  return {"predictions": results}
49
 
50
  def inference(payload):
51
+ import base64
52
  try:
53
  if "image" not in payload:
54
+ return {"error": "No image provided. Please send a Base64-encoded image."}
55
+
56
+ image_bytes = base64.b64decode(payload["image"])
57
+
58
  results = detect_objects(image_bytes)
59
  return results
60
  except Exception as e: