|
import os |
|
import pickle |
|
import random |
|
from scipy.io import loadmat |
|
from collections import defaultdict |
|
|
|
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase |
|
from dassl.utils import read_json, mkdir_if_missing |
|
|
|
from .oxford_pets import OxfordPets |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class OxfordFlowers(DatasetBase): |
|
|
|
dataset_dir = "oxford_flowers" |
|
|
|
def __init__(self, cfg): |
|
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) |
|
self.dataset_dir = os.path.join(root, self.dataset_dir) |
|
self.image_dir = os.path.join(self.dataset_dir, "jpg") |
|
self.label_file = os.path.join(self.dataset_dir, "imagelabels.mat") |
|
self.lab2cname_file = os.path.join(self.dataset_dir, "cat_to_name.json") |
|
self.split_path = os.path.join(self.dataset_dir, "split_zhou_OxfordFlowers.json") |
|
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") |
|
mkdir_if_missing(self.split_fewshot_dir) |
|
|
|
if os.path.exists(self.split_path): |
|
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) |
|
else: |
|
train, val, test = self.read_data() |
|
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir) |
|
|
|
num_shots = cfg.DATASET.NUM_SHOTS |
|
if num_shots >= 1: |
|
seed = cfg.SEED |
|
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") |
|
|
|
if os.path.exists(preprocessed): |
|
print(f"Loading preprocessed few-shot data from {preprocessed}") |
|
with open(preprocessed, "rb") as file: |
|
data = pickle.load(file) |
|
train, val = data["train"], data["val"] |
|
else: |
|
train = self.generate_fewshot_dataset(train, num_shots=num_shots) |
|
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4)) |
|
data = {"train": train, "val": val} |
|
print(f"Saving preprocessed few-shot data to {preprocessed}") |
|
with open(preprocessed, "wb") as file: |
|
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
subsample = cfg.DATASET.SUBSAMPLE_CLASSES |
|
train, _, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample) |
|
super().__init__(train_x=train, val=test, test=test) |
|
|
|
|
|
self.all_classnames = OxfordPets.get_all_classnames(train, val, test) |
|
|
|
def read_data(self): |
|
tracker = defaultdict(list) |
|
label_file = loadmat(self.label_file)["labels"][0] |
|
for i, label in enumerate(label_file): |
|
imname = f"image_{str(i + 1).zfill(5)}.jpg" |
|
impath = os.path.join(self.image_dir, imname) |
|
label = int(label) |
|
tracker[label].append(impath) |
|
|
|
print("Splitting data into 50% train, 20% val, and 30% test") |
|
|
|
def _collate(ims, y, c): |
|
items = [] |
|
for im in ims: |
|
item = Datum(impath=im, label=y - 1, classname=c) |
|
items.append(item) |
|
return items |
|
|
|
lab2cname = read_json(self.lab2cname_file) |
|
train, val, test = [], [], [] |
|
for label, impaths in tracker.items(): |
|
random.shuffle(impaths) |
|
n_total = len(impaths) |
|
n_train = round(n_total * 0.5) |
|
n_val = round(n_total * 0.2) |
|
n_test = n_total - n_train - n_val |
|
assert n_train > 0 and n_val > 0 and n_test > 0 |
|
cname = lab2cname[str(label)] |
|
train.extend(_collate(impaths[:n_train], label, cname)) |
|
val.extend(_collate(impaths[n_train : n_train + n_val], label, cname)) |
|
test.extend(_collate(impaths[n_train + n_val :], label, cname)) |
|
|
|
return train, val, test |
|
|