|
import os |
|
import pickle |
|
from collections import OrderedDict |
|
|
|
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase |
|
from dassl.utils import listdir_nohidden, mkdir_if_missing |
|
|
|
from .oxford_pets import OxfordPets |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class ImageNet(DatasetBase): |
|
|
|
dataset_dir = "imagenet" |
|
|
|
def __init__(self, cfg): |
|
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) |
|
self.dataset_dir = os.path.join(root, self.dataset_dir) |
|
|
|
|
|
self.image_dir = os.path.join(self.dataset_dir, "images") |
|
self.preprocessed = os.path.join(self.dataset_dir, "preprocessed.pkl") |
|
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") |
|
mkdir_if_missing(self.split_fewshot_dir) |
|
|
|
if os.path.exists(self.preprocessed): |
|
with open(self.preprocessed, "rb") as f: |
|
preprocessed = pickle.load(f) |
|
train = preprocessed["train"] |
|
test = preprocessed["test"] |
|
else: |
|
text_file = os.path.join(self.dataset_dir, "classnames.txt") |
|
classnames = self.read_classnames(text_file) |
|
train = self.read_data(classnames, "train") |
|
|
|
|
|
test = self.read_data(classnames, "val") |
|
|
|
preprocessed = {"train": train, "test": test} |
|
with open(self.preprocessed, "wb") as f: |
|
pickle.dump(preprocessed, f, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
num_shots = cfg.DATASET.NUM_SHOTS |
|
print(f"num_shots is {num_shots}") |
|
if num_shots >= 1: |
|
seed = cfg.SEED |
|
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") |
|
|
|
if os.path.exists(preprocessed): |
|
print(f"Loading preprocessed few-shot data from {preprocessed}") |
|
with open(preprocessed, "rb") as file: |
|
data = pickle.load(file) |
|
train = data["train"] |
|
else: |
|
train = self.generate_fewshot_dataset(train, num_shots=num_shots) |
|
data = {"train": train} |
|
print(f"Saving preprocessed few-shot data to {preprocessed}") |
|
with open(preprocessed, "wb") as file: |
|
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
subsample = cfg.DATASET.SUBSAMPLE_CLASSES |
|
train, test = OxfordPets.subsample_classes(train, test, subsample=subsample) |
|
super().__init__(train_x=train, val=test, test=test) |
|
|
|
|
|
|
|
_,self.all_classnames = self.get_lab2cname(train) |
|
|
|
@staticmethod |
|
def read_classnames(text_file): |
|
"""Return a dictionary containing |
|
key-value pairs of <folder name>: <class name>. |
|
""" |
|
classnames = OrderedDict() |
|
with open(text_file, "r") as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
line = line.strip().split(" ") |
|
folder = line[0] |
|
classname = " ".join(line[1:]) |
|
classnames[folder] = classname |
|
return classnames |
|
|
|
def read_data(self, classnames, split_dir): |
|
split_dir = os.path.join(self.image_dir, split_dir) |
|
folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir()) |
|
items = [] |
|
|
|
for label, folder in enumerate(folders): |
|
imnames = listdir_nohidden(os.path.join(split_dir, folder)) |
|
classname = classnames[folder] |
|
for imname in imnames: |
|
impath = os.path.join(split_dir, folder, imname) |
|
item = Datum(impath=impath, label=label, classname=classname) |
|
items.append(item) |
|
|
|
return items |
|
|