|
import os |
|
import pickle |
|
|
|
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase |
|
from dassl.utils import mkdir_if_missing |
|
|
|
from .oxford_pets import OxfordPets |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class FGVCAircraft(DatasetBase): |
|
|
|
dataset_dir = "fgvc_aircraft" |
|
|
|
def __init__(self, cfg): |
|
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) |
|
self.dataset_dir = os.path.join(root, self.dataset_dir) |
|
self.image_dir = os.path.join(self.dataset_dir, "images") |
|
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") |
|
mkdir_if_missing(self.split_fewshot_dir) |
|
|
|
classnames = [] |
|
with open(os.path.join(self.dataset_dir, "variants.txt"), "r") as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
classnames.append(line.strip()) |
|
cname2lab = {c: i for i, c in enumerate(classnames)} |
|
|
|
train = self.read_data(cname2lab, "images_variant_train.txt") |
|
val = self.read_data(cname2lab, "images_variant_val.txt") |
|
test = self.read_data(cname2lab, "images_variant_test.txt") |
|
|
|
num_shots = cfg.DATASET.NUM_SHOTS |
|
if num_shots >= 1: |
|
seed = cfg.SEED |
|
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") |
|
|
|
if os.path.exists(preprocessed): |
|
print(f"Loading preprocessed few-shot data from {preprocessed}") |
|
with open(preprocessed, "rb") as file: |
|
data = pickle.load(file) |
|
train, val = data["train"], data["val"] |
|
else: |
|
train = self.generate_fewshot_dataset(train, num_shots=num_shots) |
|
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4)) |
|
data = {"train": train, "val": val} |
|
print(f"Saving preprocessed few-shot data to {preprocessed}") |
|
with open(preprocessed, "wb") as file: |
|
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
subsample = cfg.DATASET.SUBSAMPLE_CLASSES |
|
|
|
train, _, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample) |
|
super().__init__(train_x=train, val=test, test=test) |
|
|
|
|
|
self.all_classnames = OxfordPets.get_all_classnames(train, val, test) |
|
|
|
def read_data(self, cname2lab, split_file): |
|
filepath = os.path.join(self.dataset_dir, split_file) |
|
items = [] |
|
|
|
with open(filepath, "r") as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
line = line.strip().split(" ") |
|
imname = line[0] + ".jpg" |
|
classname = " ".join(line[1:]) |
|
impath = os.path.join(self.image_dir, imname) |
|
label = cname2lab[classname] |
|
item = Datum(impath=impath, label=label, classname=classname) |
|
items.append(item) |
|
|
|
return items |
|
|