tongyujun's picture
Upload 641 files
8c6b5ee verified
import os
import pickle
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
from dassl.utils import mkdir_if_missing
from .oxford_pets import OxfordPets
from .dtd import DescribableTextures as DTD
NEW_CNAMES = {
"AnnualCrop": "Annual Crop Land",
"Forest": "Forest",
"HerbaceousVegetation": "Herbaceous Vegetation Land",
"Highway": "Highway or Road",
"Industrial": "Industrial Buildings",
"Pasture": "Pasture Land",
"PermanentCrop": "Permanent Crop Land",
"Residential": "Residential Buildings",
"River": "River",
"SeaLake": "Sea or Lake",
}
@DATASET_REGISTRY.register()
class EuroSAT(DatasetBase):
dataset_dir = "eurosat"
def __init__(self, cfg):
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = os.path.join(root, self.dataset_dir)
self.image_dir = os.path.join(self.dataset_dir, "2750")
self.split_path = os.path.join(self.dataset_dir, "split_zhou_EuroSAT.json")
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
mkdir_if_missing(self.split_fewshot_dir)
if os.path.exists(self.split_path):
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
else:
train, val, test = DTD.read_and_split_data(self.image_dir, new_cnames=NEW_CNAMES)
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir)
num_shots = cfg.DATASET.NUM_SHOTS
if num_shots >= 1:
seed = cfg.SEED
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
if os.path.exists(preprocessed):
print(f"Loading preprocessed few-shot data from {preprocessed}")
with open(preprocessed, "rb") as file:
data = pickle.load(file)
train, val = data["train"], data["val"]
else:
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
data = {"train": train, "val": val}
print(f"Saving preprocessed few-shot data to {preprocessed}")
with open(preprocessed, "wb") as file:
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
if cfg.TRAINER.NAME == "PromptKD":
if cfg.TRAINER.MODAL == "base2novel":
train_x, _, _ = OxfordPets.subsample_classes(train, val, test, subsample='all')
_, _, test_base = OxfordPets.subsample_classes(train, val, test, subsample='base')
_, _, test_novel = OxfordPets.subsample_classes(train, val, test, subsample='new')
super().__init__(train_x=train_x, val=test_base, test=test_novel)
elif cfg.TRAINER.MODAL == "cross":
train, _, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
super().__init__(train_x=train, val=test, test=test)
else:
train, _, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
super().__init__(train_x=train, val=test, test=test)
# if cfg.TRAINER.NAME == "SuPr":
self.all_classnames = OxfordPets.get_all_classnames(train, val, test)
def update_classname(self, dataset_old):
dataset_new = []
for item_old in dataset_old:
cname_old = item_old.classname
cname_new = NEW_CLASSNAMES[cname_old]
item_new = Datum(impath=item_old.impath, label=item_old.label, classname=cname_new)
dataset_new.append(item_new)
return dataset_new