|
import cv2 |
|
import torch |
|
from model import get_model |
|
from torchvision.transforms import ToTensor |
|
|
|
num_classes = 4 |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = get_model(num_classes).to(device) |
|
|
|
checkpoint_path = "models/model.pt" |
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
model.load_state_dict(checkpoint["model_state_dict"]) |
|
model.eval() |
|
|
|
CONFIDENCE_THRESHOLD = 0.5 |
|
|
|
video_capture = cv2.VideoCapture(0) |
|
if not video_capture.isOpened(): |
|
print("Error: Could not open video device.") |
|
exit() |
|
|
|
def preprocess_frame(frame): |
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
frame_tensor = ToTensor()(frame_rgb).unsqueeze(0).to(device) |
|
return frame_tensor |
|
|
|
def draw_predictions(frame, predictions): |
|
boxes = predictions[0]["boxes"] |
|
labels = predictions[0]["labels"] |
|
scores = predictions[0]["scores"] |
|
|
|
label_map = {1: "yellow", 2: "red", 3: "blue"} |
|
|
|
for box, label, score in zip(boxes, labels, scores): |
|
if score >= CONFIDENCE_THRESHOLD: |
|
x1, y1, x2, y2 = map(int, box) |
|
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) |
|
|
|
color_name = label_map.get(label.item(), "unknown") |
|
label_text = f"{color_name} game piece" |
|
cv2.putText(frame, label_text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) |
|
|
|
return frame |
|
|
|
print("Starting video stream... Press 'q' to quit.") |
|
while video_capture.isOpened(): |
|
ret, frame = video_capture.read() |
|
if not ret: |
|
break |
|
|
|
frame_tensor = preprocess_frame(frame) |
|
|
|
with torch.no_grad(): |
|
predictions = model(frame_tensor) |
|
|
|
frame = draw_predictions(frame, predictions) |
|
|
|
cv2.imshow("Real-Time Object Detection", frame) |
|
|
|
if cv2.waitKey(1) & 0xFF == ord("q"): |
|
break |
|
|
|
video_capture.release() |
|
cv2.destroyAllWindows() |