torinriley's picture
Upload 2 files
59755ed verified
raw
history blame
1.87 kB
import cv2
import torch
from model import get_model
from torchvision.transforms import ToTensor
num_classes = 4
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = get_model(num_classes).to(device)
checkpoint_path = "models/model.pt"
checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
model.eval()
CONFIDENCE_THRESHOLD = 0.5
video_capture = cv2.VideoCapture(0)
if not video_capture.isOpened():
print("Error: Could not open video device.")
exit()
def preprocess_frame(frame):
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_tensor = ToTensor()(frame_rgb).unsqueeze(0).to(device)
return frame_tensor
def draw_predictions(frame, predictions):
boxes = predictions[0]["boxes"]
labels = predictions[0]["labels"]
scores = predictions[0]["scores"]
label_map = {1: "yellow", 2: "red", 3: "blue"}
for box, label, score in zip(boxes, labels, scores):
if score >= CONFIDENCE_THRESHOLD:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
color_name = label_map.get(label.item(), "unknown")
label_text = f"{color_name} game piece"
cv2.putText(frame, label_text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return frame
print("Starting video stream... Press 'q' to quit.")
while video_capture.isOpened():
ret, frame = video_capture.read()
if not ret:
break
frame_tensor = preprocess_frame(frame)
with torch.no_grad():
predictions = model(frame_tensor)
frame = draw_predictions(frame, predictions)
cv2.imshow("Real-Time Object Detection", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
video_capture.release()
cv2.destroyAllWindows()