|
import os |
|
import pickle |
|
from scipy.io import loadmat |
|
|
|
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase |
|
from dassl.utils import mkdir_if_missing |
|
|
|
from .oxford_pets import OxfordPets |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class StanfordCars(DatasetBase): |
|
|
|
dataset_dir = "stanford_cars" |
|
|
|
def __init__(self, cfg): |
|
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) |
|
self.dataset_dir = os.path.join(root, self.dataset_dir) |
|
self.split_path = os.path.join(self.dataset_dir, "split_zhou_StanfordCars.json") |
|
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") |
|
mkdir_if_missing(self.split_fewshot_dir) |
|
|
|
if os.path.exists(self.split_path): |
|
train, val, test = OxfordPets.read_split(self.split_path, self.dataset_dir) |
|
else: |
|
trainval_file = os.path.join(self.dataset_dir, "devkit", "cars_train_annos.mat") |
|
test_file = os.path.join(self.dataset_dir, "cars_test_annos_withlabels.mat") |
|
meta_file = os.path.join(self.dataset_dir, "devkit", "cars_meta.mat") |
|
trainval = self.read_data("cars_train", trainval_file, meta_file) |
|
test = self.read_data("cars_test", test_file, meta_file) |
|
train, val = OxfordPets.split_trainval(trainval) |
|
OxfordPets.save_split(train, val, test, self.split_path, self.dataset_dir) |
|
|
|
num_shots = cfg.DATASET.NUM_SHOTS |
|
if num_shots >= 1: |
|
seed = cfg.SEED |
|
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") |
|
|
|
if os.path.exists(preprocessed): |
|
print(f"Loading preprocessed few-shot data from {preprocessed}") |
|
with open(preprocessed, "rb") as file: |
|
data = pickle.load(file) |
|
train, val = data["train"], data["val"] |
|
else: |
|
train = self.generate_fewshot_dataset(train, num_shots=num_shots) |
|
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4)) |
|
data = {"train": train, "val": val} |
|
print(f"Saving preprocessed few-shot data to {preprocessed}") |
|
with open(preprocessed, "wb") as file: |
|
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
subsample = cfg.DATASET.SUBSAMPLE_CLASSES |
|
train, _, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample) |
|
super().__init__(train_x=train, val=test, test=test) |
|
|
|
|
|
self.all_classnames = OxfordPets.get_all_classnames(train, val, test) |
|
|
|
def read_data(self, image_dir, anno_file, meta_file): |
|
anno_file = loadmat(anno_file)["annotations"][0] |
|
meta_file = loadmat(meta_file)["class_names"][0] |
|
items = [] |
|
|
|
for i in range(len(anno_file)): |
|
imname = anno_file[i]["fname"][0] |
|
impath = os.path.join(self.dataset_dir, image_dir, imname) |
|
label = anno_file[i]["class"][0, 0] |
|
label = int(label) - 1 |
|
classname = meta_file[label][0] |
|
names = classname.split(" ") |
|
year = names.pop(-1) |
|
names.insert(0, year) |
|
classname = " ".join(names) |
|
item = Datum(impath=impath, label=label, classname=classname) |
|
items.append(item) |
|
|
|
return items |
|
|