Subspace_Prompting / datasets /stanford_cars.py
tongyujun's picture
Upload 641 files
8c6b5ee verified
import os
import pickle
from scipy.io import loadmat
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
from dassl.utils import mkdir_if_missing
from .oxford_pets import OxfordPets
@DATASET_REGISTRY.register()
class StanfordCars(DatasetBase):
dataset_dir = "stanford_cars"
def __init__(self, cfg):
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = os.path.join(root, self.dataset_dir)
self.split_path = os.path.join(self.dataset_dir, "split_zhou_StanfordCars.json")
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
mkdir_if_missing(self.split_fewshot_dir)
if os.path.exists(self.split_path):
train, val, test = OxfordPets.read_split(self.split_path, self.dataset_dir)
else:
trainval_file = os.path.join(self.dataset_dir, "devkit", "cars_train_annos.mat")
test_file = os.path.join(self.dataset_dir, "cars_test_annos_withlabels.mat")
meta_file = os.path.join(self.dataset_dir, "devkit", "cars_meta.mat")
trainval = self.read_data("cars_train", trainval_file, meta_file)
test = self.read_data("cars_test", test_file, meta_file)
train, val = OxfordPets.split_trainval(trainval)
OxfordPets.save_split(train, val, test, self.split_path, self.dataset_dir)
num_shots = cfg.DATASET.NUM_SHOTS
if num_shots >= 1:
seed = cfg.SEED
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
if os.path.exists(preprocessed):
print(f"Loading preprocessed few-shot data from {preprocessed}")
with open(preprocessed, "rb") as file:
data = pickle.load(file)
train, val = data["train"], data["val"]
else:
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
data = {"train": train, "val": val}
print(f"Saving preprocessed few-shot data to {preprocessed}")
with open(preprocessed, "wb") as file:
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
train, _, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
super().__init__(train_x=train, val=test, test=test)
# if cfg.TRAINER.NAME == "SuPr":
self.all_classnames = OxfordPets.get_all_classnames(train, val, test)
def read_data(self, image_dir, anno_file, meta_file):
anno_file = loadmat(anno_file)["annotations"][0]
meta_file = loadmat(meta_file)["class_names"][0]
items = []
for i in range(len(anno_file)):
imname = anno_file[i]["fname"][0]
impath = os.path.join(self.dataset_dir, image_dir, imname)
label = anno_file[i]["class"][0, 0]
label = int(label) - 1 # convert to 0-based index
classname = meta_file[label][0]
names = classname.split(" ")
year = names.pop(-1)
names.insert(0, year)
classname = " ".join(names)
item = Datum(impath=impath, label=label, classname=classname)
items.append(item)
return items