| import cv2 | |
| import torch | |
| from model import get_model | |
| from torchvision.transforms import ToTensor | |
| num_classes = 4 | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = get_model(num_classes).to(device) | |
| checkpoint_path = "models/model.pt" | |
| checkpoint = torch.load(checkpoint_path, map_location=device) | |
| model.load_state_dict(checkpoint["model_state_dict"]) | |
| model.eval() | |
| CONFIDENCE_THRESHOLD = 0.5 | |
| video_capture = cv2.VideoCapture(0) | |
| if not video_capture.isOpened(): | |
| print("Error: Could not open video device.") | |
| exit() | |
| def preprocess_frame(frame): | |
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| frame_tensor = ToTensor()(frame_rgb).unsqueeze(0).to(device) | |
| return frame_tensor | |
| def draw_predictions(frame, predictions): | |
| boxes = predictions[0]["boxes"] | |
| labels = predictions[0]["labels"] | |
| scores = predictions[0]["scores"] | |
| label_map = {1: "yellow", 2: "red", 3: "blue"} | |
| for box, label, score in zip(boxes, labels, scores): | |
| if score >= CONFIDENCE_THRESHOLD: | |
| x1, y1, x2, y2 = map(int, box) | |
| cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
| color_name = label_map.get(label.item(), "unknown") | |
| label_text = f"{color_name} game piece" | |
| cv2.putText(frame, label_text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
| return frame | |
| print("Starting video stream... Press 'q' to quit.") | |
| while video_capture.isOpened(): | |
| ret, frame = video_capture.read() | |
| if not ret: | |
| break | |
| frame_tensor = preprocess_frame(frame) | |
| with torch.no_grad(): | |
| predictions = model(frame_tensor) | |
| frame = draw_predictions(frame, predictions) | |
| cv2.imshow("Real-Time Object Detection", frame) | |
| if cv2.waitKey(1) & 0xFF == ord("q"): | |
| break | |
| video_capture.release() | |
| cv2.destroyAllWindows() |