|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import copy |
|
import math |
|
import os |
|
from multiprocessing import Value |
|
import toml |
|
|
|
from tqdm import tqdm |
|
|
|
import torch |
|
from .library.device_utils import init_ipex, clean_memory_on_device |
|
|
|
init_ipex() |
|
|
|
from accelerate.utils import set_seed |
|
from .library import deepspeed_utils, flux_train_utils, flux_utils, strategy_base, strategy_flux |
|
from .library.sd3_train_utils import FlowMatchEulerDiscreteScheduler |
|
|
|
from .library import train_util as train_util |
|
|
|
from .library.utils import setup_logging, add_logging_arguments |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
from .library import config_util as config_util |
|
|
|
from .library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
from .library.custom_train_functions import apply_masked_loss, add_custom_train_arguments |
|
|
|
|
|
class FluxTrainer: |
|
def __init__(self): |
|
self.sample_prompts_te_outputs = None |
|
|
|
def sample_images(self, epoch, global_step, validation_settings): |
|
image_tensors = flux_train_utils.sample_images( |
|
self.accelerator, self.args, epoch, global_step, self.unet, self.vae, self.text_encoder, self.sample_prompts_te_outputs, validation_settings) |
|
return image_tensors |
|
|
|
def init_train(self, args): |
|
train_util.verify_training_args(args) |
|
train_util.prepare_dataset_args(args, True) |
|
|
|
deepspeed_utils.prepare_deepspeed_args(args) |
|
setup_logging(args, reset=True) |
|
|
|
|
|
if not args.skip_cache_check: |
|
args.skip_cache_check = args.skip_latents_validity_check |
|
|
|
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs: |
|
logger.warning( |
|
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled / cache_text_encoder_outputs_to_diskが有効になっているため、cache_text_encoder_outputsも有効になります" |
|
) |
|
args.cache_text_encoder_outputs = True |
|
|
|
if args.cpu_offload_checkpointing and not args.gradient_checkpointing: |
|
logger.warning( |
|
"cpu_offload_checkpointing is enabled, so gradient_checkpointing is also enabled / cpu_offload_checkpointingが有効になっているため、gradient_checkpointingも有効になります" |
|
) |
|
args.gradient_checkpointing = True |
|
|
|
assert ( |
|
args.blocks_to_swap is None or args.blocks_to_swap == 0 |
|
) or not args.cpu_offload_checkpointing, ( |
|
"blocks_to_swap is not supported with cpu_offload_checkpointing / blocks_to_swapはcpu_offload_checkpointingと併用できません" |
|
) |
|
|
|
cache_latents = args.cache_latents |
|
use_dreambooth_method = args.in_json is None |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if args.cache_latents: |
|
latents_caching_strategy = strategy_flux.FluxLatentsCachingStrategy( |
|
args.cache_latents_to_disk, args.vae_batch_size, args.skip_latents_validity_check |
|
) |
|
strategy_base.LatentsCachingStrategy.set_strategy(latents_caching_strategy) |
|
|
|
|
|
if args.dataset_class is None: |
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True)) |
|
if args.dataset_config is not None: |
|
logger.info(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "in_json"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
logger.warning( |
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( |
|
", ".join(ignored) |
|
) |
|
) |
|
else: |
|
if use_dreambooth_method: |
|
logger.info("Using DreamBooth method.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs( |
|
args.train_data_dir, args.reg_data_dir |
|
) |
|
} |
|
] |
|
} |
|
else: |
|
logger.info("Training with captions.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": [ |
|
{ |
|
"image_dir": args.train_data_dir, |
|
"metadata_file": args.in_json, |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
else: |
|
train_dataset_group = train_util.load_arbitrary_dataset(args) |
|
|
|
current_epoch = Value("i", 0) |
|
current_step = Value("i", 0) |
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None |
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) |
|
|
|
train_dataset_group.verify_bucket_reso_steps(16) |
|
|
|
_, is_schnell, _, _ = flux_utils.analyze_checkpoint_state(args.pretrained_model_name_or_path) |
|
if args.debug_dataset: |
|
if args.cache_text_encoder_outputs: |
|
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy( |
|
strategy_flux.FluxTextEncoderOutputsCachingStrategy( |
|
args.cache_text_encoder_outputs_to_disk, args.text_encoder_batch_size, args.skip_cache_check, False |
|
) |
|
) |
|
t5xxl_max_token_length = ( |
|
args.t5xxl_max_token_length if args.t5xxl_max_token_length is not None else (256 if is_schnell else 512) |
|
) |
|
strategy_base.TokenizeStrategy.set_strategy(strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length)) |
|
|
|
train_dataset_group.set_current_strategies() |
|
train_util.debug_dataset(train_dataset_group, True) |
|
return |
|
if len(train_dataset_group) == 0: |
|
logger.error( |
|
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。" |
|
) |
|
return |
|
|
|
if cache_latents: |
|
assert ( |
|
train_dataset_group.is_latent_cacheable() |
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" |
|
|
|
if args.cache_text_encoder_outputs: |
|
assert ( |
|
train_dataset_group.is_text_encoder_output_cacheable() |
|
), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません" |
|
|
|
|
|
logger.info("prepare accelerator") |
|
accelerator = train_util.prepare_accelerator(args) |
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args) |
|
|
|
|
|
ae = None |
|
if cache_latents: |
|
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu", args.disable_mmap_load_safetensors) |
|
ae.to(accelerator.device, dtype=weight_dtype) |
|
ae.requires_grad_(False) |
|
ae.eval() |
|
|
|
train_dataset_group.new_cache_latents(ae, accelerator) |
|
|
|
ae.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if args.t5xxl_max_token_length is None: |
|
if is_schnell: |
|
t5xxl_max_token_length = 256 |
|
else: |
|
t5xxl_max_token_length = 512 |
|
else: |
|
t5xxl_max_token_length = args.t5xxl_max_token_length |
|
|
|
flux_tokenize_strategy = strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length) |
|
strategy_base.TokenizeStrategy.set_strategy(flux_tokenize_strategy) |
|
|
|
|
|
clip_l = flux_utils.load_clip_l(args.clip_l, weight_dtype, "cpu", args.disable_mmap_load_safetensors) |
|
t5xxl = flux_utils.load_t5xxl(args.t5xxl, weight_dtype, "cpu", args.disable_mmap_load_safetensors) |
|
clip_l.eval() |
|
t5xxl.eval() |
|
clip_l.requires_grad_(False) |
|
t5xxl.requires_grad_(False) |
|
|
|
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(args.apply_t5_attn_mask) |
|
strategy_base.TextEncodingStrategy.set_strategy(text_encoding_strategy) |
|
|
|
|
|
sample_prompts_te_outputs = None |
|
if args.cache_text_encoder_outputs: |
|
|
|
clip_l.to(accelerator.device) |
|
t5xxl.to(accelerator.device) |
|
|
|
text_encoder_caching_strategy = strategy_flux.FluxTextEncoderOutputsCachingStrategy( |
|
args.cache_text_encoder_outputs_to_disk, args.text_encoder_batch_size, False, False, args.apply_t5_attn_mask |
|
) |
|
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy(text_encoder_caching_strategy) |
|
|
|
with accelerator.autocast(): |
|
train_dataset_group.new_cache_text_encoder_outputs([clip_l, t5xxl], accelerator) |
|
|
|
|
|
if args.sample_prompts is not None: |
|
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}") |
|
|
|
text_encoding_strategy: strategy_flux.FluxTextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy() |
|
|
|
prompts = [] |
|
for line in args.sample_prompts: |
|
line = line.strip() |
|
if len(line) > 0 and line[0] != "#": |
|
prompts.append(line) |
|
|
|
|
|
for i in range(len(prompts)): |
|
prompt_dict = prompts[i] |
|
if isinstance(prompt_dict, str): |
|
from .library.train_util import line_to_prompt_dict |
|
|
|
prompt_dict = line_to_prompt_dict(prompt_dict) |
|
prompts[i] = prompt_dict |
|
assert isinstance(prompt_dict, dict) |
|
|
|
|
|
prompt_dict["enum"] = i |
|
prompt_dict.pop("subset", None) |
|
|
|
sample_prompts_te_outputs = {} |
|
with accelerator.autocast(), torch.no_grad(): |
|
for prompt_dict in prompts: |
|
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]: |
|
if p not in sample_prompts_te_outputs: |
|
logger.info(f"cache Text Encoder outputs for prompt: {p}") |
|
tokens_and_masks = flux_tokenize_strategy.tokenize(p) |
|
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens( |
|
flux_tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, args.apply_t5_attn_mask |
|
) |
|
self.sample_prompts_te_outputs = sample_prompts_te_outputs |
|
accelerator.wait_for_everyone() |
|
|
|
|
|
clip_l = None |
|
t5xxl = None |
|
clean_memory_on_device(accelerator.device) |
|
|
|
|
|
_, flux = flux_utils.load_flow_model( |
|
args.pretrained_model_name_or_path, weight_dtype, "cpu", args.disable_mmap_load_safetensors |
|
) |
|
|
|
if args.gradient_checkpointing: |
|
flux.enable_gradient_checkpointing(cpu_offload=args.cpu_offload_checkpointing) |
|
|
|
flux.requires_grad_(True) |
|
|
|
|
|
|
|
|
|
if args.blocks_to_swap is None: |
|
blocks_to_swap = args.double_blocks_to_swap or 0 |
|
if args.single_blocks_to_swap is not None: |
|
blocks_to_swap += args.single_blocks_to_swap // 2 |
|
if blocks_to_swap > 0: |
|
logger.warning( |
|
"double_blocks_to_swap and single_blocks_to_swap are deprecated. Use blocks_to_swap instead." |
|
" / double_blocks_to_swapとsingle_blocks_to_swapは非推奨です。blocks_to_swapを使ってください。" |
|
) |
|
logger.info( |
|
f"double_blocks_to_swap={args.double_blocks_to_swap} and single_blocks_to_swap={args.single_blocks_to_swap} are converted to blocks_to_swap={blocks_to_swap}." |
|
) |
|
args.blocks_to_swap = blocks_to_swap |
|
del blocks_to_swap |
|
|
|
self.is_swapping_blocks = args.blocks_to_swap is not None and args.blocks_to_swap > 0 |
|
if self.is_swapping_blocks: |
|
|
|
|
|
logger.info(f"enable block swap: blocks_to_swap={args.blocks_to_swap}") |
|
flux.enable_block_swap(args.blocks_to_swap, accelerator.device) |
|
|
|
if not cache_latents: |
|
|
|
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu") |
|
ae.requires_grad_(False) |
|
ae.eval() |
|
ae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
training_models = [] |
|
params_to_optimize = [] |
|
training_models.append(flux) |
|
name_and_params = list(flux.named_parameters()) |
|
|
|
params_to_optimize.append({"params": [p for _, p in name_and_params], "lr": args.learning_rate}) |
|
param_names = [[n for n, _ in name_and_params]] |
|
|
|
|
|
n_params = 0 |
|
for group in params_to_optimize: |
|
for p in group["params"]: |
|
n_params += p.numel() |
|
|
|
accelerator.print(f"number of trainable parameters: {n_params}") |
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.") |
|
|
|
if args.blockwise_fused_optimizers: |
|
|
|
|
|
|
|
|
|
|
|
grouped_params = [] |
|
param_group = {} |
|
for group in params_to_optimize: |
|
named_parameters = list(flux.named_parameters()) |
|
assert len(named_parameters) == len(group["params"]), "number of parameters does not match" |
|
for p, np in zip(group["params"], named_parameters): |
|
|
|
block_type = "other" |
|
if np[0].startswith("double_blocks"): |
|
block_index = int(np[0].split(".")[1]) |
|
block_type = "double" |
|
elif np[0].startswith("single_blocks"): |
|
block_index = int(np[0].split(".")[1]) |
|
block_type = "single" |
|
else: |
|
block_index = -1 |
|
|
|
param_group_key = (block_type, block_index) |
|
if param_group_key not in param_group: |
|
param_group[param_group_key] = [] |
|
param_group[param_group_key].append(p) |
|
|
|
block_types_and_indices = [] |
|
for param_group_key, param_group in param_group.items(): |
|
block_types_and_indices.append(param_group_key) |
|
grouped_params.append({"params": param_group, "lr": args.learning_rate}) |
|
|
|
num_params = 0 |
|
for p in param_group: |
|
num_params += p.numel() |
|
accelerator.print(f"block {param_group_key}: {num_params} parameters") |
|
|
|
|
|
optimizers = [] |
|
for group in grouped_params: |
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params=[group]) |
|
optimizers.append(optimizer) |
|
optimizer = optimizers[0] |
|
|
|
logger.info(f"using {len(optimizers)} optimizers for blockwise fused optimizers") |
|
|
|
if train_util.is_schedulefree_optimizer(optimizers[0], args): |
|
raise ValueError("Schedule-free optimizer is not supported with blockwise fused optimizers") |
|
self.optimizer_train_fn = lambda: None |
|
self.optimizer_eval_fn = lambda: None |
|
else: |
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize) |
|
self.optimizer_train_fn, self.optimizer_eval_fn = train_util.get_optimizer_train_eval_fn(optimizer, args) |
|
|
|
|
|
|
|
|
|
train_dataset_group.set_current_strategies() |
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, |
|
batch_size=1, |
|
shuffle=True, |
|
collate_fn=collator, |
|
num_workers=n_workers, |
|
persistent_workers=args.persistent_data_loader_workers, |
|
) |
|
|
|
|
|
if args.max_train_epochs is not None: |
|
args.max_train_steps = args.max_train_epochs * math.ceil( |
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps |
|
) |
|
accelerator.print( |
|
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" |
|
) |
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps) |
|
|
|
|
|
if args.blockwise_fused_optimizers: |
|
|
|
lr_schedulers = [train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) for optimizer in optimizers] |
|
lr_scheduler = lr_schedulers[0] |
|
else: |
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) |
|
|
|
|
|
if args.full_fp16: |
|
assert ( |
|
args.mixed_precision == "fp16" |
|
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" |
|
accelerator.print("enable full fp16 training.") |
|
flux.to(weight_dtype) |
|
if clip_l is not None: |
|
clip_l.to(weight_dtype) |
|
t5xxl.to(weight_dtype) |
|
elif args.full_bf16: |
|
assert ( |
|
args.mixed_precision == "bf16" |
|
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。" |
|
accelerator.print("enable full bf16 training.") |
|
flux.to(weight_dtype) |
|
if clip_l is not None: |
|
clip_l.to(weight_dtype) |
|
t5xxl.to(weight_dtype) |
|
|
|
|
|
if not args.cache_text_encoder_outputs: |
|
clip_l.to(accelerator.device) |
|
t5xxl.to(accelerator.device) |
|
|
|
clean_memory_on_device(accelerator.device) |
|
|
|
if args.deepspeed: |
|
ds_model = deepspeed_utils.prepare_deepspeed_model(args, mmdit=flux) |
|
|
|
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
ds_model, optimizer, train_dataloader, lr_scheduler |
|
) |
|
training_models = [ds_model] |
|
|
|
else: |
|
|
|
|
|
flux = accelerator.prepare(flux, device_placement=[not self.is_swapping_blocks]) |
|
if self.is_swapping_blocks: |
|
accelerator.unwrap_model(flux).move_to_device_except_swap_blocks(accelerator.device) |
|
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler) |
|
|
|
|
|
if args.full_fp16: |
|
|
|
|
|
train_util.patch_accelerator_for_fp16_training(accelerator) |
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args) |
|
|
|
if args.fused_backward_pass: |
|
|
|
from .library import adafactor_fused |
|
|
|
adafactor_fused.patch_adafactor_fused(optimizer) |
|
|
|
for param_group, param_name_group in zip(optimizer.param_groups, param_names): |
|
for parameter, param_name in zip(param_group["params"], param_name_group): |
|
if parameter.requires_grad: |
|
|
|
def create_grad_hook(p_name, p_group): |
|
def grad_hook(tensor: torch.Tensor): |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
accelerator.clip_grad_norm_(tensor, args.max_grad_norm) |
|
optimizer.step_param(tensor, p_group) |
|
tensor.grad = None |
|
|
|
return grad_hook |
|
|
|
parameter.register_post_accumulate_grad_hook(create_grad_hook(param_name, param_group)) |
|
|
|
elif args.blockwise_fused_optimizers: |
|
|
|
for i in range(1, len(optimizers)): |
|
optimizers[i] = accelerator.prepare(optimizers[i]) |
|
lr_schedulers[i] = accelerator.prepare(lr_schedulers[i]) |
|
|
|
|
|
global optimizer_hooked_count |
|
global num_parameters_per_group |
|
global parameter_optimizer_map |
|
|
|
optimizer_hooked_count = {} |
|
num_parameters_per_group = [0] * len(optimizers) |
|
parameter_optimizer_map = {} |
|
|
|
for opt_idx, optimizer in enumerate(optimizers): |
|
for param_group in optimizer.param_groups: |
|
for parameter in param_group["params"]: |
|
if parameter.requires_grad: |
|
|
|
def grad_hook(parameter: torch.Tensor): |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
accelerator.clip_grad_norm_(parameter, args.max_grad_norm) |
|
|
|
i = parameter_optimizer_map[parameter] |
|
optimizer_hooked_count[i] += 1 |
|
if optimizer_hooked_count[i] == num_parameters_per_group[i]: |
|
optimizers[i].step() |
|
optimizers[i].zero_grad(set_to_none=True) |
|
|
|
parameter.register_post_accumulate_grad_hook(grad_hook) |
|
parameter_optimizer_map[parameter] = opt_idx |
|
num_parameters_per_group[opt_idx] += 1 |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): |
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 |
|
|
|
|
|
|
|
accelerator.print("running training") |
|
accelerator.print(f" num examples: {train_dataset_group.num_train_images}") |
|
accelerator.print(f" num batches per epoch: {len(train_dataloader)}") |
|
accelerator.print(f" num epochs: {num_train_epochs}") |
|
accelerator.print( |
|
f" batch size per device: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" |
|
) |
|
|
|
|
|
|
|
accelerator.print(f" gradient accumulation steps = {args.gradient_accumulation_steps}") |
|
accelerator.print(f" total optimization steps: {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") |
|
self.global_step = 0 |
|
|
|
noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.discrete_flow_shift) |
|
noise_scheduler_copy = copy.deepcopy(noise_scheduler) |
|
|
|
if accelerator.is_main_process: |
|
init_kwargs = {} |
|
if args.wandb_run_name: |
|
init_kwargs["wandb"] = {"name": args.wandb_run_name} |
|
if args.log_tracker_config is not None: |
|
init_kwargs = toml.load(args.log_tracker_config) |
|
accelerator.init_trackers( |
|
"finetuning" if args.log_tracker_name is None else args.log_tracker_name, |
|
config=train_util.get_sanitized_config_or_none(args), |
|
init_kwargs=init_kwargs, |
|
) |
|
|
|
if self.is_swapping_blocks: |
|
accelerator.unwrap_model(flux).prepare_block_swap_before_forward() |
|
|
|
|
|
|
|
|
|
self.loss_recorder = train_util.LossRecorder() |
|
epoch = 0 |
|
|
|
self.tokens_and_masks = tokens_and_masks |
|
self.num_train_epochs = num_train_epochs |
|
self.current_epoch = current_epoch |
|
self.args = args |
|
self.accelerator = accelerator |
|
self.unet = flux |
|
self.vae = ae |
|
self.text_encoder = [clip_l, t5xxl] |
|
self.save_dtype = save_dtype |
|
|
|
def training_loop(break_at_steps, epoch): |
|
global optimizer_hooked_count |
|
steps_done = 0 |
|
|
|
progress_bar.set_description(f"Epoch {epoch + 1}/{num_train_epochs} - steps") |
|
current_epoch.value = epoch + 1 |
|
|
|
for m in training_models: |
|
m.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
current_step.value = self.global_step |
|
|
|
if args.blockwise_fused_optimizers: |
|
optimizer_hooked_count = {i: 0 for i in range(len(optimizers))} |
|
|
|
with accelerator.accumulate(*training_models): |
|
if "latents" in batch and batch["latents"] is not None: |
|
latents = batch["latents"].to(accelerator.device, dtype=weight_dtype) |
|
else: |
|
with torch.no_grad(): |
|
|
|
latents = ae.encode(batch["images"].to(ae.dtype)).to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
if torch.any(torch.isnan(latents)): |
|
accelerator.print("NaN found in latents, replacing with zeros") |
|
latents = torch.nan_to_num(latents, 0, out=latents) |
|
|
|
text_encoder_outputs_list = batch.get("text_encoder_outputs_list", None) |
|
if text_encoder_outputs_list is not None: |
|
text_encoder_conds = text_encoder_outputs_list |
|
else: |
|
|
|
tokens_and_masks = batch["input_ids_list"] |
|
with torch.no_grad(): |
|
input_ids = [ids.to(accelerator.device) for ids in batch["input_ids_list"]] |
|
text_encoder_conds = text_encoding_strategy.encode_tokens( |
|
flux_tokenize_strategy, [clip_l, t5xxl], input_ids, args.apply_t5_attn_mask |
|
) |
|
if args.full_fp16: |
|
text_encoder_conds = [c.to(weight_dtype) for c in text_encoder_conds] |
|
|
|
|
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
|
|
noisy_model_input, timesteps, sigmas = flux_train_utils.get_noisy_model_input_and_timesteps( |
|
args, noise_scheduler_copy, latents, noise, accelerator.device, weight_dtype |
|
) |
|
|
|
|
|
packed_noisy_model_input = flux_utils.pack_latents(noisy_model_input) |
|
packed_latent_height, packed_latent_width = noisy_model_input.shape[2] // 2, noisy_model_input.shape[3] // 2 |
|
img_ids = flux_utils.prepare_img_ids(bsz, packed_latent_height, packed_latent_width).to(device=accelerator.device) |
|
|
|
|
|
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device) |
|
|
|
|
|
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds |
|
if not args.apply_t5_attn_mask: |
|
t5_attn_mask = None |
|
|
|
if args.bypass_flux_guidance: |
|
flux_utils.bypass_flux_guidance(flux) |
|
|
|
with accelerator.autocast(): |
|
|
|
model_pred = flux( |
|
img=packed_noisy_model_input, |
|
img_ids=img_ids, |
|
txt=t5_out, |
|
txt_ids=txt_ids, |
|
y=l_pooled, |
|
timesteps=timesteps / 1000, |
|
guidance=guidance_vec, |
|
txt_attention_mask=t5_attn_mask, |
|
) |
|
|
|
|
|
model_pred = flux_utils.unpack_latents(model_pred, packed_latent_height, packed_latent_width) |
|
|
|
if args.bypass_flux_guidance: |
|
flux_utils.restore_flux_guidance(flux) |
|
|
|
|
|
model_pred, weighting = flux_train_utils.apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas) |
|
|
|
|
|
target = noise - latents |
|
|
|
|
|
huber_c = train_util.get_huber_threshold_if_needed(args, timesteps, noise_scheduler) |
|
loss = train_util.conditional_loss(model_pred.float(), target.float(), args.loss_type, "none", huber_c) |
|
if weighting is not None: |
|
loss = loss * weighting |
|
if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None): |
|
loss = apply_masked_loss(loss, batch) |
|
loss = loss.mean([1, 2, 3]) |
|
|
|
loss_weights = batch["loss_weights"] |
|
loss = loss * loss_weights |
|
loss = loss.mean() |
|
|
|
|
|
accelerator.backward(loss) |
|
|
|
if not (args.fused_backward_pass or args.blockwise_fused_optimizers): |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
params_to_clip = [] |
|
for m in training_models: |
|
params_to_clip.extend(m.parameters()) |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
else: |
|
|
|
lr_scheduler.step() |
|
if args.blockwise_fused_optimizers: |
|
for i in range(1, len(optimizers)): |
|
lr_schedulers[i].step() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
self.global_step += 1 |
|
|
|
|
|
current_loss = loss.detach().item() |
|
if len(accelerator.trackers) > 0: |
|
logs = {"loss": current_loss} |
|
train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True) |
|
|
|
accelerator.log(logs, step=self.global_step) |
|
|
|
self.loss_recorder.add(epoch=epoch, step=step, loss=current_loss, global_step=self.global_step) |
|
avr_loss: float = self.loss_recorder.moving_average |
|
logs = {"avr_loss": avr_loss} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if self.global_step >= break_at_steps: |
|
break |
|
steps_done += 1 |
|
|
|
if len(accelerator.trackers) > 0: |
|
logs = {"loss/epoch": self.loss_recorder.moving_average} |
|
accelerator.log(logs, step=epoch + 1) |
|
return steps_done |
|
|
|
return training_loop |
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
add_logging_arguments(parser) |
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_dataset_arguments(parser, True, True, True) |
|
train_util.add_training_arguments(parser, False) |
|
train_util.add_masked_loss_arguments(parser) |
|
deepspeed_utils.add_deepspeed_arguments(parser) |
|
train_util.add_sd_saving_arguments(parser) |
|
train_util.add_optimizer_arguments(parser) |
|
config_util.add_config_arguments(parser) |
|
add_custom_train_arguments(parser) |
|
train_util.add_dit_training_arguments(parser) |
|
flux_train_utils.add_flux_train_arguments(parser) |
|
|
|
parser.add_argument( |
|
"--mem_eff_save", |
|
action="store_true", |
|
help="[EXPERIMENTAL] use memory efficient custom model saving method / メモリ効率の良い独自のモデル保存方法を使う", |
|
) |
|
|
|
parser.add_argument( |
|
"--fused_optimizer_groups", |
|
type=int, |
|
default=None, |
|
help="**this option is not working** will be removed in the future / このオプションは動作しません。将来削除されます", |
|
) |
|
parser.add_argument( |
|
"--blockwise_fused_optimizers", |
|
action="store_true", |
|
help="enable blockwise optimizers for fused backward pass and optimizer step / fused backward passとoptimizer step のためブロック単位のoptimizerを有効にする", |
|
) |
|
parser.add_argument( |
|
"--skip_latents_validity_check", |
|
action="store_true", |
|
help="skip latents validity check / latentsの正当性チェックをスキップする", |
|
) |
|
|
|
parser.add_argument( |
|
"--cpu_offload_checkpointing", |
|
action="store_true", |
|
help="[EXPERIMENTAL] enable offloading of tensors to CPU during checkpointing / チェックポイント時にテンソルをCPUにオフロードする", |
|
) |
|
return parser |
|
|