|
""" |
|
Goal |
|
--- |
|
1. Read test results from log.txt files |
|
2. Compute mean and std across different folders (seeds) |
|
3. Compute all datasets' accuracy and h-mean |
|
4. Save the results to an Excel file |
|
Usage |
|
--- |
|
Assume the output files are saved under output/my_experiment, |
|
which contains results of different seeds, e.g., |
|
|
|
my_experiment/ |
|
seed1/ |
|
log.txt |
|
seed2/ |
|
log.txt |
|
seed3/ |
|
log.txt |
|
|
|
Run the following command from the root directory: |
|
|
|
$ python tools/parse_test_res.py output/my_experiment |
|
|
|
Add --ci95 to the argument if you wanna get 95% confidence |
|
interval instead of standard deviation: |
|
|
|
$ python tools/parse_test_res.py output/my_experiment --ci95 |
|
|
|
If my_experiment/ has the following structure, |
|
|
|
my_experiment/ |
|
exp-1/ |
|
seed1/ |
|
log.txt |
|
... |
|
seed2/ |
|
log.txt |
|
... |
|
seed3/ |
|
log.txt |
|
... |
|
exp-2/ |
|
... |
|
exp-3/ |
|
... |
|
|
|
Run |
|
|
|
$ python tools/parse_test_res.py output/my_experiment --multi-exp |
|
""" |
|
import re |
|
import numpy as np |
|
import os.path as osp |
|
import argparse |
|
import pandas as pd |
|
from collections import OrderedDict, defaultdict |
|
|
|
from dassl.utils import check_isfile, listdir_nohidden |
|
|
|
|
|
b2n_dataset = [ |
|
"imagenet", |
|
"caltech101", |
|
"fgvc_aircraft", |
|
"oxford_flowers", |
|
"dtd", |
|
"eurosat", |
|
"food101", |
|
"oxford_pets", |
|
"stanford_cars", |
|
"sun397", |
|
"ucf101", |
|
] |
|
cross_dataset = [ |
|
"caltech101", |
|
"fgvc_aircraft", |
|
"oxford_flowers", |
|
"dtd", |
|
"eurosat", |
|
"food101", |
|
"oxford_pets", |
|
"stanford_cars", |
|
"sun397", |
|
"ucf101", |
|
] |
|
dg_dataset = [ |
|
"imagenet", |
|
"imagenetv2", |
|
"imagenet_sketch", |
|
"imagenet_a", |
|
"imagenet_r", |
|
] |
|
def compute_ci95(res): |
|
return 1.96 * np.std(res) / np.sqrt(len(res)) |
|
|
|
|
|
def parse_function(*metrics, directory="", args=None, end_signal=None): |
|
print(f"Parsing files in {directory}") |
|
output_results = OrderedDict() |
|
output_results['accuracy'] = 0.0 |
|
|
|
try: |
|
subdirs = listdir_nohidden(directory, sort=True) |
|
except: |
|
print("no folder") |
|
return output_results |
|
|
|
|
|
outputs = [] |
|
|
|
for subdir in subdirs: |
|
fpath = osp.join(directory, subdir, "log.txt") |
|
|
|
assert check_isfile(fpath) |
|
good_to_go = False |
|
output = OrderedDict() |
|
|
|
with open(fpath, "r") as f: |
|
lines = f.readlines() |
|
|
|
for line in lines: |
|
line = line.strip() |
|
|
|
if line == end_signal: |
|
good_to_go = True |
|
|
|
|
|
for metric in metrics: |
|
match = metric["regex"].search(line) |
|
if match and good_to_go: |
|
if "file" not in output: |
|
output["file"] = fpath |
|
num = float(match.group(1)) |
|
name = metric["name"] |
|
output[name] = num |
|
|
|
if output: |
|
outputs.append(output) |
|
|
|
|
|
|
|
if len(outputs) <= 0: |
|
print("Nothing found in :") |
|
print(directory) |
|
return output_results |
|
|
|
metrics_results = defaultdict(list) |
|
|
|
for output in outputs: |
|
msg = "" |
|
for key, value in output.items(): |
|
if isinstance(value, float): |
|
msg += f"{key}: {value:.2f}%. " |
|
else: |
|
msg += f"{key}: {value}. " |
|
if key != "file": |
|
metrics_results[key].append(value) |
|
print(msg) |
|
|
|
|
|
|
|
print("===") |
|
print(f"Summary of directory: {directory}") |
|
for key, values in metrics_results.items(): |
|
avg = np.mean(values) |
|
std = compute_ci95(values) if args.ci95 else np.std(values) |
|
print(f"* {key}: {avg:.2f}% +- {std:.2f}%") |
|
output_results[key] = avg |
|
print("===") |
|
|
|
return output_results |
|
|
|
|
|
def main(args, end_signal): |
|
metric = { |
|
"name": args.keyword, |
|
"regex": re.compile(fr"\* {args.keyword}: ([\.\deE+-]+)%"), |
|
} |
|
|
|
if args.type == "base2new": |
|
all_dataset = b2n_dataset |
|
final_results = defaultdict(list) |
|
final_results1 = defaultdict(list) |
|
pattern = r'\b(' + '|'.join(map(re.escape, all_dataset)) + r')\b' |
|
|
|
p=args.directory |
|
path_str = re.sub(pattern, "{}", p) |
|
all_dic = [path_str.format(dataset)for dataset in all_dataset] |
|
|
|
all_dic1 = [] |
|
if "train_base" in all_dic[0]: |
|
for p in all_dic: |
|
|
|
all_dic1.append(p.replace("train_base", "test_new")) |
|
|
|
elif "test_new" in all_dic[0]: |
|
for p in all_dic: |
|
|
|
|
|
all_dic1.append(p.replace("test_new", "train_base")) |
|
|
|
temp = all_dic |
|
all_dic = all_dic1 |
|
all_dic1= temp |
|
|
|
for i, directory in enumerate(all_dic): |
|
results = parse_function( |
|
metric, directory=directory, args=args, end_signal=end_signal |
|
) |
|
for key, value in results.items(): |
|
final_results[key].append(value) |
|
|
|
for i, directory in enumerate(all_dic1): |
|
results1 = parse_function( |
|
metric, directory=directory, args=args, end_signal=end_signal |
|
) |
|
for key, value in results1.items(): |
|
final_results1[key].append(value) |
|
|
|
|
|
output_data = [] |
|
for i in range(len(all_dataset)): |
|
base = final_results['accuracy'][i] |
|
new = final_results1['accuracy'][i] |
|
try: |
|
h = 2 / (1/base + 1/new) |
|
except: |
|
h = 0 |
|
result = { |
|
'Dataset': all_dataset[i], |
|
'Base Accuracy': base, |
|
'New Accuracy': new, |
|
'H-Mean': h |
|
} |
|
output_data.append(result) |
|
print(f"{all_dataset[i]:<20}: base: {base:>6.2f} new: {new:>6.2f} h: {h:>6.2f}") |
|
|
|
output_df = pd.DataFrame(output_data) |
|
|
|
|
|
output_file = "form_results_base2new.xlsx" |
|
output_df.to_excel(output_file, index=False) |
|
|
|
|
|
print("Average performance:") |
|
|
|
for key, values in final_results.items(): |
|
avg_base = np.mean(values) |
|
print('base') |
|
print(f"* {key}: {avg_base:.2f}%") |
|
|
|
for key, values in final_results1.items(): |
|
avg_new = np.mean(values) |
|
print('new') |
|
print(f"* {key}: {avg_new:.2f}%") |
|
|
|
try: |
|
avg_h = 2 / (1/avg_base + 1/avg_new) |
|
except: |
|
avg_h = 0 |
|
print(f'h: {avg_h:.2f}%') |
|
else: |
|
if args.type == "fewshot": |
|
all_dataset = b2n_dataset |
|
elif args.type == "cross": |
|
all_dataset = cross_dataset |
|
elif args.type == "dg": |
|
all_dataset = dg_dataset |
|
|
|
final_results = defaultdict(list) |
|
pattern = r'\b(' + '|'.join(map(re.escape, all_dataset)) + r')\b' |
|
p=args.directory |
|
path_str = re.sub(pattern, "{}", p) |
|
all_dic = [path_str.format(dataset)for dataset in all_dataset] |
|
|
|
|
|
for i, directory in enumerate(all_dic): |
|
results = parse_function( |
|
metric, directory=directory, args=args, end_signal=end_signal |
|
) |
|
for key, value in results.items(): |
|
final_results[key].append(value) |
|
|
|
output_data = [] |
|
for i in range(len(all_dataset)): |
|
base = final_results['accuracy'][i] |
|
|
|
result = { |
|
'Dataset': all_dataset[i], |
|
'Accuracy': base, |
|
} |
|
output_data.append(result) |
|
print(f"{all_dataset[i]:<20}: Accuracy: {base:>6.2f}") |
|
|
|
output_df = pd.DataFrame(output_data) |
|
|
|
|
|
output_file = "form_results_"+args.type+".xlsx" |
|
output_df.to_excel(output_file, index=False) |
|
|
|
|
|
print("Average performance:") |
|
|
|
for key, values in final_results.items(): |
|
avg_base = np.mean(values) |
|
print(f"* {key}: {avg_base:.2f}%") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("directory", type=str, help="path to directory") |
|
parser.add_argument("-type", type=str, |
|
choices=['base2new', 'fewshot', 'cross', 'dg'], |
|
help="task type:base2new, fewshot, cross, dg") |
|
parser.add_argument( |
|
"--ci95", action="store_true", help=r"compute 95\% confidence interval" |
|
) |
|
parser.add_argument("--test-log", action="store_true", help="parse test-only logs") |
|
parser.add_argument( |
|
"--multi-exp", action="store_true", help="parse multiple experiments" |
|
) |
|
parser.add_argument( |
|
"--keyword", default="accuracy", type=str, help="which keyword to extract" |
|
) |
|
args = parser.parse_args() |
|
|
|
end_signal = "=> result" |
|
if args.test_log: |
|
end_signal = "=> result" |
|
|
|
main(args, end_signal) |
|
|
|
|